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ABSTRACT: A participant of the chemical family recognized as
anthocyanins, hirsutidin is an O-methylated anthocyanidin. It is a
natural substance, i.e., existing in Catharanthus roseus (Madagascar
periwinkle), the predominant component in petals, as well as callus
cultures. The literature review indicated a lack of scientifically
verified findings on hirsutidin’s biological activities, particularly its
anti-Parkinson’s capabilities. Using the information from the
previous section as a reference, a present study has been assessed
to evaluate the anti-Parkinson properties of hirsutidin against
rotenone-activated Parkinson’s in experimental animals. For 28
days, rats received hirsutidin at a dose of 10 mg/kg and rotenone at a
dose of 0.5 mg/kg s.c. to test the neuroprotective effects. The
hirsutidin was given 1 h before the rotenone. Behavioral tests,
including the rotarod test, catalepsy, Kondziela’s inverted screen activity, and open-field analysis, were performed. The levels of
neurotransmitters (5-HT, DOPAC, 5-HIAA, dopamine, and HVA), neuroinflammatory markers (TNF-α, IL-6, IL-1β, caspase-3), an
endogenous antioxidant, nitrite content, and acetylcholine were measured in all the rats on the 29th day. Hirsutidin exhibited
substantial behavioral improvement in the rotarod test, catalepsy, Kondziela’s inverted screen activity, and open-field test.
Furthermore, hirsutidin restored neuroinflammatory markers, cholinergic function, nitrite content, neurotransmitters, and
endogenous antioxidant levels. According to the study, hirsutidin has anti-inflammatory and antioxidant characteristics. As a
result, it implies that hirsutidin may have anti-Parkinsonian effects in rats.

1. INTRODUCTION
Parkinson’s disease (PD) symptoms include central nervous
system disturbances that are chronic, severe, delayed-onset,
degenerative disorders. The major factor causing this condition
is neurodegeneration of the dopaminergic system, which
results in the downregulation of dopamine (DA) and an
imbalance between the concentrations of acetylcholine and
dopamine.1 Numerous current therapy modalities reveal a
failed recovery in Parkinson’s patients as a result of the
disease’s incredibly complex nature.2 PD is characterized by
long-lasting euro-progressive cardinal indications, such as
bradykinesia, tremors, postural disproportion, and muscular
stiffness, as well as secondary symptoms like a disturbance in
gait, poor walking, and difficulties speaking. The treatments
that are currently available greatly reduce the motor symptoms
of early stage PD but eventually lose their effectiveness.3 As
more individuals approach the middling age for the beginning
of PD and the illness affects 12 million people globally by
2040, the disease’s prevalence will ideally increase in the
ensuing decades. The utmost important features are genetics
(PINK1, PARK1, Parkin genes), gender (men are more

affected), and age, but the risk of PD also appears to be related
to increased exposure to environmental adulteration (pesti-
cides, metals, and solvents) as a result of the world’s growing
industrialization.4,5 The primary pathogenic condition that
occurs alongside mitochondrial failure is PD. Reactive oxygen
species (ROS) were produced as an outcome of increased
oxidative damage brought by dopaminergic loss. The ROS
produced interferes with mitochondrial activity and leads to
protein misfolding, which damages cells and induces
apoptosis.6,7

Rotenone is a good validity paradigm, preventing the NADH
complex-I of the electron transport chain from functioning
affecting mitochondrial degradation.8,9 Rotenone exposure for
an extended period of time causes PD-like symptoms in
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humans. When administered to rats in vivo, rotenone causes
neurological and behavioral changes that lead to PD.
Numerous pathways, including altered calcium signaling,
mitochondrial malfunction, oxidative damage, accumulation
of α -synuclein, and cell death, are linked to rotenone.
Rotenone, an inducer, caused motor impairments and neural
symptoms that repeat in clinical PD.10,11

Currently, a wide range of medication alternatives is
available for the treatment of PD, including catecholamine-
O-methyltransferase inhibitors, anticholinergic drugs, dopa-
mine agonists, L-dopa, and monoamine oxidase inhibitors. The
actual therapy for PD symptoms is L-dopa, which is considered
to be the gold standard.12,13 L-Dopa, however, requires
carbidopa to pass the blood−brain barrier (BBB) because it
has adverse properties and peripheral degradation that prevent
it from doing so on its own. There are currently more safe and
effective options available because these medications would
help PD sufferers with their symptoms.14,15

Anthocyanins are reddish-blue plant flavonoids that are
mostly found in higher plants’ blooms and fruits. These
polyphenols contribute to the pigments of fruits, vegetables,
and flowers.16 There are several anthocyanin flavonoid
pigments in nature, and studies have demonstrated that they
have antioxidant properties.17 It is believed that this skill serves
as a protection against variability of illnesses brought on by
ROS.17 According to studies, dietary foods high in
anthocyanins have positive impacts on several health issues,
including cardiovascular health,18,19 diabetes,20 obesity,20,21

bacterial infection,22 cancer,23 eye health,24 and neuro-
toxicity.25

A member of the chemical family known as anthocyanins,
hirsutidin is an O-methylated anthocyanidin. It is a natural
substance, i.e., existing in Catharanthus roseus (Madagascar
periwinkle), the predominant component in petals, as well as
callus cultures. The literature review indicated a lack of
scientifically verified findings on hirsutidin’s biological
activities, particularly its anti-Parkinson’s capabilities. Using
the information from the previous section as a reference, a
recent study has been assessed to evaluate the anti-Parkinson’s
properties of hirsutidin against rotenone-activated Parkinson’s
in experimental animals.

Another study showed the hepatoprotective properties of
hirsutidin by attenuating alcohol-induced oxidative stress in
rodents26 and the antiulcer consequence of hirsutidin against
ethanol-induced ulcers in rats via regulation of antioxidant
mechanisms.20 There is no clear mechanistic role of hirsutidin
but due to its strong antioxidant property, it may be essentially
used in treating the disorders. Current orthodox treatments for
PD are inadequate, presenting some demerits, hence it is
necessary to identify potential components from the natural
origin for the treatment of neurodegenerative diseases, such as
PD.

2. METHODS
2.1. Drugs and Reagents. Sigma-Aldrich, USA, provided

the rotenone and other chemicals acquired from authenticate
sources were of analytical quality. Hirsutidin was received as a
gifted from SRL, India. Rat enzyme-linked immunosorbent
assay (ELISA) kit analysis of tumor necrosis factor-α (TNF-α),
interleukins-1β (IL-1β), IL-6, and caspase-3 (MyBioSource,
USA) were used to quantity.
2.2. Animals. For testing, 180 ± 20 g male Wistar rats were

purchased and housed in a standard lab environment at 24 °C

and RH of 50−60%. All the rats received an unlimited supply
of water and pellet food throughout the operation. The rats
were housed in polypropylene cages that were 28 × 21 × 14
cm. Before the start of the trial, animals had a 10-day
acclimation phase. The rats utilized in the study underwent no
prior surgeries. Rats were randomized into 5 clusters (n = 6
each). The experimental plan kept the regular circadian cycle
and its impact on the outcomes. Before conducting, the
present study established support from the institutional animal
ethics committee (IAEC/TRS/PT/022/018), and it followed
the ARRIVE recommendations.
2.3. Experimental Protocol. There were 24 rats used and

grouped in four cages (n = 6).
• Group I received normal saline.
• Group II received as a rotenone control for 28 days at a

dose of 0.5 mg/kg s.c.27,28

• Group III received hirsutidin at 10 mg/kg/day
respectively for 28 days 1 h prior to rotenone at 0.5
mg/kg s.c.

• Group IV received hirsutidin per se at 10 mg/kg/day
respectively for 28 days.

On the 29th day, behavioral tests were conducted and animals
were sacrificed for further neurochemical estimation.
2.4. Behavioral Parameters. 2.4.1. Rotarod Test. The

test was employed to assess posture, coordination, and motor
skills. Each rat was trained individually by being placed on a
hanging rod that rotated for 60 s at a speed of 5−20 rpm (25−
30 rpm). After the medication was administered, the test was
performed again on the treated rats. The animals were free to
move around on the rod, and the moment each animal fell was
recorded. A 180 s should be the absolute maximum for one
animal on the rod.29

2.4.2. Catalepsy. The rat was subjected to a catalepsy test
by having 1 forepaw on a parallel plank that was 9 cm overhead
the ground and the other forepaw on a stage that was 3 cm
high. Any movement’s time of occurrence is noted. The test is
scored according to the following three steps, which are
performed in that order:

• Step 1: As the rat was positioned on a level table and
moved normally, it received a score of 0, and when it
moved slightly upon gentle contact or otherwise stayed
still, it received a score of 0.5.

• Step 2: A score of 0.5 was awarded if the hind paw did
not move within 10 s while it was kept on a 3 cm high
box.

• Step 3: A 9 cm wooden plank was used to support only
one of the hind paws while leaving the other
unsupported. For a stiffness measurement that was
completed in 10 s, a score of 1 was given. A score of 3.5
was given to the rat that had total catalepsy (stiffness).
Rats were positioned with their front paws on the
hardwood surface in a half-rearing place. It was
scheduled how long the rats took to maintain their
posture on the wooden bar using just their two
hindlimbs. To assess the passing of time and compare
each rat’s performance, the sessions were videotaped.
Each rat had a predetermined cutoff time of 3 min.30−32

2.4.3. Kondziela’s Inverted Screen Activity. An animal’s
muscular strength was measured through the Kondziela test
using its four limbs.33 The rat was tested by positioning it in
the center of an inverted screen for 120 s. It was noted when
the rat dropped from the screen.
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2.4.4. Open-Field Analysis. There were 25 squares (20 × 20
cm) on a rectangular open field with a cloth-covered floor. A
locomotor activity study was conducted on rats kept in the
middle square. The rat was allowed to measure a distance, no
rearing was done, time was recorded by starting location, and
the numeral of admissions was counted in the center square.
Total movement was calculated.34

2.5. Neurochemical Analysis. 2.5.1. Homogenization of
Brain Tissue. On the 29th day, immediately following a
behavioral analysis, the rats were alienated to estimate the
levels of neurochemicals, neurotransmitters, and neuroin-
flammatory indicators.

2.5.2. Acetylcholine (ACh) Activity. The technique defined
by Batool et al. was used to evaluate the amount of ACh in the
brain. An enzyme in the tissue model was inactivated by
boiling it, releasing the bound ACh, which then interacts with
ferric chloride. The brown color that resulted from this
reaction was measured at 540 nm in comparison to the reagent
blank. The amount of ACh present was measured as μmol/g of
tissue.35

2.5.3. Malondialdehyde (MDA) Determination. To con-
duct the test, trichloroacetic acid, and TBARS solution are
added to the isolated supernatant after which it is boiled for 90
min and chilled in ice-cold water. After centrifuging the
mixture at 1500 × g for at least 15 min, the combination was

measured spectrophotometrically at 532 nm. As μmol of
MDA/g of the brain, the amount of MDA generated was
indicated.36

2.5.4. Reduced Glutathione Assay (GSH). To determine the
levels of GSH in the brain, an equivalent volume of brain
homogenate is precipitated with 1 mL of trichloroacetic acid.
Phosphate buffer solution (PBS) and the DTNB reagent (5−
5′-dithio-bis(2-nitro-benzoic acid)) were added to the super-
natant. A UV spectrophotometer was used to detect the
absorbance at 412 nm. Plotting a standard curve allowed for
the determination of the GSH concentration. The outcomes
were shown as mg GSH/g of brain.37

2.5.5. Superoxide Dismutase (SOD) Activity. The obtained
supernatant was combined with xanthine and xanthine oxidase
before 30 min of incubation in potassium phosphate buffer. A
blue formazan product was created by adding nitro blue
tetrazolium to this mixture and mixing it thoroughly. This
product’s wavelength, 550 nm, was then measured spectro-
photometrically. The amount of protein inhibiting 50% NBT
reduction is used to compute one nitrite unit of SOD
activity.38

2.5.6. Catalase Activity (CAT). A brain homogenate
supernatant and phosphate buffer solution are included in
the test combination (50 nM). Hydrogen peroxide (H2O2)
was introduced to this combination, and the absorbance was

Figure 1. (A−D) Effects of hirsutidin in rotenone-injected rats on (A) Rotarod test, (B) Catalepsy, (C) Kondziela’s inverted screen test, (D)
Open-field test. Mean ± SEM (n = 6). #p < 0.05 vs normal, ***p < 0.0001 vs rotenone control. One-way ANOVA was followed by Tukey’s test.
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calculated spectrophotometrically at 240 nm once every 15 s.
The activity was measured in micromoles per min/g of brain.39

2.5.7. Nitrite Content Assay. The amount of nitrite
produced is a result of the oxidative stress the brain
experiences. Using a UV spectrophotometer, an equal amount
of brain homogenate and Griess reagent (a mixture of
sulphanilamide, N-1-naphthyl ethylenediamine dihydrochlor-
ide, in phosphoric acid) were incubated for 10 to 15 min.40,41

2.5.8. Neurotransmitter Levels. HPLC was used to
determine the concentrations of neurotransmitters, such as
dopamine (DA), serotonin (5-HT), 5-hydroxy indole acetic
acid (5-HIAA), and their corresponding metabolites, 3,4-
dihydroxyphenylacetic acid (DOPAC) and homovanillic acid
(HVA).

2.5.9. Biological Markers of Inflammation. The levels of
cytokines, such as IL-1β, IL-6, TNF-α, and caspase 3, were
assessed using ELISA kit. The IL-1β, TNF-α, and IL-6 marker
concentrations were expressed in pg/mL, and caspase 3 was
detected in ng/mL.
2.6. Statistical Analysis. The outcomes of the ensuing

techniques were calculated as mean ± SEM. An analysis of
variance (ANOVA) was used in this study, and a normality test
(Shapiro−Wilk test) was used to confirm its validity (Graph
Pad Prism Software Version 8.0.1). For the analysis of the data,
a one-way ANOVA followed by Tukey’s post hoc test was
conducted for comparisons of groups. A statistically significant
was found at P < 0.05.

3. RESULTS
3.1. Behavioral Effects of Hirsutidin. 3.1.1. Rotarod

Test. When compared to the controls, the rotenone group
significantly reduced (p < 0.05), the latency period. As
compared with a group that had been exposed to rotenone, the
hirsutidin (10 mg/kg dose) treated animals had a longer [F(3,
20) = 81.08; P < 0.0001] latency time (Figure 1A). Hirsutidin
per se did not change significantly.

3.1.2. Catalepsy. When compared to the controls, the
rotenone control group significantly increased (p < 0.05) the
catalepsy period. As compared with the rotenone control
group, the hirsutidin treated group lowered [F(3, 20) = 51.24;
P < 0.0001] the catalepsy period (Figure 1B). There were no
significant changes in hirsutidin per se.

3.1.3. Kondziela’s Inverted Screen Activity. Rats were
monitored using Kondziela’s inverted screen test (Figure 1C).
Based on one-way ANOVA analysis, treatment significantly
affected muscular strength. In the rotenone control group, the
time of falling meaningly downregulation was associated with
the normal group (p < 0.05). When associated with the
rotenone control group, hirsutidin-treated groups (10 mg/kg)
had significantly longer times to fall [F(3, 20) = 84.78; P <
0.0001] than rotenone-treated groups. Hirsutidin per se did
not show any significant changes.

3.1.4. Open-Field Test. To monitor locomotor activity, the
open-field paradigm was used (Figure 1D). When compared to
control rats, overall activity was considerably lower after
rotenone administration (p < 0.05). Overall activity was
markedly greater in the hirsutidin (10 mg/kg) -treated groups
associated with the rotenone group [F(3, 20) = 81.87; P <
0.0001]. Not any noteworthy variations were detected in
hirsutidin per se.
3.2. Analysis of Neurochemicals. 3.2.1. ACh Activity.

When compared to the controls, rotenone treatment
significantly raises (p < 0.05) the ACh level. As associated

with the rotenone cluster, hirsutidin treatment caused a
substantial decrease [F(3, 20) = 10.35; P < 0.0001] in ACh
activity (Figure 2). In the hirsutidin per se group, no significant
changes were observed.

3.2.2. Endogenous Antioxidant Determination. While
compared to controls, the rotenone control group significantly
increased (p < 0.05) the MDA level. Comparing the hirsutidin-
treated group to the rotenone control group, the hirsutidin at a
dose of 10 mg/kg reduced [F(3, 20) = 23.40; P < 0.0001] the
MDA level (Figure 3A).

The amount of GSH in the rotenone-induced group was
notably low (p < 0.05). When associated with the rotenone
control group, treatment with hirsutidin knowingly increased
[F(3, 20) = 19.12; P < 0.0001] the level of GSH (Figure 3B).

SOD levels in the rotenone-the group was extremely low (p
< 0.05). In comparison to the rotenone group, therapy with
hirsutidin significantly increased [F (3, 20) = 13.82; P <
0.0001] the level of SOD (Figure 3C).

CAT levels in the rotenone-induced group were exception-
ally low (p < 0.05). When compared to the rotenone group,
treatment with hirsutidin considerably raised [F (3, 20) =
5.629; P < 0.0001] the level of CAT (Figure 3D). The level of
hirsutidin per se did not change significantly.
3.3. Inhibition of Nitrite Content by Hirsutidin. The

amount of nitrite concentration was noticeably higher (p <
0.05) in the rotenone-induced group. When associated with
the rotenone group, treatment with hirsutidin considerably
restored [F(3, 20) = 72.61; P < 0.0001] the amount of nitrite
content (Figure 4).
3.4. Hirsutidin Effect on Neurotransmitters. When

compared to normal animals, the effects of rotenone treatment
on dopamine, DOPAC, HVA, 5-HIAA, and 5-HT levels were
noticeable (p < 0.05). When associated with the rotenone
group, the hirsutidin-treated group markedly augmented the
levels of dopamine [F(3, 20) = 58.73; P < 0.0001], DOPAC
[F(3, 20) = 23.07; P < 0.0001], HVA [F(3, 20) = 49.65; P <
0.0001], 5-HIAA [F(3, 20) = 20.28; P < 0.0001], and 5-HT
[F(3, 20) = 59.49; P < 0.0001] (Figure 5A−E).
3.5. Hirsutidin Affects Neuroinflammatory Markers.

As associated with the control group, rotenone administration

Figure 2. Inhibition of Ach by hirsutidin in rotenone-injected rats.
Mean ± SEM (n = 6). #p < 0.05 vs normal, *p < 0.05 vs rotenone
control. One-way ANOVA was followed by Tukey’s test.
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significantly raised the IL-1β, IL-6, TNF-α, and caspase-3 (p <
0.05). Comparing the hirsutidin-treated group to the rotenone-
treated group, caspase-3 [F(3, 20) = 21.49; P < 0.0001], IL-1β
[F (3, 20) = 57.92; P < 0.0001], IL-6 [F(3, 20) = 80.90; P <
0.0001], and TNF-α [F(3, 20) = 21.04; P < 0.0001] levels
were considerably restored. (Figure 6A−D).

4. DISCUSSION
In this study, hirsutidin was evaluated for its ability to produce
favorable effects on rotenone injections in rats by using
behavioral and biochemical parameters, i.e., Ach activity,
endogenous antioxidants, nitrites, neurotransmitters, and
neuroinflammatory markers. A noncurable disorder, PD is
characterized by a lack of neurotransmitters in SNPC.42−44 PD
is the slow progression to neuronal death, which is caused due
to imbalance of dopamine and catecholamine in the
nigrostriatal pathway.44,45 Several rat paradigms have been
developed for the evaluation of Parkinson’s treatment. In
rotenone-induced PD, behavioral patterns, antioxidant status,
and neuroinflammatory markers deteriorated.46,47 The prom-
inent motor and nonmotor symptoms affect the multisystem,
thus downregulating the functions of the nervous system.48,49

The pathogenesis of PD is closely associated with oxidative
stress generated ROS which led to neuroinflammation of

Figure 3. (A−D) Endogenous antioxidant following hirsutidin in rotenone-injected rats: (A) MDA, (B) GSH, (C) SOD, and (D) CAT. Mean ±
SEM (n = 6). #p < 0.05 vs normal, *p < 0.05, **p < 0.001, ***p < 0.0001 vs rotenone control. One-way ANOVA was followed by Tukey’s test.

Figure 4. Hirsutidin inhibits nitrite content in rotenone-treated rats.
Mean ± SEM (n = 6). #p < 0.05 vs normal, ***p < 0.0001 vs
rotenone control. One-way ANOVA was followed by Tukey’s test.
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brain.50 The available medication options have adverse effects
and do not therapeutically resolve the condition.

A strong lipophilic mitochondrial complex inhibitor,
rotenone is an extensively utilized pesticide. Rotenone can
simply penetrate the BBB and mimic neurological, behavioral,
and neuropathological alterations of PD.5,51,52 Earlier inves-
tigation revealed that rotenone induction causes dopaminergic
damage in the substantia nigra leading to memory deficits in
rats.53−55 In accordance with previous investigations, the
present study has shown a downfall in the behavioral pattern,
antioxidant status, and neuroinflammatory markers when
rotenone was administered in rats for 28 days.46,56,57 The
dopaminergic loss alters the behavior causing impaired motor
and nonmotor performance.58−60 But treatment with hirsutidin
at a dose (10 mg/kg) improved all the behavioral parameters,
such as rotarod test, catalepsy, Kondziela’s inverted screen
activity, and open field paradigm compared to rotenone-
induced group.

Numerous studies have revealed that the cholinergic system
is essential for controlling brain processes like memory,
learning, motor skills, and sleep.37,61,62 ACh is hydrolyzed
into acetic acid and choline by the enzyme acetylcholinester-
ase, which is mostly found in postsynaptic synapses.63−65 The
current study’s findings also show that rotenone treatment
significantly raises ACh activity, which is consistent with past
publications.66,67 Concurrently declining ACh activity causes
an increase in synaptic acetylcholine, which is necessary to

influence cognitive function.68,69 According to our research,
hisutidin administration to rats reduced ACh activity, limiting
acetylcholine hydrolysis and conversion such that an adequate
quantity of ACh could be present in the synaptic cleft.

Mitochondria is the main powerhouse for ROS generation
and its dysfunction increases ROS production causing
oxidative damage to the tissues.70−72 The present study
showed that rotenone is directly responsible for oxidative
injury, which hinders the mechanistic function of antioxidant
enzymes as reported in earlier studies.73,74 The study displayed
that hirsutidin corrected all the antioxidant enzymes including
an increase in SOD, GSH, CAT activity, and catalase levels
while reducing MDA levels, which was different from the
rotenone administration group.

Neurotransmitters, especially dopamine, which is crucial for
regulating functional motions and signal transmission, are
mostly depleted by oxidative damage.75−77 The outcomes of
the present investigation exhibited that rotenone dramatically
reduced dopamine levels and changed the concentrations of its
metabolites, which was consistent with earlier results.78,79

Neurotransmitters, such as 5-HT, dopamine, and 5-HIAA
levels were elevated during therapy with hirsutidin, whereas
DOPAC and HVA levels decreased, representing enhancement
in neuronal and behavioral functioning and the antioxidant
activity of hirsutidin in PD.76,80

Another factor contributing to PD is neuroinflammation.
Neuronal inflammation is caused due to overexpression of the

Figure 5. (A−E) Effects of hirsutidin on neurotransmitter levels in rotenone-treated rats: (A) Dopamine, (B) DOPAC, (C) HVA, (D) 5-HIAA,
(E) 5-HT. Mean ± SEM (n = 6). #p < 0.05 vs normal, **p < 0.001, ***p < 0.0001 vs rotenone control. One-way ANOVA was followed by Tukey’s
test.
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inflammatory cytokines, which activates the degenerative
pathway leading to neuronal damage.81,82 As mentioned in
previous studies, rotenone showed upregulation in the cytokine
levels and stimulation of caspase-3 as rotenone administration
mains to neuronal inflammation.83−85 The results indicated
that hirsutidin at doses (10 mg/kg) attenuated rotenone-
induced alterations by decreasing the cytokine levels including
IL-6, IL-1ß, TNF-α, and caspase 3, which indicates its anti-
inflammatory action.

These conclude that hirsutidin may also contribute to
neuroprotective effects on rotenone-activated PD in a rodent
paradigm by reducing oxidative stress and restoring neuro-
transmitter levels, as well as neuroinflammatory cytokines, due
to its naturally occurring isoflavone with strong antioxidant
activity. Restrictions of this study are the short duration and
the fewer number of animals used. Future studies, along with
more mechanistic cellular and antioxidant genes is used to
better understand and confirm the mechanism of hirsutidin.
Furthermore, research on the effect of higher doses of
hirsutidin on Parkinson could be considered an option in
preclinical and clinical research.

5. CONCLUSION
The current experiment indicated that hirsutidin improved the
motor symptoms in rat-rotenone-induced Parkinson paradigm.

Moreover, hirsutidin showed neuroprotective activity via
decreasing overall oxidative stress and inflammatory cytokines.
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