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Abstract

Using a minimal model of metabolism, we examine the limitations of behavior that is (a) solely in response to environmental
phenomena or (b) solely in response to metabolic dynamics, showing that basic forms of each of these kinds of behavior are
incapable of driving survival-prolonging behavior in certain situations. Inspired by experimental evidence of concurrent
metabolism-based and metabolism-independent chemotactic mechanisms in Escherichia coli and Rhodobacter sphaeroides,
we then investigate how metabolism-independent and metabolism-based sensitivities can be integrated into a single
behavioral response, demonstrating that a simple switching mechanism can be sufficient to effectively integrate
metabolism-based and metabolism-independent behaviors. Finally, we use a spatial simulation of bacteria to show that the
investigated forms of behavior produce different spatio-temporal patterns that are influenced by the metabolic-history of
the bacteria. We suggest that these patterns could be a way to experimentally derive insight into the relationship between
metabolism and chemotaxis in real bacteria.
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Introduction

Certain species of bacteria are capable of moving up or down

chemical gradients in what as known as bacterial chemotaxis.

Chemotaxis is one of the simplest behaviors known, and it likely is

one of the first behaviors to have existed in the history of life on

earth. It is therefore one of the best studied forms of behavior, with

a line of research that dates back to some of the earliest

microscopic observations of bacteria by Leeuwenhoek in the

17th century and continues today, employing some of the most

modern computational and mathematical modeling tools[1–3].

Empirical work and theoretical modeling have led to a detailed

understanding of many aspects of the chemotactic mechanism in

various bacteria, with a particular focus on. In particular, advances

have been made in understanding flagellar motors [4], transmem-

brane chemo-receptors [5], signal transduction pathways [6–8],

and in how bacteria are capable of responding to a very wide

range of stimulus levels [9–11].

Some bacteria, such as Pseudomonada [12] and E.coil [13], move

toward certain attractants in a ‘‘metabolism-independent’’ form of

chemotaxis, where their behavior is in direct response to

environmental features, such as the local concentration of

attractant. For other bacteria, such as, the dominant mechanism

is a response to the state of the metabolism, in what is referred to

as ‘‘metabolism-dependent’’ or ‘‘metabolism-based’’ chemotaxis

[14]. Instead of responding directly to environmental phenomena,

these bacteria respond to the concentration of a metabolic product

or some other aspect of the metabolic machinery, such as the state

of a metabolic intermediary in the electron-transport system

[15,16]. Evidence suggests that various bacteria including E.coli

[13,17,18], and Rhodobacter sphaeroides [19] employ both metabolism-

independent and metabolism-dependent mechanisms.

A fundamental question remains concerning why different

organisms employ these different forms of chemotaxis. It remains

unclear whether the variety of mechanism seen in nature is due to

non-adaptive stochastic processes such as genetic drift, or if the

two forms of behavior are better suited to particular environments,

resulting in the evolution of different mechanisms in different

species. It has not yet been established how metabolism-based and

metabolism-independent behaviors might be integrated into a

coherent, functional behavior to drive behavior that is superior

than either single behavior on its own. Goldstein and Soyer [20]

simulated the evolution of chemotaxis pathways in virtual bacteria

to gain insight into how and why certain chemotaxis pathways

may have evolved. They showed that a simple, non-adaptive,

metabolism-independent mechanism can accomplish chemotaxis

and (in their model) was more easily evolved than an adaptive

form of chemotaxis. They also demonstrated that different

environmental conditions can cause different types of chemotactic
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mechanism to evolve, but the authors commented that ‘‘Untan-

gling the role of each type of dynamics in the efficiency of

chemotaxis requires further detailed analyses.’’ [20, p.5]. The

analysis presented in this paper also provides insight into why

different organisms should employ different forms of chemotaxis,

but here we take a different approach. Instead of simulating the

evolution of chemotaxis, we use a dynamical model to compare

four different forms of metabolism-independent and metabolism-

based behavior. Unlike Goldstein’s model, we include metabolic

dynamics in our simulation. This makes possible the comparison

of metabolism-independent and metabolism-based responses,

allowing us to develop an understanding of their advantages and

limitations.

The chemotaxis mechanisms employed by modern bacteria are

sophisticated and therefore complicated. Despite many years of

research we still do not fully understand how they work. In this

paper, we present an analysis of the dynamics of basic forms of

metabolism-based and metabolism-independent behaviors. Un-

derstanding how these basic mechanisms work is a helpful step

towards understanding the more complicated mechanisms em-

ployed by modern bacteria, and understanding how bacteria

regulate their interaction with their environment should improve

our ability to fight infections, engineer environments that allow for

the culturing of a wider variety of bacteria, and eventually, to

engineer similar mechanisms in synthetic protocells enabling forms

of dynamic stability based on ongoing environmental interaction.

1.1 The Role of Metabolism in Bacterial Chemotaxis
In 1969, Julius Adler published a series of experiments that

suggested that for, chemotaxis is metabolism-independent. He

demonstrated that for that species, certain attractants are not

metabolizable and conversely, that certain metabolizable chemi-

cals do not act as attractants [13]. Since then, much has been done

to elucidate how the metabolism-independent mechanism of

works, including details of transmembrane receptors, the two-

component signal transduction system and how these systems can

influence flagellar rotation (for a review, see [21]). However, work

previous to Adler’s studies [22] and a growing body of recent

research indicate that, at least for some bacteria, metabolism plays

an ongoing role of influencing chemotactic behavior (see [23,24]

for recent reviews). This metabolism-dependent behavior has been

observed in various bacteria [14,25–27], and in some cases

appears to be the primary chemotactic mechanism [14]. Details of

how these metabolism-dependent mechanisms operate are begin-

ning to emerge, with evidence suggesting that at least in some

cases, metabolism-dependent chemotaxis is driven by a sensitivity

to changes in the electron transport system [15,16].

There is also evidence to suggest that in addition to the

metabolism-independent mechanisms in studied by Adler, metab-

olism-dependent mechanisms of chemotaxis may also be at work

[17,18]. This is interesting not only because it lies in tension with

Adler’s original findings, but also because it suggests the existence

of both forms of chemotaxis are at work within a single organism.

Adding weight to this idea, that have been genetically ‘‘gutted’’ of

their metabolism-independent chemotaxis machinery still perform

a limited form of chemotaxis [28,29], again suggesting that

multiple, concurrent chemotaxis mechanisms are in operation.

Concurrent metabolism-independent and -dependent mecha-

nisms also appear to be operating within R. sphaeroides, which has

multiple chemoreceptor clusters; one in the cytoplasm and one at

the cell pole, suggesting multiple chemo-sensory pathways [19]. In

this species, taxis towards certain sugars requires metabolism of

those sugars, suggesting that some chemotactic behavior in is

‘‘likely to be generated by metabolic intermediates or the activities

of the electron-transport chain and not by a cell-surface receptor

or the rate or mode of substrate transport’’ [30]. Hamadeh et al.

[31] have used a computational model to test different relation-

ships of feedback between the clusters and signaling enzymes and

eliminate possible relationships between the clusters, leading them

to the conclusion that for this species, the two chemotaxis

pathways likely ‘‘initially evolved independently and then became

part of the same organism by horizontal gene transfer.’’ [31, p. 8].

The role of metabolism, the receptor clusters and their relationship

remains in need of further investigation as it remains unclear

precisely what it is that the cytoplasmic receptor cluster senses [31,

pps. 11–12]. The state of affairs also remains ambiguous for strains

of Pseudomonads, for which taxis towards aromatics appears to be

metabolism independent [12], but taxis towards (methyl)phenols is

metabolism-dependent [32].

There is substantial evidence for both metabolism-independent

and metabolism-based chemotaxis. This prompts questions about

why we should expect to see both forms of chemotaxis in nature,

and in which situations or environments we should expect to see

each form. Put another way, the advantages and limitations of

basic forms of metabolism-independent and metabolism-based

behavior have yet to have been fully established. Is a simple,

metabolism-independent regulation of environmental conditions

sufficient to drive survival-prolonging behavior in all conditions?

Conversely, can a purely metabolism-based behavior that does not

respond directly to any environmental features consistently drive

‘‘correct’’ (i. e., survival-prolonging) behavior? If not, what kind of

combination of metabolism-independent and metabolism-based

responses is optimal? Must such a mechanism of integration be

complicated to produce improved behavior, or could a simple

mechanism of integration suffice? These are theoretical issues that

are very difficult to study in vitro, but are well suited to analysis via

minimalistic mathematical models. Thus, the model and its

analysis presented below do not make specific predictions about

the behavior of specific species of bacteria, but instead provide

theoretical insight into the basic forms of metabolism-independent

and metabolism-based behavior which will help guide the

interpretation of experimental results, and the design of future

experiments.

Our analysis takes the following form: to study the relationships

between behavior and metabolism, we use a minimalistic

mathematical model to evaluate and compare four different

idealized forms of behavior, one metabolism-independent, two

metabolism-based, and one that is a combination of metabolism-

independent and metabolism-based responses. For each of the

behaviors we (i) examine example trajectories to identify limita-

tions of the behavior, (ii) quantify the set of metabolic and

environmental conditions that are survived or not survived by the

behavioral mechanism, and (iii) present a spatial simulation

indicating how bacteria employing the different behaviors would

respond to a chemical gradient. We first investigate the

metabolism-independent and metabolism-based behaviors. We

show that each of these three forms of behavior is incapable of

driving survival-prolonging behavior in certain survivable initial

conditions. This leads to the investigation of a behavior that

switches between metabolism-based and metabolism-independent

mechanism. In our model, this switching mechanism is capable of

surviving more conditions that any of the three more simple

behaviors, demonstrating that a simple switching mechanism can

suffice in some conditions to combine metabolism-independent

and metabolism-based behavior into an improved behavior, and

providing theoretical support for the empirical evidence of

metabolism-based and metabolism-independent mechanisms op-

erating concurrently in bacteria such as E. coli and R. sphaeroides.
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The next section describes the model we use to make our

comparisons. The Results Section describes and presents the

analysis of the four simulated behaviors and the discussion

recapitulations the main points of the paper and discusses the

details and implications of the results.

Model

2.1 A Minimal Model of a Metabolism
To compare different forms of metabolism-independent and

metabolism-based behavior we have designed a minimalistic and

abstract model, similar to those that we have used to study the

adaptivity provided by metabolism-based chemotaxis [33], the

evolutionary advantages of metabolism-based chemotaxis [34],

and how metabolism-based behavior forms a basis for under-

standing normative behavior and agency [35]. The model is not

intended to be a detailed simulation of the metabolic dynamics of a

specific organism. Instead, it is used to facilitate investigation of

possible relationships between metabolism and behavior by (i)

stimulating discussion about how metabolism and behavior can

interact, (ii) demonstrating the types of conditions in which

metabolism-based and metabolism-independent behavior can or

cannot appropriately regulate environmental conditions, and (iii)

enabling the formal description and analysis of hypothetical

interactions between metabolism and behavior.

The model is therefore simple and abstract, involving the

simulation of the concentration of two distinct categories of

chemical: metabolites, labeled A, and resources or ‘food’

chemicals, labeled F . ½A� represents the concentration of all of

the different chemicals in an autocatalytic metabolic network and

½F � represents the concentration of any and all available resources

that can be transformed by the metabolism into metabolites. The

model involves some arbitrarily selected parameters, but as we

shall see it nevertheless allows us to garner insight into possible

relationships between metabolism and behavior, and to elaborate

upon some general advantages and disadvantages of the two

different forms of behavior. An alternative approach would have

been to use one of the existing more detailed models of metabolism

(e. g. a model of E. coli central metabolism [36]), but these are

more complex, high-dimensional models with many parameters

and they are, therefore, more difficult to understand and to

visualize. More importantly, these more complex models do not

include all of the details that are necessary for our analysis (in

particular, the ‘‘viability limits’’ that we describe later in this

section), meaning that even if we were to base our analysis on

more realistic models of metabolism, we would have to include

some arbitrarily parameterized viability limits. For these reasons,

in this case, the advantages of using a simple model outweigh the

advantages of using a more complex, detailed model.

Our analysis is decoupled from the details of the metabolic

dynamics, while remaining connected to the general properties of

metabolic systems, in particular, the view of metabolism as an

autocatalytic, dissipative, far-from-equilibrium system that in the

absence of (self-)construction and/or (self-)maintenance will

naturally decay or degrade over time [37–39]. To capture these

properties, we simulate (i) an autocatalytic transformation of F

into A (Equation 1) and (ii) the collection of processes through

which A, degrades, diffuses away from the system, or in some

other way is transformed such that it has no subsequent influence

on the system (Equation 2).

2AzF<3A ð1Þ

A?1 ð2Þ

Starting from these two equations, we derived the following

ordinary differential equation that describes the intrinsic metabolic

dynamics.

A½ �
:

~
{kb½A�3

6
z

kf ½F �½A�2

2
{kd ½A� ð3Þ

The first and second terms represents the backward and

forward reactions of Equation 1, and the third term represents the

degradation of A. The stoichiometry of the reaction and its rate-

constants (kb~0:45, kf ~1, kd~1) were assigned to produce a

system that is bi-stable in the following sense: for certain fixed

concentrations of F , there is a stable ‘dead’ equilibrium at ½A�~0,

a stable viable equilibrium at ½A�w0 (indicated by the bold curve

in Figure 1) and an unstable equilibrium (dashed curve). Piedrafita

et al. [40] present a more detailed model of a metabolism that

demonstrates similar bi-stable dynamics.

We impose one additional constraint upon the metabolism by

including what we refer to as an ‘‘osmotic crisis’’ condition: if the

concentration of A becomes too high, ½A�§8, we say that the

metabolism has grown too large causing the bacterium to burst. In

the absence of this constraint, trivially simple strategies such as

‘‘grow ½A� as fast as possible’’ or ‘‘maximize ½F �’’ accomplish

optimal behavior and we wished to explore more sophisticated

regulatory behavior that is capable of avoiding having too few

resources and having too many - such as the oxygen-tactic

behavior of A. brasilense, which avoids environments that have

either too little or too much oxygen [41]. In modern bacteria,

death by overfeeding may be rare or absent, here we consider how

this regulation may be accomplished.

Figure 1 is a bifurcation plot that indicates the dynamics of the

system that we have just described for different fixed concentra-

tions of F . The ‘‘death’’ states are indicated by the red horizontal

lines at ½A�~0 and ½A�~8. In between these lie a set of stable,

Figure 1. Equilibria, and the viable and precarious regions in
the dynamical model of the metabolism. In the presented model,
the system is only considered alive if 0v½A�v8. Given this constraint
and the intrinsic metabolic dynamics described by Equation 3, two
regions emerge: the precarious region (states for which ½F � must be
changed if the system is to persist) and the viable region (states for
which no change in ½F � is necessary to avoid death).
doi:10.1371/journal.pone.0063617.g001
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viable equilibria (the bold curve) and a set of unstable equilibria

(dashed curve). For states that are to the right of these curves, ½A� is
increasing, and to the left of the curves, ½A� is decreasing (indicated

by the arrows). As might be expected, when there is a low

concentration of F , the system is incapable of self-producing at a

rate sufficient to compensate for its degradation, resulting in a

single stable equilibrium of no autocatalyst at ½A�~0. At

½F ��~ 2

kf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:kb

:kd

3

r
, the system bifurcates, and for a range of

fixed concentrations ½F ��v½F �v1:45, the system has three stable

equilibria: a ‘viable’ equilibrium (0v½A�v8), and two ‘dead’

equilibria (½A�~0, ½A�~8). For fixed ½F �w1:45, the system has

only three possible final resting states: the two death states, and an

unstable equilibrium in between. The set of states that are in the

‘‘viable region’’ are shaded in green, where for fixed ½F �,
limt?? 0v½A�v8, i. e. those states that end in a viable

equilibrium. All other states fall within the ‘‘precarious region’’:

where limt??½A�[f0,8g, i. e. where in the absence of a change in

½F �, the system will fall into a ‘‘death’’ state. For further description

of the notions of viable and precarious states and related concepts,

see [35].

In this section, we have described the metabolic dynamics. The

next section explains how we include different forms of behavior in

the model, allowing us to compare their advantages and

disadvantages.

2.2 Behavior
To compare different forms of behavior, we assume that the

bacteria are in an unchanging environment and that they have

some mechanism through which they can either increase or

decrease ½F � at some maximum rate ({2v½ _FF �v2). This change

in F could be caused by motility such as the random ‘‘run/

tumble’’ walk of E. coli and R. sphaeroides, which alternate between

directed ‘‘running’’ and a random reorienting ‘‘tumbling’’ motion,

modulating the frequency of tumbling to produce a stochastic

motion toward regions of higher (or lower) chemical concentra-

tions [4,42]. Alternatively, the change in ½F � could be accom-

plished by the modulation of membrane properties or some other

behavior but, for simplicity, we do not, at first, include these details

in our model. Instead, we assume that each of the behavioral

mechanisms that we examine can be described by an ordinary

differential equation that describes how the behavior changes ½F �.
For each behavior, we evaluate the dynamics of the system

specified by this ‘‘behavior’’ differential equation coupled with the

‘‘metabolism’’ differential equation (Equation 3). After our analysis

of the behaviors using this abstract model, in Section 3.5 we

present an extension of the model that includes spatial dynamics

and chemotactic motility, and similar dynamics are observed.

We will consider four behaviors. Behavior 1 is the metabolism-

independent regulation of the concentration of ½F �. If the

simulated bacterium is in an environment with resources less than

the target concentration, it acts to increase their local concentra-

tion (½ _FF �w0), and if it is in an environment with too many

resources, it behaves in some way to decrease their concentration

(½ _FF �v0). Behaviors 2 and 3 are both metabolism-based. Behavior

2 regulates the concentration of resources in response to the

concentration of metabolic product, ½A�. When ½A� is lower than a

target value, ½F � is increased, and when ½A� is higher than a target

value, ½F � is decreased. Behavior 3 operates similarly, but instead

of being a response to the concentration of metabolic product

(½A�), it is a response to the rate of change in the concentration of

A: when ½A� is decreasing, ½F � is increased and when ½A� is

increasing, ½F � is decreased. The fourth and final behavior that we

examine combines the first and third behaviors using a simple

sigmoidal switching mechanism.

To allow for a fair comparison, for each behavior, we identified

parameters that maximize survival-prolonging behavior. For

Behaviors 1–3, there are only two parameters, and it was possible

to thoroughly sample the parameter space (sampling

51|51~2601 parameter pairs for each behavior) and identifying

optimal parameter value-pairs (as evaluated by the fitness function

described below). Behavior 4 has a 6-dimensional parameter

space, making thorough search less feasible. We therefore

employed the microbial genetic algorithm [43] to identify optimal

parameters for this behavior. Table 1 lists the identified parametric

values that were employed in our analysis.

We used a variation of the microbial genetic algorithm [43] to

identify optimal parameters for the switch-based behavior

described in Section 3.4. This algorithm operates in the following

way: a random population of 30 ‘‘genotypes’’ is generated. Each

genotype specifies a set of the 6 parameters for Behavior 4. This

population is improved by repeatedly selecting two individuals at

random from the population and comparing their ‘‘fitness’’ (their

success at driving survival-prolonging behavior as evaluated by the

fitness function described below) in what are called tournaments.

The parameters of the less fit genotype, the ‘‘loser’’, are made

more similar to the parameters of the winner (Pl~(PlzPw)=2),

and then ‘‘mutated’’ -changed by a random amount selected from

a Gaussian distribution with a mean of 0 and a standard deviation

that is one percent of the allowed range of values for that

parameter. Parameters that are larger than the allowed range of

values (see Table 1) after mutation ‘‘wrap around’’ via modular

arithmetic to become low valued parameters and vice versa.

Each fitness evaluation involves running n~16384 simulations

for 20t, with initial conditions sampled from the space of

(½A0[½0::8�, F0[½0::4�) in a 128|128 uniformly distributed

rectangular lattice. Fitness ~pzd, where p is the proportion of

these simulations that are ‘‘survived’’ (i. e. where

0:1v½A�t~20v7:9) and d is the normalized mean distance of

½A�t~20 from 4 (the midpoint between the two dead states) as

described by:

Table 1. Parameters.

Parameter Value Behavior Method of identification Range

hF 1.12 1 Lattice Sampling [0..4]

kF 9.4 1 Lattice Sampling [0..10]

hA 4.0 2 Lattice Sampling [0..8]

kA 10.0 2 Lattice Sampling [0..10]

hD 0.0 3 Lattice Sampling [22..2]

kD 10.0 3 Lattice Sampling [0..10]

hSF 1.1033 4 Genetic Algorithm [0..4]

kSF 2.7381 4 Genetic Algorithm [0..5]

hSD 0.2894 4 Genetic Algorithm [21..1]

kSD 2.9981 4 Genetic Algorithm [0..5]

ks 2.6494 4 Genetic Algorithm [0..4]

kr 6.0630 4 Genetic Algorithm [0..10]

doi:10.1371/journal.pone.0063617.t001
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Figure 2. Example trajectories and survivable initial conditions for four different forms of behavior. Each of the left-hand plots indicate
six example trajectories through the state space described in Section 2.1. The starting points for these trajectories (indicated by small, filled circles) are
the same for each behavior. The right-hand plots indicate the ‘‘survivable initial conditions’’ for the same behaviors. The shade of gray on these
graphs indicates ½A� at t~40 for the initial condition indicated by the location of the point on the plot. The white and black regions indicates initial
conditions that end in the death states, ½A�~8 and ½A�~0 respectively. The mid-tones indicate initial conditions which survived. For all calculations,
the system appeared to have come close to equilibrium before the end of the simulation.
doi:10.1371/journal.pone.0063617.g002
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d~
X D4{½A�t~20D

4n
ð4Þ

After 2500 tournaments the population had converged on a

highly fit set of parameters. We selected the fittest individual from

the final population and used those parameters for our analysis.

The parameters that were identified as optimal for all of the

behaviors are presented in Table 1.

Results

We shall now describe the four behaviors and the equations

used to model them in detail. For each behavior we will analyze

some example trajectories that provide insight into the dynamics of

the coupled behavior-plus-metabolism system. We then evaluate

the survivable initial conditions-those initial conditions that do not

fall into a dead states after a long period of time. This analysis

allows us to compare the different behaviors, identifying strengths

and weaknesses of each.

3.1 Metabolism-independent Behavior
The first behavior that we shall consider is a metabolism-

independent response to the environmental concentration of

resources. This behavior is similar to metabolism-independent

bacterial chemotaxis cases where the signaling pathways are not

modulated by metabolic activity and are solely influenced by the

concentration of resources in the environment. When resources

are scarce, the bacteria act to increase the concentration of

available resources and when resources are too high in concen-

tration, the organism acts to decrease them. To model this, we use

the following differential equation:

½ _FF �~kF (hF {½F �) ð5Þ

When ½F �whF , ½ _FF � is negative, and when ½F �vhF , ½ _FF � is

positive, and the system thereby maintains ½F �~hF . The

parameter k indicates the rate at which the system influences

½ _FF �, i. e. when k is higher, the system is more sensitive to the

difference between hF and ½F �. As mentioned in in Section 2.2, the

values for these parameters (listed in Table 1) were selected to be

the best possible parameters for maximizing survival prolonging

behavior.

The example trajectories plotted in Figure 2A provide insight

into the advantages and disadvantages of this metabolism-

independent behavior. Trajectories, like the green trajectory that

starts near the upper-left, with ½F � close to hF , and ½A� close to the

viable equilibrium for ½F �~hF , succeed at moving quickly to a

stable equilibrium point within the viable region. However, when

½A� and/or ½F � are too low or too high (e.g., the pink or yellow

trajectories), the system dies. Some of these deaths are due to the

rate of response; the simulated bacterium is appropriately

increasing or decreasing ½F �, but it is not capable of doing so

quickly enough (e. g. the yellow trajectory). Others are ‘‘making a

mistake’’ in the sense that they are causing ½F � to change in the

wrong direction, leading to death. For example, consider the the

pink trajectory towards the lower right. The metabolism-indepen-

dent behavior always causes a change in ½F � toward hF , but in this

case, this drives a suicidal behavior. If instead, ½F � had increased

for a short period of time, the system could have crossed the

unstable equilibrium and then grown to a higher concentration of

A. After some amount of growth, the homeostasis of ½F � at hF

would have sufficed for survival.

The crucial point is that it does not suffice to respond only to

½F �, because there is no single concentration of F that is always the

‘‘right’’ concentration. For different values of ½A�, different

concentrations of F are needed to survive. Metabolism-indepen-

dent behavior is, by definition, insensitive to the metabolic

dimension of the situation, and so is incapable of driving survival

prolonging behavior in some situations.

Figure 2B shows the final concentration of A for different initial

conditions, giving an impression of the strengths and weaknesses of

this behavior. The white area indicates initial conditions that end

at ½A�~8, the osmotic crisis death, and the black area indicates

initial conditions that result in a complete absence of metabolism,

i. e. where ½A�~0. The mid-tones indicate approximations of the

final concentration of A (i. e., limt??½A�), calculated by running

numerical simulations for long enough that the system appears to

come to equilibrium (t~40). These mid-tones can be considered

as the survivable initial conditions -those initial conditions for which

the behavior succeeds at modulating ½F � such that the system does

not die.

3.2 Metabolism-based Behavior
Inspired by the metabolism-based chemotaxis of bacteria such

as E. coli, R. sphaeroides and Pseudomonads, we shall now investigate a

behavioral response to the concentration of metabolic product(s)

rather than a direct response to environmental resources. The

behavior works in the following way: when there is an excess of

metabolic product (½A�whA), the behavior causes a decrease in

available resources, slowing metabolite production. Conversely,

when the concentration of metabolic product is low (½A�vhA), the

behavior causes an increase in resources, thereby increasing the

rate of metabolite production. We use the following equation to

simulate this simple, but functional metabolism-based behavior.

½ _FF �~kA(hA{½A�) ð6Þ

This equation has a similar form to the metabolism-independent

mechanism presented above, but the behavior is now based on a

sensitivity to the concentration of A rather than of F . When ½A� is
higher than the target concentration hA, ½F � is decreased and when

½A� is lower, ½F � is increased. Decreasing ½F � tends to decrease ½A�,
and so this behavior can result in a stable homeostasis of ½A� and

½F �.
Figure 2 c shows that this behavioral strategy can also be

effective. Similar to the metabolism-independent mechanism

described above, when initial conditions are close to the viable

region, the system avoids the dead states, falling into an attractor

within viable region (red, green, black and yellow trajectories). In

fact, this metabolism-based behavior survives some of the initial

conditions that the metabolism-independent behavior does not.

For example, the initial condition of the yellow trajectory (lower-

left) is survived by this behavior but it is not survived by the

metabolism-independent behavior.

However, similar to the way that the metabolism-independent

mechanism is blind to ½A�, this behavior is, by definition, blind to

½F �. How to modulate ½F � to drive survival-prolonging behavior is

determined in part, by the state of ½F �, and therefore, like the

metabolism-independent behavior, this behavior is incapable of

driving survival-prolonging behavior in certain conditions. This

limitation is apparent when we consider the pink (lower right)

trajectory in Figure 2 c. Initially, the metabolism-based behavior
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appropriately increases ½F �. This increase continues until ½A�
approaches hA. But at this point it is too late! There is so much ½F �
that the system will not be able to decrease ½F � quickly enough to

avoid osmotic crisis. Figure 2D shows the survivable initial

conditions for this behavior, and it is apparent that similar

problems occur when either ½A� or ½F � is quite low or high.

So, although there are some initial conditions that this behavior

survives that the metabolism-independent behavior does not, it is

the metabolism-independent that survives the greater number of

initial conditions. The gray columns in Figure 3 indicate the

proportion of the 65536 tested initial conditions that were survived

by each behavior. For this model, the metabolism-independent

behavior survives more initial-conditions and could therefore be

arguably considered the more robust behavior. This result might

be different for other models (if for instance, we chose different

values for kf , kb, and/or kd ), but as long as the relationship

between the rate of metabolic growth, the concentration of

metabolites and the concentration of metabolic resources is non-

linear and there are upper and lower bounds on the viable

resource levels, the central messages would remain the same: to

drive survival-prolonging behavior in all conditions, it is insuffi-

cient to have only a simple behavioral response to either the

metabolic product, or the concentration of environmental

resources.

3.3 Metabolism-based Behavior 2: Responding to the
Rate of Change

We now investigate a second form of metabolism-based

behavior. Instead of responding to the concentration of metabolic

product, this behavior is a response to the rate of change in the

concentration of metabolic product. If the concentration of

metabolic-product is changing in a way that is consistently positive

or negative for an extended period of time, death will occur and it

follows that a behavior might be able to avoid death by regulating

resource availability to prevent change in the concentration of

metabolic-product. This dynamic is captured by the following

equation.

½ _FF �~kD(hD{½ _AA�) ð7Þ

Again, the mechanism takes a similar form to those already

described, except that now, instead of responding to ½F � or ½A�, the

behavior is in response to ½ _AA�. When ½A� is increasing, ½F � is

reduced until ½A� is no longer increasing. Similarly, if ½A� is

decreasing, ½F � is increased until ½A� is no longer decreasing.

Figure 2E shows example trajectories for this behavioral

mechanism. All of the selected example trajectories now avoid

the two death boundaries, coming to rest on either the stable,

viable equilibrium or the unstable equilibrium. The latter case

(demonstrated by the yellow and pink trajectories) is an example of

how behavior can stabilize inherently unstable metabolic dynam-

ics, an idea that we are exploring in another paper under

preparation.

This behavior survives more initial conditions than either of the

previous behaviors (see Figures 2 and 3). Why should that be the

case? The rate of metabolic growth is determined by both the

concentration of metabolites and the amount of resources

available. This response is therefore, indirectly sensitive to both

the (metabolism-based) concentration of metabolites and the

(metabolism-independent) concentration of metabolic resources,

meaning that unlike the other two behaviors, this one is influenced

both by ½A� and ½F �, allowing for a greater range of survivable

conditions.

Note however, that some of end-states have a concentration of

A that is close to death meaning that a small fluctuation in ½A�
could result in death. Also, some trajectories end on a saddle-node

point where ½A� is unstable and biased fluctuations could bring the

system increasingly close to ½A�~0. So, although more initial

conditions are survived, some of the equilibria found by this

behavior would not be as robust to perturbations as the equilibria

of previous behaviors. The white columns in Figure 3 indicate the

mean distance of the final ½A� from death states, showing that this

behavior does not, on average, keep the system much farther away

from death than the other two behaviors. In some respects, this

behavior appears better than the two previous, but as we shall

show in the next section, an improvement is possible through

combining metabolism-independent and metabolism-based be-

haviors.

3.4 Switching between Metabolism-based and
Metabolism-independent Sensitivities

All of the basic forms of behavior that we have examined,

whether metabolism-independent or metabolism-based, have been

insufficient to drive survival-prolonging behavior in certain

survivable initial conditions. The ‘‘rate-of-change’’ mechanism

(Section 3.3) is capable of surviving a greater number of initial

conditions than the others, but as mentioned, some final equilibria

are quite precarious. A range of empirical bacterial chemotaxis

research suggests that metabolism-based and metabolism-inde-

pendent mechanisms may operate concurrently within E. coli, R.

sphaeroides and Pseudomonads. We postulate that a simple switching

mechanism is sufficient to integrate the two different forms of

behavioral sensitivity in a way that is beneficial. One way to model

this is to introduce a simple smooth sigmoidal switch that responds

to ½A� such that when ½A� is high, the ½F �-sensitivity described in

Section 3.1 is the dominant mechanism, and when ½A� is low, the

Figure 3. Evaluation of behaviors. The black columns indicate the
fitness of each behavior as evaluated by the fitness function. Fitness is
the sum of two terms: p, the proportion of tested initial conditions that
are survived by the behavior and d , a normalized score that describes
the mean distance of the final concentration of A from the death states
for all tested initial conditions (higher is better for all measurements).
See Section 2.2 for further details of how these scores were calculated.
Also plotted are the proportion of survival in the spatial simulations (see
Section 3.5). Note that the spatial model survival rates follow a similar
pattern to the fitness evaluation in the more abstract model.
doi:10.1371/journal.pone.0063617.g003
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metabolism-based derivative mechanism that we explored in

Section 3.3 is the dominant mechanism.

The equations that we use to model this behavior are the

following.

a~kSD(hSD{½ _AA�) ð8Þ

b~kSF (hSF{½F �) ð9Þ

s~
1

1zexp(kr(½A�{ks))
ð10Þ

½ _FF �~saz(1{s)b ð11Þ

In these equations, a describes the influence of the metabolism-

based ‘‘rate-of-change’’ mechanism described in 3.3, b describes

the influence of the metabolism-independent mechanism de-

scribed in 3.1, and s represents the state of the switch, which

attenuates a and b in response to ½A� (as described by Equations 10

and 11). Thus, when ½A� is below ks, ½ _FF � is predominantly

influenced by the metabolism-based ‘‘rate-of-change’’ sub-mech-

anism, and when ½A� is above ks, the predominant influence is a

response to ½F �, similar to that described in Section 3.1. The

parameter ks describes the point where the two mechanisms are

equally influential and kr determines the smoothness of the

sigmoidal function. As mentioned above, the parameters for this

behavior were identified by using a genetic algorithm to produce

behavior that avoids the death equilibria (see Section 2.2).

Figures 2G and 2H show example trajectories and the

survivable initial conditions for this behavioral mechanism. As

with the rate-of-change mechanism, all of the example trajectories

manage to avoid death, but now they all end in a less precarious

equilibrium, in the middle of the viable region. This behavior is

therefore the most effective of those that we have evaluated,

providing theoretical support for the evidence of concurrent

mechanisms metabolism-based and metabolism-independent

mechanisms operating in various bacteria. It is likely that the

mechanism of integration in bacteria is complicated, but here we

have demonstrated that even a simple switching mechanism that

responds to the concentration of a metabolic product can be

sufficient to benefit from concurrent metabolism-based and

metabolism-independent sensitivities.

3.5 Different Behavioral Mechanisms Produce Different
Spatio-temporal Patterns

In this section we present a spatial simulation of bacteria

performing chemotaxis driven by each of the four different

behaviors described above. In this spatial model, we simulate the

metabolism of 65536 bacteria, but instead of having the behavioral

mechanism directly influence the concentration of F , we consider

the bacteria to be spatially embedded in a one-dimensional

environment, in which there is a fixed gradient of F . The location

of each bacterium x, determines ½F � according to the following

formula.

½F �~4:exp({2(x{1)2) ð12Þ

Provided that they are ‘‘alive’’ (defined by 0:1v½A�v8:0), the

simulated bacteria are always either moving up-gradient (toward

increasingly positive x) or down-gradient. The direction of the

movement is determined by the sign of ½ _FF � as determined by the

relevant behavior. A negative ½ _FF � causes a down-gradient motion

and a non-negative ½ _FF � causes up-gradient motion according to the

following piece-wise differential equation, where ½ _FF � is the change

in ½F � as specified by the behavioral mechanism that is being

investigated, and e is a randomly assigned fixed error bias term

that is described below.

_xx~
{0:5 : ½ _FF �zev0

z0:5 : ½ _FF �ze§0

(
ð13Þ

This environment has ‘‘walls’’ in the sense that any bacterium

with xw1 are immediately relocated to x~1 and similarly those

with xv{1 are relocated to x~{1.

At the start of the simulation, the location of each bacterium is

selected from an flat distribution covering the range between the

two walls xt~0[½{1::1�. To investigate how the state of the

metabolism influences subsequent behavior, the initial metabolic

states of the simulated bacteria are selected from a flat distribution

½A�t~0[½0::8�. It may be possible to similarly vary the initial

metabolic state of bacteria in a chemotaxis assay through starving

or over-feeding bacteria before observing their chemotaxis in a

gradient environment. Figure 4 shows the temporal evolution of

the spatial distributions of bacteria performing the different

behaviors, when the error term e~0. Each point indicates the

spatial location of the bacteria (horizontal axis), plotted against its

initial metabolic state, ½A�t~0 (vertical axis). The colors of the

points indicate the living/dead status of the bacterium, with blue

points indicating bacteria that have died due to excess ½A�w8, red

points indicating bacteria that have died due to insufficient

autocatalyst ½A�v0:1, and green points indicated bacteria that are

alive. Animations of these plots are available at http://www.

youtube.com/watch?v = h68pBQ8alns.

In all cases, regardless of the behavior simulated, a large

proportion of the bacteria perform chemotaxis to a region partway

up the resource gradient where x&0:25 and ½F �&1:25. However,

the four behaviors do so in different ways, producing different

spatio-temporal distributions. In the metabolism-independent

behavior, different initial values of ½A� cause no difference in the

behavior of the bacteria, and all bacteria move toward x&0:25,

with some dying along the way, depending on initial conditions.

The first metabolism-based behavior drives an oscillating response

where the bacteria move toward x&0:25, overshoot it, turn back

toward it, overshoot it again etc. The ‘‘rate-of-change’’ metabo-

lism-based mechanism drives chemotaxis such that those bacteria

that start far down-gradient of x&0:25 with low ½A�t~0 move up-

gradient to xw0:25 and remain there. The insight provided by

our analysis in Section 3.3 and in Figure 2 suggests that these

bacteria have stopped in an area where the concentration of ½F � is
matched with their (relatively low) ½A�, such that ½ _AA�~0. The

combined switching behavior similarly compensates for low ½A�t~0

by moving to xw0:25, but in a way that is different from the rate-

of-change mechanism. For this behavior, x is increased such that

½A� increases. After some increase in ½A�, the metabolism-

independent part of its behavior dominates, and the bacteria

move down-gradient to x&0:25.

The bar-chart in Figure 3 includes the proportion of these

simulated bacteria that survived(i. e., for which 0:1v½A�t~20v8)
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in each of these four simulations. Also included in this figure are

the ratios of survival for spatial simulations where the e for each

simulated bacterium was selected from a normal distribution with

a mean of 0 and a standard deviation of 0:5. These results support

the more abstract non-spatial analysis conducted in previous

sections, with the combined behavior and rate-of-change behav-

iors allowing for survival in a greater range of situations than the

other two behaviors, and the combined-mechanism suffering

slightly less from the error bias than the rate-of-change mecha-

nism.

Discussion

Experimental work has shown that the bacterial chemotaxis is

sometimes metabolism-independent, sometimes metabolism-

based, and that certain bacteria appear to utilize both of these

forms of behavior. Each mechanism has advantages and

disadvantages. For example, metabolism-based responses are

inherently capable of integrating simultaneous environmental

influences into an appropriate response [33] while metabolism-

independent mechanisms allow bacteria to respond to trace

quantities of attractants that are too low in concentration to affect

on the metabolism, but are nevertheless good indicators of where

an organism could find more resources. The mechanisms are

different, but neither is clearly superior to the other. Here we have

elaborated upon these differences by presenting a dynamical

analysis of different forms of basic metabolism-based and

metabolism-independent behavior in a minimal model. The

model has made clear that basic forms of regulation, whether

metabolism-based or metabolism-independent, are insufficient to

drive survival prolonging behavior in certain survivable situations.

This is true because the rate of metabolic growth is influenced

both by the state of the metabolism and by the state of the

environment. The appropriate behavioral modulation of the

environmental state therefore also depends on the state of the

metabolism and the state of the environment, and purely

metabolism-based or metabolism-independent mechanisms are,

by definition, blind to one of these dimensions. We suggest that

this conclusion holds in the vast majority of cases, provided that

there is a non-linear relationship between resources, the state of

the metabolism and the rate of metabolic growth. It may be

possible that more sophisticated forms of metabolism-based or

metabolism-based behavior are able to drive more successful

behavior, and we are currently exploring this possibility.

In our model, a mechanism that switches between metabolism-

based and metabolism-independent sensitivities was capable of

driving survival-prolonging behavior in more conditions than any

of the basic metabolism-independent or metabolism-based behav-

iors, demonstrating that a basic switching device suffices to

integrate the two forms of behavior in a beneficial way. This raises

the hypothesis that a switching mechanism could be in operation

within bacteria that appear to have both metabolism-based and

metabolism-independent chemotactic mechanisms. However, real

metabolisms are much more complicated, and the relationship

between the metabolism and its environment is likely to be more

complex, leading us to expect a rich interaction between

metabolism-independent and metabolism-based sensitivities. We

also showed that the rate-of-change in the concentration of

Figure 4. Spatio-temporal distributions of bacteria performing the four different behaviors. Spatial location (x) plotted against the initial
metabolic state of the simulated bacteria ½A�t~0 . The distribution of ½F � in the environment is indicated by the black curve. Blue points indicate
bacteria that have died due to excess (½A�w8), red points indicate bacteria that have died due to running low of autocatalyst (½A�v0:1), and green
points indicated bacteria that are alive (0:1v½A�v8:0). The four behaviors produce qualitatively different spatio-temporal distributions.
doi:10.1371/journal.pone.0063617.g004
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metabolic product can act as an indirect indicator of both the state

of the metabolism and the state of available metabolic resources,

allowing for an improvement over mechanisms that respond only

to the concentration of available metabolic resources or the

concentration of metabolic product. We are currently investigating

other, more sophisticated forms of regulation that are based on a

response to the rate-of-change of metabolic product.

In Section 3.5, we presented a spatial simulation of bacteria with

motile behavior driven by the different behavioral mechanisms.

These simulations supported the conclusions of the dynamical

analysis of our more abstract model presented earlier in the paper,

and they also demonstrated that each of the four different

behavioral forms investigated produce different spatio-temporal

distributions of bacteria. All but one of these are influenced by the

initial metabolic state of the bacteria and we suggest that it may be

possible to experimentally derive insight into the relationship

between metabolism and chemotaxis in real bacteria, by

experimentally varying the state of their metabolism before

placing them on a resource gradient and observing how their

spatial distribution changes over time. Given the complexity of

metabolism and behavioral mechanisms in modern bacteria, it is

highly unlikely that the patterns in our abstract simulation will

directly correspond to patterns observed in experimental chemo-

taxis assays. Nevertheless, it is our hope that our analysis of the

mechanisms at play in our minimal model will help to interpret the

patterns observed in chemotactic bacteria.

More broadly, we have started here (and in our other recent

work) an investigation into to the role of somatic processes in

sensorimotor loops. If we are ever to completely understand

chemotaxis and other, more complicated forms of behavior, it may

be necessary to include details of metabolic and other somatic

processes in our analysis.
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