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Abstract

Background: To establish and validate 18F-fluorodeoxyglucose (18F-FDG) PET/CT-based radiomics model and use it
to predict the intermediate-high risk growth patterns in early invasive adenocarcinoma (IAC).

Methods: Ninety-three ground-glass nodules (GGNs) from 91 patients with stage I who underwent a preoperative
18F-FDG PET/CT scan and histopathological examination were included in this study. The LIFEx software was used
to extract 52 PET and 49 CT radiomic features. The least absolute shrinkage and selection operator (LASSO)
algorithm was used to select radiomic features and develop radiomics signatures. We used the receiver operating
characteristics curve (ROC) to compare the predictive performance of conventional CT parameters, radiomics
signatures, and the combination of these two. Also, a nomogram based on conventional CT indicators and
radiomics signature score (rad-score) was developed.

Results: GGNs were divided into lepidic group (n = 18) and acinar-papillary group (n = 75). Four radiomic features
(2 for PET and 2 for CT) were selected to calculate the rad-score, and the area under the curve (AUC) of rad-score
was 0.790, which was not significantly different as the attenuation value of the ground-glass opacity component on
CT (CTGGO) (0.675). When rad-score was combined with edge (joint model), the AUC increased to 0.804 (95% CI
[0.699–0.895]), but which was not significantly higher than CTGGO (P = 0.109). Furthermore, the decision curve of
joint model showed higher clinical value than rad-score and CTGGO, especially under the purpose of screening for
intermediate-high risk growth patterns.

Conclusion: PET/CT-based radiomics model shows good performance in predicting intermediate-high risk growth
patterns in early IAC. This model provides a useful method for risk stratification, clinical management, and
personalized treatment.

Keywords: Radiomics, Ground-glass opacity nodules, Histopathologic subtype, Invasive adenocarcinoma, 18F-FDG,
PET/CT
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Background
Currently, lung cancer is the leading cause of cancer-
related deaths, accounting for 23% of all cancer deaths
[1], and 80–85% of them are non-small cell lung cancer
(NSCLC). With the broad application of thin-layer CT
scanning technology and the continuous development of
lung cancer screening programs, the detection rate of
early lung adenocarcinoma with ground-glass nodules
(GGNs) continues to increase [2]. In many aspects,
primary lung adenocarcinoma is considered as a very
heterogeneous tumor with different histopathology and
disease processes [3]. According to the 2011 classifica-
tion of adenocarcinoma proposed by the International
Association for the Study of Lung Cancer, the American
Thoracic Society, and the European Respiratory Society
(IASLC/ATS/ERS) [4], the most common patterns
should be identified as the predominant growth patterns
of invasive adenocarcinoma (IAC), including five sub-
types: lepidic, acinar, papillary, micropapillary, and solid.
The use of predominant growth patterns not only helps
to classify IAC into subtypes but also serves as a prog-
nostic indicator independent of clinical stage [5, 6].
Among the first three most common growth patterns,
the prognosis of acinar or papillary types is worse than
lepidic [6, 7]. The confirmation of the IAC growth pat-
tern before surgery is essential for the risk stratification
of GGN and personalized treatment.
PET/CT has become the primary imaging method for

lung cancer evaluation. It can be used to detect and lo-
cate the primary tumor, determine the disease stage, or
evaluate the treatment effect [8, 9]. However, whether
the preoperative 18F-fluorodeoxyglucose (18F-FDG) PET/
CT can be used to predict the growth pattern of IAC is
still unclear [7, 10, 11]. The maximum standardized
uptake value (SUVmax) depends on two factors, the level
of glucose uptake, and the spatial distribution of tumor
cells. These factors are determined by the growth
pattern of each tumor type, which is affected by the
proliferation potential of tumor cells. In 2015, Nakamura
et al. [7] first clarified the relationship between SUVmax

and individual adenocarcinoma subtypes. The average
SUVmax of acinar or papillary types was higher than that
of the lepidic type. Son et al. [10] found that although
solid and acinar types showed higher SUVmax since most
IACs were lepidic or acinar, there was no significant
difference in SUVmax between the main types. Our previ-
ous study [11] also showed similar results as Nakamura
et al. Although SUVmax is the only independent factor
that can distinguish the growth patterns of IAC, its iden-
tification efficacy is still not ideal (AUC = 0.628).
Radiomics is an emerging field in which a large num-

ber of objective and quantitative imaging features are ex-
plored in order to select the features that are most
relevant to clinical, pathological, molecular, and genetic

features. This method can increase the accuracy of
diagnosis and prognosis and improve treatment efficacy
[12]. The potential of this approach is to quantify the
characteristics of tissues or organs beyond the visual in-
terpretation or simple metrics. The texture analysis per-
formed on 18F-FDG PET/CT images has shown great
value in diagnosing NSCLC [13, 14]. In this study, we
extracted the texture features of PET and CT images
from the respective volume of interest (VOI) and estab-
lished the PET/CT-based radiomics models to predict
intermediate-high risk growth patterns of early IAC.

Methods
Patient selection
In this retrospective single-center study, we enrolled 205
patients with GGN who underwent 18F-FDG PET/CT in
our department and later received surgical resection
from October 2011 to October 2019. The classification
of surgical pathology is based on the 2011 classification
of lung adenocarcinoma published by IASLC/ATS/ERS
[4]. This study was approved by the institutional ethics
committee for retrospective analysis and did not require
informed consent. Inclusion criteria: (1) stage I lung
adenocarcinoma; (2) lung nodules manifested as GGN;
(3) lesion size ≤ 4 cm; (4) PET/CT examination before
surgery; (5) radical resection on tumor; and (6) PET/CT
and surgery were completed within 1 month. Exclusion
criteria: (1) diameter of GGN > 4 cm; (2) lesion with
poor image quality or low FDG uptake that were difficult
to measure; (3) patients who had received anti-tumor
treatment; (4) lung adenocarcinoma stage > I; (5) history
of severe liver disease, diabetes, or cancer; (6) postopera-
tive pathological subtypes of atypical adenomatous
hyperplasia, adenocarcinoma in situ, or minimally inva-
sive adenocarcinoma; (7) unclear growth patterns or rare
growth patterns (such as micropapillary and solid types);
and (8) PET images did not have enough voxels (64 vox-
els) required by the software or metabolic volume after
segmentation lower than 2.5 ml. The patient selection
process was shown in Fig. 1.

FDG PET/CT image acquisition
Image acquisition protocols were described according to
the Imaging Biomarker Standardization Initiative (IBSI)
Reporting Guide [15]. All the program details were
described in the electronic supplementary material 1.
Within 1 month before surgery, the patients received an
18F-FDG PET/CT examination (Biograph mCT 64,
Siemens, Erlangen, Germany). Based on the European
Association of Nuclear Medicine (EANM) guideline 1.0
(version 2.0 was released in February 2015) [16], the 18F-
FDG PET/CT images were acquired at 60 ± 5 min after
18F-FDG injection. All PET/CT images were recon-
structed on a processing workstation (TureD software,
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Siemens Healthcare). CT data were used to perform at-
tenuation correction on PET image, and the corrected
PET image was fused with the CT image.

Radiomic feature extraction
The LIFEx software (version 5.10, http://www.lifexsoft.
org) was used to extract the texture features of PET/CT
images from the VOI of the lesions [17]. The patients’
PET/CT images in DICOM format were imported into
the software. For PET images, experienced diagnostic
physicians used the 40% and 70% threshold of SUVmax

to semi-automatically set the target area of the lesion
[18]. The VOI on the CT images was manually delin-
eated and segmented slice-by-slice. The VOI covered the
whole lesion, and large vessels and bronchus were ex-
cluded from the volume of the nodule. Considering the
effect of different quantization levels on PET texture fea-
tures, we set different higher bound of SUV (10 vs. 20)
in the absolute resampling method. Finally, the software
program automatically calculated and extracted 52 PET
radiographic features and 49 CT radiographic features,
which were provided in the supplementary material 1.

Fig. 1 Flowchart of patient selection. GGN, ground-glass nodule, AAH atypical adenomatous hyperplasia, AIS adenocarcinoma in situ, MIA
minimally invasive adenocarcinoma
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The selection of radiomic feature and the establishment
of the model
In this study, the number of radiomic features was large,
but the number of cases was relatively small. To avoid
model overfitting, we first used the Mann-Whitney U
test to preselect the features with significant differences
between acinar-papillary group and lepidic group (p
value relaxed to < 0.10). Then, the least absolute shrink-
age and selection operator (LASSO) algorithm was used
to select the best features among the preselected features
[19]. The LASSO algorithm added an L1 regularization
term to the least-squares algorithm to avoid overfitting.
It shrinks some coefficients and reduces others to
exactly 0 via the absolute constraint. A model was gener-
ated using a linear combination of selected features that
were weighted by their respective LASSO coefficients;
the model was then used to calculate a radiomics signa-
ture score (rad-score) for each GGN based on the
selected discriminating radiomic features. The receiver
operating characteristic (ROC) curve and the area under
the curve (AUC) were used to evaluate model
performance.

Statistical analysis
Continuous variables were expressed as mean ± standard
deviation (SD) or median (25th to 75th percentiles), and
categorical variables were expressed as frequency (%).
Independent t tests or Mann-Whitney U tests were used
to compare continuous variables, and the Pearson chi-
square test and Fisher’s exact test were used to compar-
ing categorical variables. Multi-factor logistic regression
was used to establish the prediction model, and the most
optimal model parameters were selected using the mini-
mum Akaike’s information criterion (AIC). The Boot-
strap resampling method (times = 500) recommended
by the TRIPOD Reporting Specification [20] was used to
internally validate the model and calculate the 95% con-
fidence interval (CI) of the AUC. A correlation heat map
between each selected feature was established using the
Spearman rank correlation method. The nomogram of
the model was drawn in order to visualize the prediction
results of each patient. A calibration curve was also
drawn to show the prediction accuracy of the nomo-
gram. ROC curve was made for each model, and the
AUC of different models were compared using the
DeLong method [21]. The clinical effectiveness of the
model was quantified and compared using the decision
curve analysis (DCA) method, which evaluates the rela-
tive cost of false positives and false negatives based on
threshold probabilities. By subtracting the proportion of
false positives from the proportion of true positives, and
weighing the relative cost of false positives and false neg-
atives, we can get a net benefit. The following formula

was used to calculate the net benefit of model-based
decisions:

Netbenefit ¼ True positives
n

‐
Pt
1‐Pt

� False positives
n

Where n is the total number of patients in the study,
and Pt is the given threshold probability. All analyses
were performed using R3.4.3 (http://www.R-project.org;
software packages: glmnet, pROC, rms, dca. R). P < 0.05
was considered statistically significant. The patients with
missing key parameters were excluded from the analysis,
and their data were not estimated.

Results
Patient characteristics and general PET/CT parameters
Finally, this study included 91 patients with IAC (23
male and 68 female), with an average age of 61.8 ± 8.6
years, ranging from 38 to 80 years. Thirteen (14.3%) pa-
tients had a history of smoking. Among the 91 patients,
59 had solitary GGN, and 32 had multifocal GGN (total
lesion number 173, median lesion number 3, ranging
from 2 to 36). According to the IASLC/ATS/ERS adeno-
carcinoma classification and prognosis standard [6, 7],
93 GGNs were classified and divided into low-risk
lepidic group (n = 18), and intermediate-high risk
acinar-papillary group (n = 75, 65 acinar and 10
papillary).
The acinar-papillary group had significantly higher

CTGGO than the lepidic group (P = 0.014), and the
lobulated edges were also more common in the acinar-
papillary group (P = 0.022). The comparison of conven-
tional PET/CT parameters between the two groups was
shown in Table 1.

Feature Extraction And Selection
The mean tumor volume segmented by the semi-
automatically thresholding method (70 and 40% of
SUVmax) was 6.7 ± 2.3 ml (range 2.8–12.5 ml) and 7.2 ±
2.9 ml (range 3.0–17.0 ml). On the CT images manually
delineated and segmented slice-by-slice, the mean tumor
volume was 6.2 ± 4.7 ml (range 0.8–20.3 ml).
Under the higher bound of SUV 20, we compared the

effects of 70 and 40% delineation thresholds (PET: 64
bins from 0 to 20) on PET preselected features. It was
found that compared with the 40% threshold, although
70% threshold preselected more features (22 vs. 18), the
PET score produced by the 40% threshold showed better
discrimination (AUC = 0.735 vs. 0.707). Besides, we also
found that SHAPE_Sphericity and GLZLM_ZLNU in
PET features were robust to different thresholds
(Supplementary Material 2).
At 40% delineation thresholds, we compared the ef-

fects of different higher bound of SUV (10 vs. 20) on
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PET preselected features. It was found that the prese-
lected features did not change significantly (especially
for conventional indices, first order features, and
GLCM). The PET score produced by the higher bound
of 20 showed better discrimination (AUC = 0.735), but
the difference from the higher bound of 10 was very
small (AUC = 0.712). Besides, we also found that SHAP
E_Sphericity in PET features was robust to different
higher bound of SUV (Supplementary Material 2).
Therefore, the final PET parameters were 40% thresh-
olds and 64 bins from 0 to 20, while CT used the default
parameters.
LASSO algorithm and 10-folds cross-validation were

used to extract the best subset of radiomic features, and
four radiomic features were extracted (Fig. 2), which
were SHAPE_Sphericity, GLZLM_ZLNU, HISTO_Kur-
tosis, and GLZLM_SZLGE. Among the above features,
the first 2 are PET features, and the last 2 are CT fea-
tures. The following formula was used to calculate the
rad-score for each GGN:

Rad‐score ¼ ‐5:25465� SHAPE Sphericity þ 0:0995
� GLZLM ZLNU‐0:28141
�HISTO Kurtosis‐40:16559
� GLZLM SZLGE

Table 2 shows the median and interquartile range of
the four selected radiomic features and the calculated
rad-score. There were significant differences in rad-score
and the four selected features between the lepidic group
and the acinar-papillary group (all P < 0.05).

Pairwise correlation between PET/CT radiomic features
Figure 3 shows the correlation heat map of preselected
PET/CT features, which illustrates the results of feature
selection. The color keys and histogram bars in the
upper left corner indicate the correlation between each
image feature. A correlation equals to 0 indicates the
best independence among the corresponding features,
while a correlation equal to 1 or − 1 suggests a perfect

Table 1 Comparison of conventional PET/CT parameters between lepidic group and acinar-papillary group

Growth pattern group Lepidic
n = 18

Acinar-papillary
n = 75

P value

Nodule type

pGGN 4 (22.2%) 13 (17.3%) 0.630

mGGN 14 (77.8%) 62 (82.7%)

Location

Subpleural/perifissural 17 (94.4%) 74 (98.7%) 0.351

Parenchymal 1 (5.6%) 1 (1.3%)

Shape

Round/oval 10 (55.6%) 32 (42.7%) 0.324

Polygonal/irregular 8 (44.4%) 43 (57.3%)

Edge

Smooth 11 (61.1%) 24 (32.0%) 0.022

Lobular/spiculated 7 (38.9%) 51 (68.0%)

Bronchial sign

Natural 3 (16.7%) 8 (10.7%) 0.479

Dilated/distorted/cutoff 15 (83.3%) 67 (89.3%)

Cystic appearance present 1 (5.6%) 13 (17.3%) 0.290

Pleural indentation present 14 (77.8%) 65 (86.7%) 0.344

Vascular convergence present 18 (100.0%) 73 (97.3%) 0.484

DGGN (mm) 26.4 (21.0–28.9) 24.3 (19.2–28.4) 0.918

DSolid (mm) 8.1 (3.7–15.2) 11.8 (5.6–16.1) 0.257

CTR 0.3 (0.2–0.6) 0.5 (0.3–0.7) 0.168

CTGGO (HU) − 545.5 (− 598.8–398.8) − 425.0 (− 477.5–335.0) 0.014

SUVmax 2.4 (1.7–3.3) 2.9 (2.1–4.3) 0.076

Except where otherwise indicated, data are number (%) of GGNs
GGO ground-glass opacity, DGGN diameter of the GGN, DSolid diameter of the solid component, CTGGO attenuation value of the GGO component on CT, SUVmax

maximum standardized uptake value
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correlation. We found that the four extracted PET/CT
features were independent of each other (|r| all < 0.5),
indicating that these features could convincingly repre-
sent the tumor features and the prediction model was
reliable.

Construction of joint model and personalized nomogram
We combined rad-score and conventional CT parame-
ters (edge and CTGGO) to establish a multivariate logistic
regression model (joint model) and used a non-
parametric resampling method (Bootstrap resampling,
times = 500) to perform internal verification.
The model is as follows:

Logit Pð Þ ¼ 13:90677þ 2:09540� rad‐score
þ 0:86999� edge ¼ lobular=spiculatedð Þ

The nomogram and a calibration curve of the joint
model were drawn (Fig. 4a, b). There was good
consistency between the predicted and observed values,

and the ROC curve of the joint model showed an AUC
of 0.804 (95% CI [0.699 – 0.895]) (Fig. 4c).

Performance of radiomic features and conventional CT
parameters
To evaluate the performance of radiomic features in
predicting GGN growth patterns, we compared the rad-
score, CTGGO, and the joint model using ROC (Fig. 5).
The prediction capabilities of the three models are listed
in Table 3, including AUC, sensitivity, specificity, accur-
acy, positive likelihood ratio, and negative likelihood ra-
tio. The results showed that the AUC of the joint model
and rad-score were higher than CTGGO (0.804 vs. 0.675
and 0.790 vs. 0.675), but the difference was not statisti-
cally significant (P = 0.109 and 0.132). There was also no
significant difference between the joint model and the
rad-score (P = 0.605).
Since the AUC of the joint model, rad-score, and

CTGGO were not significantly different, we introduced
DCA in order to evaluate the performance of the three
models (Fig. 6). Under the purpose of screening for

Table 2 Comparison of four radiomic features and rad-score between lepidic group and acinar-papillary group

Growth pattern group Lepidic
n = 18

Acinar-papillary
n = 75

P value

Rad-score − 6.485 (− 6.698–6.142) − 5.931 (− 6.283–5.466) < 0.001

Features PET

SHAPE_Sphericity 1.062 (1.040–1.099) 1.042 (0.998–1.069) 0.027

GLZLM_ZLNU 1.432 (1.050–2.377) 2.529 (1.333–5.773) 0.024

Features CT

HISTO_Kurtosis 2.653 (2.352–3.945) 2.380 (2.151–2.754) 0.029

GLZLM_SZLGE 0.003 (0.002–0.004) 0.001 (0.001–0.003) 0.047

The value of each radiomic feature was expressed as median (25th to 75th percentiles)
Rad-score radiomics signature score

Fig. 2 The best subset of radiomic features was extracted using the LASSO algorithm and 10-folds cross-validation. a The best feature was
selected based on the AUC value. The black vertical line defines the best value of λ, and the model provides the best fit of the data. λ = 0.038
with log (λ) = − 3.2697 is selected as the optimal value. b The LASSO coefficient profiles of 38 radiomic features. The vertical line is the value
selected by 10-fold cross-validation in a, where the best λ results in four nonzero coefficients of four selected features
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intermediate-high risk growth patterns (sensitivity ≥
0.800, threshold probability ranging from 0.73 to 0.98),
the net benefit of the joint model was better than rad-
score and CTGGO; similarly, under the purpose of con-
firming the diagnosis of intermediate-high risk growth
patterns (specificity ≥ 0.833, threshold probability ran-
ging from 0.30 to 0.59), there was no significant differ-
ence in net benefit between the three. Thus, the overall
clinical value of the joint model was higher than the
other two.

Discussion
Given the established role of the growth pattern in the
early lung adenocarcinoma with GGN, there is a need
for non-invasive imaging methods. PET-based SUVmax is
a commonly used parameter in the diagnosis of lung
cancer. However, it ignores the relationships between
two or more voxels, so diagnostic efficiency is not high.
In this study, we built a model based on four preopera-
tive radiomic features of 18F-FDG PET/CT images to
predict the intermediate-high risk growth pattern in

early IAC, and the model showed excellent predictive
performance.
The four texture features, including two PET features

and two CT features, are all related to image uniformity
or heterogeneity. “Sphericity” is a tumor shape descrip-
tor based on PET images, which quantifies the similarity
of metabolic tumor volume (MTV) shape and spherical
surface. It is entirely defined by the surface of the tumor
and therefore only depends on the heterogeneity within
the tumor. To a certain extent, segmentation depends
on this heterogeneity. Apostolova et al. [22] studied
“asphericity”, the antonym of “sphericity”, and found that
asphericity is related to the growth, proliferation, and
angiogenesis of NSCLC. Moreover, in adenocarcinoma
(ADC), this correlation is much stronger than in
squamous cell carcinoma (SCC). In predicting
progression-free survival and overall survival, the prog-
nostic power of asphericity is significantly higher than
other PET-based parameters (SUV and MTV), clinical
and molecular characteristics [22, 23]. Hyun et al. [24]
used a machine learning algorithm with PET radiomic

Fig. 3 The Spearman rank correlation method was used to establish a correlation map between each preselected feature. This method integrates
CT and PET images. The corresponding coefficients are shown in the heat map, where yellow and blue indicate positive and negative
correlations, respectively
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features to distinguish between ADC and SCC. They
found that SCC’s GLZLM_ZLNU is significantly higher
than ADC, indicating that SCC is more heterogeneous.
Our results also found that sphericity was not easily af-
fected by segmentation methods and quantization levels,
which was consistent with the results of Oliver et al.

[25], while GLZLM_ZLNU was also robust to different
segmentation methods.
“Kurtosis” derived from the CT histogram reflects the

gray distribution in the reaction area. In a practical ap-
plication, Chae et al. [26] found that when analyzing
GGN, higher kurtosis is a significant difference between

Fig. 4 The nomogram and its performance. The nomogram, calibration curve, and ROC based on the joint model (rad-score and edge) were
drawn (a–c). b The horizontal axis of the calibration curve is the predicted incidence of the acinar-papillary pattern, and the vertical axis is the
observed incidence. The red diagonal line is the reference line, indicating that the predicted value equals to the observed value. The black line is
the calibration curve, and the yellow areas on both sides represent 95% CI. c The ROC curve and 95% confidence interval of the joint model were
drawn by the Bootstrap resampling (times = 500). Rad-score, radiomics signature score
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preinvasive lesions and IAC. This is consistent with our
result that kurtosis of the lepidic group was higher be-
cause preinvasive lesions are mainly based on lepidic
growth. Besides, Tsubakimoto et al. [27] found that even
in distinguishing ADC and SCC, kurtosis is not as strong
as SUVmax, but the diagnostic ability of kurtosis is still
strong enough. In the heat map, we found that GLZLM_
SZLGE had an excellent negative correlation with HU in
conventional indices (especially HUQ1, which represents
a low attenuation region; the correlation coefficient was
close to − 1). Therefore, it can be considered that CT
radiomic features contain the CTGGO information, so in
the end, CTGGO did not enter the joint model. On
HRCT, the GGO component of GGN can indicate a

lepidic growth pattern [28]. The high CT attenuation
values of pGGNs suggest IAC [29], and CTGGO is an in-
dependent predictor of IAC [30, 31].
We found that the CT signs of the two groups with

different IAC growth patterns were mostly overlapped.
Among them, the edge was the most promising qualita-
tive CT parameter, and the acinar-papillary group
showed a higher proportion of lobulated edge than le-
pidic group. Lobulation is one of the characteristics of
malignant GGN [32], and it can be used to predict the
invasion of GGN [33]. Moreover, the rad-score that we
developed showed a better ability to distinguish the
growth patterns. When rad-score was combined with
the edge, its clinical value was improved. Besides, we

Fig. 5 Comparison of the ROC curves of three models in predicting intermediate-high risk growth patterns of IAC. Rad-score, radiomics signature
score; CTGGO, attenuation value of the GGO component on CT

Table 3 ROC analysis for three models

Test AUC (95%CI) Specificity Sensitivity Accuracy PLR NLR

CTGGO 0.675 (0.508–0.841) 0.611 0.813 0.774 2.091 0.306

Rad-score 0.790 (0.676–0.903) 0.833 0.653 0.688 3.920 0.416

Joint model 0.804 (0.699–0.895) 0.833 0.693 0.720 4.160 0.368

Rad-score radiomics signature score, CTGGO attenuation value of the GGO component on CT, PLR positive likelihood ratio, NLR negative likelihood ratio
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developed a nomogram based on rad-score and edge,
which can visualize the prediction results and provide an
easy-to-use method for personalized prediction of
intermediate-high risk growth patterns.
Our study has some limitations: (1) Although we did in-

ternal validation, the single-center design and relatively
small sample size may still impair the applicability of the
model, especially when it does not include the highest-risk
types: solid and micropapillary. Therefore, it is necessary to
conduct a standardized multi-center study, expand the
sample size, and conduct external validation. (2) This study
did not consider the mutation status of EGFR, but the sub-
solid nodules have a high EGFR mutation rate [34]. The
subsequent studies should consider EGFR status as a con-
founding factor. (3) This study has preliminarily demon-
strated the potential of radiomics models. In the future,
machine learning or deep learning models should be estab-
lished, in order to improve the predictive performance. (4)
The heterogeneity of lung cancer has been shown to play
an essential role in disease prognosis [35]. Due to the short
follow-up time, the prognostic value of PET/CT radiomics
models for different IAC growth patterns is unclear.

Conclusions
In conclusion, the radiomics model based on preopera-
tive 18F-FDG PET/CT has excellent prediction perform-
ance. This model provides a relatively accurate,
convenient, and non-invasive method to predict the
intermediate-high risk growth pattern of IAC, which is
very useful in clinical practice and can be used for risk
stratification and personalized treatment.
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1186/s13550-020-00668-4.
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