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ABSTRACT: Recent advances in mass spectrometry have allowed
for unprecedented characterization of human metabolism and its
contribution to disease. Despite these advances, limitations in
metabolomics technology remain. Here, we describe a metab-
olomics strategy that consolidates several recent improvements in
mass spectrometry technology. The platform involves a high-
resolution Orbitrap mass spectrometer coupled to faster scanning
speeds, allowing for polarity switching and improved ion optics
resulting in enhanced sensitivity. When coupled to HILIC
chromatography, we are able to quantify over 339 metabolites
from an extract of HCT8 cells with a linear range of over 4 orders
of magnitude in a single chromatographic run. These metabolites
include diverse chemical classes ranging from amino acids to polar
lipids. In addition, we also detect over 3000 additional potential
metabolites present in mammalian cells. We applied this platform to characterize the metabolome of eight colorectal cancer cell
lines and observed both commonalities and heterogeneities across their metabolic profiles when cells are grown in identical
conditions. Together these results demonstrate that simultaneous profiling and quantitation of the human metabolome is
feasible.

Advances in mass spectrometry have allowed for the
simultaneous measurement and quantitation of many

metabolites in defined biological conditions.1−4 These advances
in metabolomics have led to newfound insights into the role of
metabolism in health and disease. For example, tumor cells are
known to have dramatic alterations in the ability to uptake and
metabolize nutrients, resulting in gross rewiring of the
metabolic network.5−10 Mass spectrometry has played an
instrumental role in defining these differences that are now
being investigated for cancer treatment and prevention.
These metabolomic technologies have involved high-

performance liquid chromatography (HPLC) coupled to an
electrospray ion (ESI) source and mass analyzer. Typically, the
platforms have used a triple quadrupole mass analyzer and
involve targeting a series of metabolites by monitoring the
transitions from the selected precursor ion to a specific
fragmentation ion of the precursor ion (multiple reaction
monitoring, MRM).11,12 Alternatively, instruments utilizing
high-resolution mass spectrometry (HRMS) tend to have
higher duty cycle times, leading to difficulties in quantita-
tion.13−15 An instrument that consolidates these capabilities
could allow for untargeted metabolite profiling with sufficient
scan speeds for quantitative, targeted analysis. Such an advance
might overcome many of the limitations in both approaches.
Scan speeds have also improved such that polarity switching is
obtainable on these instruments, allowing for approximately a
2-fold expansion of the number of metabolites that can be
detected during single chromatographic runs.16−20

In light of these advances, the extent of capability that this
current metabolomics technology could allow remains poorly
characterized. We developed a HRMS-based metabolomics
platform using HPLC coupled to a heated ESI source (HESI), a
quadrupole mass filter, a curved ion trap (C-trap), and Fourier
transform-based OrbitrapTM mass analyzer. This instrument,
termed the Q-Exactive MS (QE-MS), has demonstrated many
superior capabilities for quantitative and qualitative proteomics
applications,21−24 but its general utility for metabolomics
applications has, to our knowledge, yet to be explored. We
next considered an extensive assessment of its performance in
both targeted and nontargeted applications by evaluating its
ability to detect and quantify metabolomics across a set of
colorectal cancer cell lines.

■ EXPERIMENTAL SECTION

Materials. All cell lines were provided as a generous gift
from Dr. Lewis Cantley’s laboratory. RPMI 1640 medium was
purchased from Cellgro. Fetal Bovine Serum (FBS), penicillin,
and streptomycin were purchased from Hyclone Laboratories.
Dialyzed FBS was obtained from Life Technologies. Optima-
grade ammonium acetate, ammonium hydroxide, acetonitrile,
methanol, and water were purchased from Fisher Scientific.
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Cell Culture. All cell lines were first cultured in 10 cm
dishes with full growth medium, which contains RPMI 1640,
10% FBS, 100 units/mL penicillin and 100 μg/mL
streptomycin. Cells were grown in a 37 °C incubator with
5% CO2.
Mass Spectrometry. The QE-MS is equipped with a HESI

probe, and the relevant parameters are as listed: heater
temperature, 120 °C; sheath gas, 30; auxiliary gas, 10; sweep
gas, 3; spray voltage, 3.6 kV for the positive mode and 2.5 kV
for the negative mode. Capillary temperature was set at 320 °C,
and S-lens was 55. A full scan range from 60 to 900 (m/z) was
used. The resolution was set at 70000. The maximum injection
time (max IT) was 200 ms with typical injection times around
50 ms. These settings resulted in a duty cycle of around 550 ms
to carry out scans in both the positive and negative modes.
Automated gain control (AGC) was targeted at 3 × 106 ions.
For MS/MS, the isolation width of the precursor was set at 2.5,
HCD collision energy was 35%, and max IT is 100 ms. The
resolution and AGC were 35000 and 200000, respectively. Full
scan with resolution at 35000 and IT of 100 ms) was run
together with MS/MS. Customized mass calibration was
performed before any sample analysis.
High-Performance Liquid Chromatography. The

HPLC (Ultimate 3000 UHPLC) is coupled to QE-MS
(Thermo Scientific) for metabolite separation and detection.
An Xbridge amide column (100 × 2.1 mm i.d., 3.5 μm; Waters)
is employed for compound separation at room temperature.
The mobile phase A is 20 mM ammonium acetate and 15 mM
ammonium hydroxide in water with 3% acetonitrile, pH 9.0,

and mobile phase B is acetonitrile. The linear gradient used is as
follows: 0 min, 85% B; 1.5 min, 85% B, 5.5 min, 35% B; 10 min,
35% B, 10.5 min, 35% B, 14.5 min, 35% B, 15 min, 85% B, and
20 min, 85% B. The flow rate was 0.15 mL/min from 0 to 10
min and 15 to 20 min and 0.3 mL/min from 10.5 to 14.5 min.

Sample Preparation for Dynamic Range Studies. HCT
8 cells were grown in three 10 cm dishes with full growth
medium. When the cells reach 80% confluence, the media were
quickly removed, and the dish was placed on top of dry ice.
Three milliliters of extraction solvent was immediately added
(80% methanol/water), and the dishes were then transferred to
the −80 °C freezer. The dishes were left for 15 min, and then
cells were scraped into extraction solvent on dry ice. The
entirety of the solution was transferred to two 1.7 mL
eppendorf tubes and centrifuged with the speed of 20000g
for 10 min at 4 °C. Here, cell metabolite extracts were prepared
from three separate dishes to make three biological replicates.
The supernatant was then transferred to new eppendorf tubes
and dried in a SpeedVac. The samples can also be dried under
nitrogen gas. After drying, one tube of each sample was stored
in the −80 °C freezer as a backup, while the other one was
reconstituted into 20 μL of water (LC−MS grade, Fisher
Scientific). A serial dilution of triplicate samples from 10 cm
Petri dish was done 5 times with a dilution factor of 6, ending
up with 6 different concentrations of samples. These samples
represent the amount of metabolites extracted from 107, 1.67 ×
106, 2.78 × 105, 4.63 × 104, 7.72 × 103, and 1.29 × 103 of cells,
respectively. Since each concentration of sample was prepared
in triplicate, a total of 18 samples are analyzed in LC-QE-MS.

Figure 1. Overview of polar metabolite analysis platform. (A) The platform for polar metabolomics using LC-QE-MS. In positive mode, positively
charged ions (red dots) are sent to S-lens (ion focusing), a quadrupole (low-resolution mass filter), C-trap (ions accumulate here until the targeted
number of ions is reached), and finally Orbitrap high-resolution (HR) mass analyzer, where mass to charge ratio (m/z) of each ion and
corresponding retention time (R.T.) are recorded. Once positive ions are sent to the Orbitrap from C-trap, the electronic field polarity is reversed,
and only negatively charged ions (blue dots) are delivered from the HESI probe. (B) The duty cycle time when instrument is operated in pos/neg
switch full scan mode with resolution of 70000. The typical duty cycle is between 512 and 912 ms, depending on the C-trap injection time (IT).
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Metabolite Extraction from Colorectal Cancer Cell
Lines. Eight colorectal cancer cell lines were seeded in 6-well
plates at the density of 2 × 105 to 5 × 105 per well for 24 h.
Metabolites were extracted as described above, except that 1
mL of extraction solvent was used, instead of 3 mL. Each
sample was dissolved into 20 μL of water, and 5 μL was
injected to LC-QE-MS. The sequence of sample injections was
randomized so that the fluctuation in LC-QE-MS performance
was evenly distributed across each sample.
Peak Extraction. Raw data collected from the LC-QE-MS

were processed on Thermo Scientific, Sieve 2.0. Peak alignment
and detection were performed according to manufacturer
protocols. For a targeted metabolomics analysis, a frameseed
including 194 metabolites was used for targeted metabolites
analysis with data collected in positive mode, while a frame seed
of 262 metabolites was used for negative mode, where m/z
width is set at 10 ppm. For an untargeted metabolomics
analysis, the following parameter values were used to extract
untargeted components (pairs of m/z and R.T.): background
signal-to-noise ratio, 3; minimum ion count, 1 × 105; minimum
scans across the peak, 5; m/z step, 10 ppm.
Statistical Analysis. To assess the linear range, targeted

metabolite data was filtered as follows: for each metabolite, if
the lowest signal in all of the samples is less than 103 and
meanwhile the highest signal is less than 104, then this
metabolite is considered as below the detection limit; if the
lowest signal is less than 103 but the highest signal is more than
104 then replace the low signal with 103. Calculations were
performed in R computing language (www.r-project.org). The

r2 distribution was represented as a histogram using GraphPad
6.0.
Quantile normalization, unsupervised hierarchical clustering

(Pearson, Spearman linkages), and heat map generation were
carried out with the software Gene-e (Broad institute, http://
www.broadinstitute.org/cancer/software/GENE-E/index.
html). The maximum fold change (Maxchange) calculation was
carried out in the software package R.

■ RESULTS

Overview. We first developed a strategy that focuses on
measuring polar metabolites (Figure 1, panels A and B). A cold
methanol extraction method was used to minimize the
perturbation of metabolism in cultured cells.25,26 LC-HRMS
with positive and negative mode switching was employed to
expand on the number of metabolites that can be accessed. To
achieve high throughput, we considered a chromatography run
of 20 min. Both untargeted and targeted metabolomics studies
were carried out with the data obtained from the workflow in
Figure 1A. Figure 2A describes LC−MS data processing
procedures. For the untargeted analysis, neither pre-existing
knowledge of metabolites to be measured nor heavy isotope
labeled standards (Stds) are required. After a component
extraction, the data are further filtered by using multiple criteria,
including the coefficient of variation (CV) within replicate
samples and the total MS intensity (integrated peak area).
Finally, components of interest are selected for a database
search based on the detected mass of the selected component
with a 10 ppm mass tolerance. For targeted metabolomics, the

Figure 2. LC-QE-MS data analysis workflow. (A) Workflow for quantitative targeted and untargeted metabolomics study. (B) Workflow for
unknown polar metabolites identification and scoring. Abbreviation: Stds = Standards.
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corresponding mass to charge ratio (m/z) and retention time
(R.T.) are used for peak extraction.
A comprehensive list of metabolites with theoretical m/z

(both in positive and negative mode) was generated based on a
recent study.27 This list was used to generate extracted ion
chromatography (EIC) from full scan data. A scoring system
was established to evaluate confidence in the metabolite
assignments (Figure 2B). A metabolite peak will gain a positive
score under any of the following situations: (1) Ions are
detected in more than one concentration of sample, (2) a
corresponding 13C peak is detected when a labeled extract is

used, (3) there exists a unique single peak in the EIC channel
and this peak does not contain any known isomers, or if there
are known isomers, there are characteristic MS/MS fragments
to distinguish the isomers, and (4) authentic standards are
injected to confirm the assignment. On the basis of these
criteria, we generated a list of 262 metabolites in negative mode
and 194 in positive mode, and the following targeted
metabolomics data processing was based on this list.

MS/MS Identification of Isomers. An example of an MS/
MS-based resolution of isomers is shown in Figure 3.
Adenosine diphosphate (ADP) and deoxyguanosine diphos-

Figure 3. MS/MS of positive ions with m/z of 428.04. (A) The extracted ion chromatogram (EIC) of m/z of 428.03669 (in positive mode) with a
mass certainty within 10 ppm. (B) The full MS/MS chromatography of ions with m/z of 428.04 ± 1.25. (C) The MS/MS spectrum. The exact mass
of fragment ion is shown below the corresponding fragment ion.

Figure 4. Dynamic range of QE-MS. (A) The total ion chromatogram (TIC) for positive mode for increasing numbers of cells used. (B) TIC for
negative mode for increasing numbers of cells used. (C) The log2-transformed intensity distribution of targeted metabolites in 3 × 105 of HCT8
cells. An average of n = 3 biological replicates are considered. (D) The relationship between coefficient of variation (CV) of triplicate samples and
MS intensity. The box plot shows the 75th/25th percentile, and the bar represents the median. (E) Linear regression analysis of each metabolite.
The number of metabolites with a given r2 value is shown.
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phate (dGDP) are not distinguishable in full scan mode (Figure
3A), since the two molecules have exactly the same elemental
composition and, as a result, the same m/z. MS/MS
fragmentation by HCD was done at a resolution of 35000.
MS/MS peak (Figure 3B) and EIC from full scan (Figure 3A)
have the same retention time. At this resolution, MS/MS
spectrum has decent intensity and, meanwhile, a very small
mass error (1.2 ppm for fragment with m/z = 136.06161), as
shown in Figure 3 (panels B and C). In the MS/MS spectrum
(Figure 3C), the fragment of m/z = 348.06980 is generated
from the cleavage of a phosphate group, which is not
characteristic, while the fragment of m/z = 136.06161 is
corresponding to adenine, which can only be generated from
ADP by cleavage of the ribose group. There is no m/z =
152.05669 (guanine from dGDP) detected, so the peak at 8.03
min is assigned as ADP. We further confirmed this assignment
by comparison of ADP and dGDP in a QT of MS/MS
spectrum from the Massbank database.28

Dynamic Range of Metabolite Quantitation. Having
developed a combined metabolomics technology, we next
sought to evaluate its quantitative abilities. Metabolites were

extracted from 107 cells and first diluted 6-fold and then
followed by serial dilution resulting in extracts of differing
concentrations. The total ion chromatography (TIC) from
these 6 concentrations are shown in Figure 4 (panels A and B)
(here, the Y axis is normalized by the highest intensity in the
sample). Figure 4C demonstrates the MS intensity range across
targeted metabolites. Figure 4D demonstrates a strong
correlation between CV within triplicate samples and the
corresponding MS intensity. As expected, the higher the MS
intensity, the lower the measured CV, since a lower signal tends
to have more interference from ions with very close m/z values.
For metabolites with MS intensities higher than 1 × 106, the
CV is within 7.8% (at 75th percentile), while for MS intensities
less than 1 × 103, CV varies to a larger extent (132.8% at the
75th percentile). Therefore, we defined an MS intensity of 1 ×
103 as the noise level, and in Figure 4E, data are processed
further by imputing intensities lower than 1 × 103 with a value
of 1 × 103, as described in the methods section. The linear
regression of MS intensity (the integrated peak area within the
defined retention time window of every m/z) and concen-
trations is shown in 4E. The TIC increases as the concentration

Figure 5. MS intensity distribution and clustering in eight cell lines. (A) MS intensity distributions of cell extracts of colorectal cancer cell lines. Box
plots represent the 75th/25th percentile, and the bars represent the median MS intensity. MS intensity is log2 transformed. (B) MS intensity
distribution as in (A) but with quantile normalization. (C) Heat map of Pearson clustering of MS intensity in eight cell lines. (D) Heat map as in (C)
but with quantile normalization. (E) Heat map of Spearman ranking clustering of MS intensity in eight cell line. (F) Heat map as in (E) but with
quantile normalization. The color code bar is applicable to each of (C−F).
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of injected metabolites increases, and meanwhile a linear
regression analysis of 5 concentrations (excluding the highest
saturated concentration) shows that more than 86% of
metabolites detected have r2 values larger than 0.85, implying
that over 4 orders of magnitude, the relative mass intensity can
accurately reflect metabolite relative levels. The low r2 in the
remaining 14% of metabolites was either because they were not
detected at low sample concentration or because they had a
poor linear MS response. At a number of 107 cells, signals
tended to decrease due to strong ion suppression from the
biological matrix effect, and also the retention times shift due to
overloading of the analyte on the LC column.
Metabolic Profiling of Colorectal Cancer Cell Lines.

The method described and discussed in Figures 1 and 2 was
then applied to study the metabolite profiles in eight colorectal
cancer cell lines: SW620, SW480, HCT8, HT29, HCT116,
NCI-H508, SW48, and SW948. A list of 375 measured targeted
ions is included in Table 1 of the Supporting Information. Each
cell line was cultured in the same medium to avoid confounding
effects on metabolism due to differences in nutrient availability.
Each cell line was observed to have a different, albeit small,
intensity range (Figure 5A), which can be removed with
quantile normalization (Figure 5B). An inspection of
metabolite intensities was carried out using different clustering
algorithms (Figure 5, panels C, D, E, and F). For each
representation, the columns represent different metabolites,
while the rows represent eight cell lines in triplicate. The effect
of quantile normalization becomes apparent when clustering is
carried out using linkages corresponding to Pearson correla-
tions. As shown in Figure 5 (panels C and D), SW620, HT29,

HCT116, NCI-H508, and SW48 are clustered using raw
intensity values, while SW620 is separated from other cell lines
when raw intensity is quantile normalized. However, when
Spearman correlations are used for the linkages, quantile
normalization makes little difference, as expected (Figure 5,
panels E and F).
To compare the metabolite profiling variations in different

cell lines, the mean values of every three replicates are used to
calculate CV and Maxchange (N = 8). Here Maxchange is
defined as the ratio of highest to lowest mean intensity
observed across the cell line panel. As demonstrated in Figure 6
(panels A and B), 270 out of 375 metabolites have CVs less
than 40%, and this number increases to 290 if the quantile
normalized values are used. There are 27 out of 375 metabolites
with CVs larger than 100% if working with raw values, while
this number decreases to 24 if data is quantile normalized.
When a Maxchange value is calculated (Figure 6, panels C and
D), there are 190 metabolites with Maxchange ≤ 2. After
quantile normalization, this number increases to 222. For
metabolites with Maxchange ≥ 32, the number slightly
increases from 20 to 22 with quantile normalization.
CV (within triplicates) and MS intensity distributions of

untargeted components extracted from the cell line SW620 data
based on the parameters listed in the method section are
plotted in Figure 7 (panels A and B). The number of
components (with MS intensity higher than 104) extracted at
different cutoff values is plotted in Figure 7C. Here, the 104 MS
intensity cutoff value is used to avoid working with massive
untargeted amounts of components data and to improve data
quality. On the basis of Figure 7 (panels B and C), MS intensity

Figure 6. Targeted metabolomic profiling in eight cell lines. (A) CV distribution of metabolites measured in eight cell lines. (B) CV distribution as in
(A) except that quantile normalized MS intensity values were used. (C) Maxchange (log2 transformed) distribution of targeted metabolites. (D)
Maxchange distribution as in (C) but with quantile normalized MS intensity values. Abbreviation: Maxchange, the ratio of maximum and minimum
MS intensity for every component across cell lines.
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higher than 104 and CV less than 20% are used to filter the raw
intensity data, and the filtered intensity range of each cell line is
plotted in Figure 7D. The untargeted components data show
similar trends as the targeted metabolite data (Figure 8 (panels
A and B). Quantile normalization increases the number of
metabolites (Maxchange ≤ 2) from 1940 to 2099 and
meanwhile decreases the number of metabolites (Maxchange
≥ 32) from 34 to 20. When untargeted components intensities
are used, as shown in Figure 8 (panels C−F), neither Spearman
rank-based clustering nor Pearson correlation-based clustering
is affected by quantile normalization of MS intensity. However,
compared to the clustering pattern based on the Spearman
ranking of 375 targeted metabolites, clustering based on 2931
untargeted components is different for the cell line SW620. The
pool of metabolites tends to affect the clustering pattern for
both Pearson correlations and Spearman ranking based-
clustering. However, there are few conserved subclusters,
such as cell lines HT29 and HCT116 and cell lines HCT8
and SW948, which are always clustered together regardless of
the clustering method used.

■ DISCUSSION

Our chromatography method involving HPLC, employed a
high pH mobile phase and amide column, coupled with
positive/negative switching HRMS enables us to analyze both
acidic and basic polar metabolites in a single experiment. Even
though this method is not optimized for recovery of any
specific metabolite, it nevertheless enables us to cover a large
number of polar metabolites and lipids. Moreover, there are
some important polar metabolites, such as coenzyme A

derivatives and folates, which are not detected in our method.
It is either due to their low abundance in the cells lines we used
or their instability.29−31 Therefore, for these metabolites,
additional optimization of the extraction procedure will be
required.
For a long time, MS was not considered as a quantitative

analytical technology, because for metabolites with different
chemical structures, they tend to have different ionization
efficiency, and even for the same metabolite, if it is measured at
different times or spiked into different biological samples, the
MS response tends to fluctuate, which is due to the matrix
effect.32,33 Therefore, stable heavy isotope-labeled standards
(stds) are commonly spiked into unknown samples to correct
the error introduced by sample preparations and MS response
fluctuations.12 In our LC−MS setup, within a wide range, the
MS intensity increases in a linear pattern when the
corresponding samples are prepared from increasing cell
numbers, which gives us high confidence of label-free
differential quantitative analysis based on our current workflow.
This linearity is observed even when samples of interest are
randomly dispersed across large sample runs. Moreover, the
CVs within biological triplicates at sufficient peak intensity
levels are very small, implying that our current workflow is very
reproducible, and subtle biological variations of metabolites in
different samples can be measured. However, too much
material results in severe ion suppression and also induces
overload in the LC, so overall, a smaller number of cells (3 ×
105 to 2 × 106 of cells) results in a larger number of metabolites
capable of being detected. To overcome the day-to-day
variation (i.e., a batch effect), advanced statistic analysis

Figure 7. Untargeted component extraction. (A) CV (within biology triplicates) distribution of untargeted components. (B) MS intensity
distribution of untargeted components in cell line SW620. (C) The relationship between the number of extracted components and CV cutoff values.
(D) MS intensity distributions of cell extract of colorectal cancer cell lines. Box plots represent the 75th/25th percentile, and the bar represents the
median. In (A and B), there are no filters applied to the extracted components, while in (D), filters of MS intensity higher than 104 and CV (within
triplicate) less than 20% were applied.
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might be helpful.34,35 For absolute quantitation, internal stds or
external calibration curves are still required, although it is
conceivable that a regression model could circumvent the need
for calibration curves in some instances.
In order to compare the metabolomics profiling differences

in different cell types, quantile normalization was applied to
rescale the metabolite intensities. However, based on our study,
quantile normalization results in only modest effects on the CV
or Maxchange calculations. Its effect on clustering patterns
across the whole data set is however readily apparent.
Since HRMS records almost every ion falling into the scan

range and above the limit of detection, little effort is required to
build a detection method for each metabolite, but an efficient
approach to deal with massive data is critical. Untargeted
component-based approaches cover almost every ion recorded
in the spectrum if filtering parameters are set at very low values,
but this would be inefficient in its computational cost.
Practically, a targeted approach is more efficient, even though
metabolites outside of the list will be missed. In practice, in
order to compare metabolic profiling in different samples, our
current targeted list gave a similar cluster pattern as compared

to 2931 untargeted components, as shown in Figure 5 (panels
C−F) and Figure 8 (C−F). Therefore, in our study, a targeted
approach is done first to make metabolic profiling, and then
very specific filters are applied to narrow down untargeted
components, followed by database searching to make sure no
interesting metabolite is missed.
MS/MS data can further increase confidence of unknown

metabolite identification, especially for metabolites with
isomers and poor separation on LC (Figure 3). However, the
MS/MS database is far from complete, and also MS/MS
spectra in the database were generated from different types of
mass spectrometry with different fragmentation methods. It has
been shown that the MS/MS pattern is dependent on how
collision energy is applied and also the elemental composition
of the collision gas.28 Moreover, to obtain useful MS/MS
spectra, a precursor ion of sufficient intensity is required. Due
to these limitations, efforts are needed to further develop a high
throughput method for MS/MS data processing and metabolite
identification.
Eight colorectal cancer cell lines show three distinct

metabolic patterns which gives us a hint that the metabolic

Figure 8. Metabolomic profiling in eight cell lines. (A) Maxchange distribution of cell extract. (B) Maxchange distribution as in (A) except that
quantile normalized MS intensity values were used. (C) Heat map of Pearson clustering of MS intensity in eight cell line. (D) Heat map as in (C)
but with quantile normalization. (E) Heat map of Spearman ranking clustering of MS intensity in eight cell lines. (F) Heat map as in (E) but with
quantile normalization. The color code bar is applicable to (C−F). Abbreviation: Maxchange, the ratio of maximum and minimum MS intensity for
every component across cell lines.
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enzymes are either differentially expressed or with variant
activities across these cell lines. This potentially suggests
opportunities for biomarker analysis in metabolomics applica-
tions.

■ CONCLUSION
The platform demonstrated here is applicable for targeted and
untargeted label-free polar metabolites quantitative analysis.
Besides cell culture work, this method is being applied to
biomarker studies using tissues, serum, and other human fluids,
and provides a resource to the metabolomics field. With such a
technology, further investigation that connects metabolite
profile to biological phenotype is possible.
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