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ABSTRACT 

Most malignant hepatocellular tumors in children are classified as either hepatoblastoma (HB) or 
hepatocellular carcinoma (HCC), but some tumors demonstrate features of both HB and HCC1-3. These 
tumors have been recognized under a provisional diagnostic category by the World Health Organization 
and are distinguished from HB and HCC by a combination of histological, immunohistochemical, and 
molecular features4-6. Their outcomes and cellular composition remain an open question7-9. The 
heterogeneous histological and molecular profiles of hepatoblastomas with carcinoma features (HBCs)4 
may result from cells with combined HB and HCC characteristics (HBC cells) or from mixtures of cells 
displaying either HB or HCC signatures. We used multiomics profiling to show that HBCs are mixtures of 
HB, HBC, and HCC cell types. HBC cells are more chemoresistant than HB cells, and their 
chemoresistance—a driver of poor outcomes10-12—is determined by their cell types, genetic alterations, 
and embryonic differentiation stages. We showed that the prognosis of HBCs is significantly worse than 
that of HBs. We also showed that HBC cells are derived from HB cells at early hepatoblast differentiation 
stages, that aberrant activation of WNT-signaling initiates HBC transformation, and that WNT inhibition 
promotes differentiation and increases sensitivity to chemotherapy. Furthermore, our analysis revealed 
that each HBC is the product of multiple HB-to-HBC and HBC-to-HCC transitions. Thus, multiomics 
profiling of HBCs provided key insights into their biology and resolved major questions regarding the 
etiology of these childhood liver tumors. 

INTRODUCTION 

Hepatoblastomas (HBs) and hepatocellular carcinomas (HCCs) are the most frequent primary 
hepatocellular tumors diagnosed in children13. While most cases can be definitively diagnosed as either 
HBs or HCCs, some hepatocellular tumors demonstrate combined HB-HCC molecular and histological 
features. Such tumors were formally recognized in 2014 under the provisional hepatocellular neoplasm–
not otherwise specified (HCN NOS) diagnostic category14. Initially, the diagnosis and classification of 
HCN NOS were based solely on histopathology1,2. However, recent studies have characterized their 
molecular features and proposed integrated diagnostic approaches that combine immunohistochemistry 
and molecular biomarkers to accurately diagnose patients with HCN NOS and related tumors under the 
broader hepatoblastoma with carcinoma features (HBC) category4. Consequently, using a combination 
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of immunohistochemistry and molecular biomarkers, we distinguish between three types of childhood 
hepatocellular tumors: HB, HBC, and HCC4,5.  

Histological evaluations of HBCs suggested classification into three subtypes: biphasic, which contain 
homogenous HB and HCC regions; equivocal, which are composed of intermingled cells with HB and 
HCC features; and focal, which, before and after chemotherapy, contain small areas displaying high-
grade HB-HCC features—including atypia and pleomorphism—enveloped by HB cells. The molecular 
profiles of all HBC subtypes revealed recurrent genetic alterations alongside the activation of marker 
genes and pathways associated with HB and HCC4. A key unresolved question is whether HBCs are 
solely composed of a mixture of HB and HCC cells or if they also include cells with unique HBC-specific 
DNA alterations and combined HB-HCC immunohistochemical and gene expression profiles (HBC cells). 
Furthermore, due to limited data, the incidence of HBC remains unclear, and the outcomes have been 
reported to be comparable to either those of HB or HCC, with respective survival rates exceeding 70% 
and falling below 40%, respectively15,16. In summary, HBC biology and etiology remain poorly understood 
and strategies for their treatment are being investigated17.  

To address critical questions surrounding HBC biology and outcomes, we clinically characterized 42 HBC 
cases and used high-resolution multiomics approaches to profile a subset of these cases. Our findings 
confirm that HBCs are linked to poor outcomes, with overall survival rates below 50%. Our analyses 
addressed unresolved questions regarding the cellular composition of HBCs and the phylogenetic 
relationships among the subclones that constitute them. Ultimately, our research offers valuable insights 
into the etiology of HBC, their responses to therapies, and the conditions necessary for HBC evolution. 

RESULTS 

We identified molecular signatures that distinguish between histologically classified HBs and HCCs at 
single-cell resolutions and showed that these features can be used to distinguish HB from HBC and HCC 
cells and tumors. Namely, tumors that were definitively diagnosed as HBs or HCCs and all tumor cells 
that comprise them were accurately classified as HBs or HCCs, respectively. In contrast, tumors falling 
under the HBC category, including all tumors diagnosed as HCN NOS, were composed of neoplastic 
cells with distinct HB molecular signatures, HCC molecular signatures, or their combination (HBC cells). 
Analogous to HBC tumors, HBC cells were characterized by specific DNA alterations and the activation 
of both HB and HCC marker genes and pathways. Our results support the hypothesis that HBCs are 
derived from HB precursor cells2,4 and can transition to cells with HCC histology and molecular features.  

Lower survival rates for HCCs are linked to their higher resistance to chemotherapy18. We showed that 
HBC cells exhibit greater chemoresistance than HB cells, resulting in poor patient outcomes and an 
overall survival rate below 50%. We observed that each HBC tumor contains multiple genetic subclones, 
and each genetic subclone comprises cells from multiple tumor types—HB, HBC, and HCC—at early 
embryonal differentiation stages. Thus, we concluded that each HBC tumor arises from multiple 
asynchronous transitions from HB to HBC and from HBC to HCC at early embryonic differentiation 
stages. Our results suggest that both HBCs and their precursor cells are stochastically halted at early 
hepatoblast differentiation stages by HB-initiating genetic alterations that activate the WNT-signaling 
pathway19-21. Moreover, we show that WNT-signaling inhibition can promote HBC differentiation and 
enhance their sensitivity to standard-of-care chemotherapy. Note that our results on initiating DNA 
alterations in WNT-signaling pathway genes are consistent with previous findings in HBs and HCCs22-24.  

HBC outcomes are poor 

Studies that clinically characterized HBs at scale include the Children’s Hepatic Tumors International 
Collaboration with 1605 HBs with at least 2 years of follow up post-diagnosis23; Cairo et al. (2008 and 
2020) with 85 and 174 HBs, respectively25,26; Sumazin et al. (2017) with 69 HBs27; Nagae et al. (2021) 
with 139 HBs28; and Hirsch et al. (2021) with 86 HBs29. Here, we collected outcome data for 42 HBCs, 
including 41 with recorded events for at least 2 years post-diagnosis (Table S1). A comparison of event 
and outcomes data suggests that HBCs have significantly worse outcomes than HBs, including worse 
event-free survival (Figure 1A) and overall survival (Figure 1B). The overall survival for HBs across these 
studies was 79% on average, compared with 43% for HBCs. Pre-treatment HBC biopsies were highly 
heterogeneous, while post-treatment HBC resections often revealed regions of chemoresistant cancer 
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cells that differed from those observed in HBs; representative pre- and post-treatment HBC regions are 
illustrated in Figures S1A-B. 

HBC resections contain HBC cells 

To molecularly distinguish between the profiles of HB and HCC cells, we developed a gene expression-
based classification criterion using RNA expression profiles of 4 HBs, 3 HCCs, and 1 tumor-adjacent liver 
sample at single-cell resolutions (Figure S2A). Our analysis revealed 45 genes specifically upregulated 
in HB cells and 265 genes uniquely elevated in HCC cells (Table S2), both of which were also upregulated 
compared to tumor-adjacent normal cells. The HB-HCC classifier evaluates whether either HB or HCC 
biomarker sets are significantly elevated relative to other cells (see Methods), and it effectively identified 
cells and samples that were profiled at single-cell resolutions (Figure S2B and Table S3) and at bulk by 
RNA sequencing (RNA-Seq) and NanoString (Figure S2C and Table S4). Given that HBC tumors and 
HBC cells are expected to exhibit upregulation of both the HB and HCC biomarker sets, they could not 
be classified as HBs or HCCs and were instead identified as HBCs. 

We used the HB-HCC classifier to assess single-nuclei RNA-Seq (snRNA-Seq) profiles of resection 
samples from four biphasic HBCs (TLTX01, TLTX23, TLTX25, and TLTX33) and one equivocal HBC 
(TLTX18). As supplementary controls, we also analyzed profiles from a resection of a high-risk HB in an 
older child and biopsies from two HBCs involved in the AGAR trial30. The HB sample was selected as a 
control due to its comparable risk and age characteristics to HBCs, despite its homogeneous HB 
histology, and we expected its composition to consist entirely of HB cells. In contrast, the AGAR trial 
represents a phase 1 salvage clinical study aimed at treating pediatric patients with relapsed and 
refractory tumors using T cells that have been genetically engineered with a GPC3-CAR and IL15 
(NCT04377932). HCC cells are more resistant to therapy18, and patients with HBC participating in this 
trial have undergone intensive treatment involving a combination of chemotherapies and 
immunotherapies. Consequently, these samples were expected to contain few remaining HB cells. Our 
analysis revealed that all HBC resections, including biphasic HBCs that were expected to contain 
homogeneous regions that are solely composed of HB or HCC cells, contained HBC cells (Figures 2A-B 
and S2D and Table S5). As expected, the high-risk HB sample was exclusively composed of HB cells, 
and AGAR HBCs were predominantly composed of HCC cells (93%). Each HBC sample contained at 
least 14% HBC cells, with HBC cells constituting more than half (51%) of the total cells across the profiled 
HBC resections. 

Both HB and HCC signature genes are upregulated in HBC cells  

Hierarchical clustering of bulk RNA expression profiles of fetal liver and hepatocellular tumor samples is 
known to produce distinct clusters of fetal liver, HB, and HCC profiles27. In contrast, bulk RNA expression 
profiles of HBC resections are known to encompass a transcriptomic spectrum ranging from HB to HCC. 
Some HBC profiles align with HBs and others with HCCs; however, the majority form an intermediate 
cluster characterized by the upregulation of both HB- and HCC-specific genes and pathways4. These 
observations indicate that HBCs are intermediate HB-HCC tumors4, yet they do not fully address the 
intratumoral heterogeneity of HBCs. Given that HBCs consist of a mixture of HB, HBC, and HCC cells, 
we hypothesized that single-cell resolution profiles will yield valuable insights into the transcriptomic 
similarities among the various cell types within HBC tumors. 

Our analysis of single-cell RNA (scRNA) profiles of HBCs indicated that HBC cells exist in an intermediate 
state between HB and HCC. This finding is illustrated in a uniform manifold approximation and projection 
(UMAP) plot (Figure 2C) and supported by hierarchical clustering (Figure 2D and Table S6). Namely, HB 
and HCC cells from each HBC tumor clustered with their respective counterparts, while the HBC cells 
exhibited a transcriptomic continuum from HB to HCC. For instance, 71% of TLTX18 cells were HBCs 
and were predominantly clustered in an intermediate HB-HCC cluster, while 23% and 6% of TLTX18 cells 
were classified as HCCs and HBs, respectively, and these cells clustered alongside HCC and HB cells 
from other tumors. Moreover, we identified genes and pathways that were differentially expressed across 
tumor types, and as expected, these genes and pathways had intermediate HB-HCC expression patterns 
in HBC samples and clusters (Figures 2E-F and Table S7). For example, while Cairo’s HB signature26 
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was upregulated in HB cells, their high-risk signature was more upregulated in HBC and HCC cells, 
whereas Hoshida’s HCC gene set31 was downregulated in HB cells.  

High-risk HB, HBC, and HCC cells are less differentiated 

We developed a model to infer the embryonic differentiation stage of liver cells based on single-cell RNA 
sequencing (scRNA-Seq) profiles of human embryonic liver cells at 5 and 19 weeks post-conception 
(Figure S3A)32. This model allows for the scoring of cells or samples according to their RNA expression 
profiles; detailed methodology can be found in the Methods section. To assess the model's performance, 
we scored human embryonic liver cells 6 to 16 weeks post-conception (see Figure S3B and Table S8) 
and mouse embryonic liver cells at 11 to 17.5 days post-conception (refer to Figure S3C and Table S8). 
Both datasets demonstrated accurate classification of cells, effectively reproducing the embryonic age of 
the samples in each dataset, with statistical significance (p=8E−3 and p=7E−3, respectively, using 
hypergeometric distribution). 

An analysis of the embryonic differentiation stages of cells and tumors revealed that pre-treatment HBs 
are predominantly composed of cells at later embryonic differentiation stages, while HCCs are enriched 
with cells at early embryonic differentiation stages. In contrast, post-treatment HBs and HCCs are the 
most embryonically undifferentiated (refer to Figure S3F and Table S9). Furthermore, a comparative study 
of the composition of scRNA-Seq profiled HBs33 suggested that low-risk tumors are associated with a 
higher prevalence of cells at later embryonic differentiation stages (Figure S3G, Table S9) and that HBCs 
are less differentiated than low-risk HBs (Figures S3F-H and Table S9, p=0.02 by t-test). Similarly, HB 
differentiation scores are closely aligned with risk estimates for HB tumors (Figures 3A-B, Table S10).  

Comparative analysis of embryonic differentiation scores between pediatric and adult non-cancerous and 
cancerous samples demonstrated that adult HCCs34 and fetal liver samples exhibit a significant 
enrichment of cells at early embryonic differentiation stages when compared to adult liver samples 
(p<2E−16 and p=7E−4, respectively, by t-test). Notably, pediatric liver cancer cells were significantly more 
undifferentiated than other cancer and non-cancer liver samples (Figure 3C and Table S10, p=7E−10 by 
t-test). Moreover, the inferred proliferative activity of tumor cells indicates that undifferentiated HBC cells 
tend to be more quiescent (Figure S3I), and quiescence is linked to chemoresistance35. Overall, these 
findings indicate that enrichment with cancer cells at early embryonic differentiation stages is associated 
with higher chemoresistance in both HBs and HBCs. 

LIN28B is a recognized biomarker for both embryonic differentiation27,36 and HB risk (Figure 3B). We 
showed that LIN28B expression is correlated with embryonic differentiation in the developing liver, HBs, 
and HBCs (Figures 3D and S3J). LIN28B regulates37-39 and its expression is inversely correlated with let-
7 microRNA (miRNA) activity in HBC cells (Figure 3D). By suppressing let-7 miRNA biogenesis, LIN28B 
helps preserve the stem cell properties of hepatoblasts during liver development40. Furthermore, 
information-theoretical analysis using the data processing inequality revealed that the association 
between cell differentiation and let-7 miRNA activity is dependent on LIN28B expression, suggesting that 
LIN28B abundance modulates let-7 miRNA activity in HBCs (Figure 3D and Table S11).  

In addition to LIN28B, other prognostic HB biomarkers exhibit expression profiles that correlate with the 
embryonic differentiation stages of cancer cells. Notably, HMGA2 is upregulated while IGF227 is 
downregulated in undifferentiated cancer cells (Figures S3K and S3L). Pathways associated with mature-
liver expression and activity, including Hsiao Liver Specific Genes and Lipid Metabolism, were activated 
in differentiated cells. In contrast, pathways associated with HCC and high-risk factors were enriched in 
undifferentiated cells (Figure 3E and Table S12). We note that both lipid metabolism and its associated 
gene IGF2 demonstrated a correlation with embryonic cell differentiation in both liver cancer and non-
cancerous cells (Figures 3E and S3L). 

WNT-signaling activation regulates liver differentiation 

DNA alterations in WNT-signaling genes drive aberrant WNT-signaling activation in nearly all HBs41-43, 
and DKK1—an indicator of WNT-signaling activity—is a prognostic biomarker for HB (Figure 4A)27. WNT-
signaling activity is closely related to embryonal liver differentiation, with DKK1 expression declining 
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exponentially from 5 to 9 weeks post-conception (Figure S4A). This decline is particularly evident in HB 
cells, where DKK1 levels are closely associated with the stages of embryonic differentiation in HB (Figure 
4B). Although DKK1 downregulation also correlated with embryonic differentiation in HBC cells, its 
expression remains significantly elevated even in more differentiated HBC cells (Figure 4C).  

We targeted the patient-derived undifferentiated HBC cell line HB1717 with the WNT-inhibitor ICG-00144 
to evaluate the effect of WNT signaling on cancer cell differentiation. Although HB17 cells exhibited slow 
differentiation in culture, treatment with ICG-001 at concentrations of 5 or 10 μM for durations of 5 or 10 
days led to a significant decrease in the expression of both DKK1 and LIN28B. This finding indicates a 
reduction in WNT-signaling activity and increased differentiation (Figures S4B-C and Table S13). To 
evaluate the effects of WNT inhibition at the single-cell level, we treated HB17 cells with ICG-001 (5 μM) 
for either (i) 10 days or (ii) 5 days followed by 5 days of incubation without the inhibitor. Comparative 
analysis of single-cell RNA expression profiles of treated cells to those cultured with a placebo revealed 
a significant shift in the transcriptomes of HB17 cells after treatment (Figures S5A and 4D). Remarkably, 
treated HB17 cells differentiated at a significantly faster rate than their untreated counterparts (Figure 4E 
and Table S14), resulting in clusters characterized by diverse DKK1 and LIN28B expression profiles.  

Embryonic differentiation scores closely aligned with LIN28B expression levels (refer to Figures 4D and 
F). After 10 days, 80% of the placebo-treated cells maintained high DKK1 and LIN28B expression and 
remained in early embryonic differentiation stages. In contrast, over 70% of the cells treated with ICG-
001 for 10 days exhibited low DKK1 and low LIN28B expression and were inferred to be more 
differentiated—with differentiation scores on par with fetal liver cells (Figure S3E). Interestingly, over 70% 
of the cells treated for 5 days and then rested for 5 days exhibited high DKK1 and low LIN28B expression 
and were predicted to be more differentiated. This result suggests that WNT-signaling inhibition with ICG-
001 promoted differentiation, and that WNT-signaling activity recovered in the absence of the inhibitor, 
but cell differentiation was not reversed (Figures 4F and S5B-C and Table S15). As expected, very few 
cells with high DKK1 and high LIN28B expression were inferred to be more differentiated (Figure 4F); we 
note that to avoid circularity, LIN28B expression was not used for embryonic cell differentiation inference. 

WNT-signaling inhibition sensitizes HBC cells to cisplatin by promoting cell differentiation 

Adjuvant therapy with cisplatin followed by surgical resection is the standard of care for pediatric patients 
with liver cancer45,46. We developed a model for inferring cisplatin resistance based on bulk RNA 
expression profiling and resistance evaluation of pediatric liver cancer cell lines29 (Figure S6A). This 
model effectively assessed resistance to cisplatin from scRNA-Seq profiles of treated patient-derived 
tumor spheroids33 (Figure S6B). Furthermore, it was predictive of HB risk stratification (Figure S6C and 
Table S16) and identified HCC cells as more resistant to cisplatin than HB cells (Figure S6D). Notably, 
the model suggested an increase in mean cisplatin resistance following treatment in a partially 
chemoresistant patient-derived xenograft (PDX) model, which was profiled using scRNA-Seq both before 
and after cisplatin administration (Figure S6D). Importantly, LIN28B pseudobulk expression in our HB17 
cell clusters (Figure 4G and Table S17) was significantly predictive of the model’s cisplatin-resistance 
score, suggesting that HBC differentiation increases sensitivity to cisplatin.  

We assessed the resistance of cells and samples to cisplatin using our predictive model. Following 
treatment with the WNT-inhibitor ICG-001, HB17 cells exhibited a marked decrease in cisplatin resistance 
(Figure 4H and Table S18). To explicitly evaluate the effectiveness of WNT inhibition and chemotherapy 
in combination, we administered ICG-001 at a concentration of 5 μM to HB17 cells, employing a 5-day-
on and 5-day-off regimen. This approach resulted in a 5% reduction in cell viability (IC5), after which we 
applied cisplatin at the maximum dosage that did not affect cell viability (IC0) and at a dosage that induced 
a 10% reduction in viability (IC10). Treatment with ICG-001 at IC5—over 5 days, with or without a 
subsequent 5-day rest—followed by cisplatin at IC0 and IC10 led to significant decreases in cell viability 
compared to cisplatin alone, with p-values of 0.07 and 0.007, respectively (Figure 4I). Specifically, ICG-
001 at IC5 followed by cisplatin at IC0 resulted in a 15% reduction in cell viability, while the combination 
of ICG-001 at IC5 and cisplatin at IC10 caused a 28% reduction. We conclude that targeting the WNT-
signaling pathway may enhance the sensitivity of undifferentiated HB and HBC cells to chemotherapy. 
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Furthermore, our model indicates that HBC clusters exhibit greater resistance to cisplatin than their HB 
counterparts, regardless of differentiation stage (Figure 4J and Table S17, p=0.002 by t-test). 

HBC cells are derived from HBs at early embryonic differentiation stages and transition to HCC 

To reconstruct the phylogeny and map the cell subtypes and differentiation stages of HBCs, we used a 
combination of assays, including multi-region longitudinal whole exome sequencing (WES)22, Affymetrix 
OncoScan profiles4, single-nuclei DNA-Seq (snDNA-Seq)47,48, Texas Children’s Pediatric Solid Tumor 
Cancer Mutation Panels49,50, NanoString bulk RNA expression profiles4, and snRNA-Seq51. DNA 
alterations, including mutations and copy number variations (CNVs), were identified based on evidence 
from multiple assays. Note that the samples and patients described in Table S1 and regions from TLTX36 
before and after treatment were profiled at bulk resolutions, while multiple regions from TLTX18, TLTX23, 
TLTX25, and TLTX33 were profiled at bulk, snDNA-Seq, and snRNA-Seq. 

Because only WES profiles of one pre-treatment biopsy and five post-treatment resection regions were 
available to support the discovery of most mutations in TLTX36, we mandated that each mutation be 
identified in at least two regions. Inferred TLTX36 phylogeny indicated that alterations at CTNNB1 and 
KIF14 were present in each identified TLTX36 genetic subclone and that TLTX36 HBC cells had HB cell 
progenitors. Notably, while the pre-treatment TLTX36 biopsy primarily consisted of embryonically 
differentiated (fetal) HB cells, post-treatment resections exhibited a higher prevalence of embryonically 
undifferentiated HB and HBC cells. Profiled HB cells demonstrated loss of heterozygosity in 
chromosomes 9q and 11q, along with mutations in NACA2, ARMC7, WDR87, and TSN (Figure 5A and 
Tables S19 and S20). In contrast, HBC cells acquired additional copies of chromosomes 1, 8, and 17, 
along with mutations in HELZ and BIRC6. HBC cells continued to accumulate DNA alterations, exhibited 
a reduced likelihood of further differentiation, and displayed genetic divergence across spatial regions 
(see Figure 5A). To assess the accuracy of our inference of embryonic differentiation stages, slides were 
annotated for fetal and embryonal compositions, as well as for pleomorphic, teratoid, and mesenchymal 
histology by a team of clinical pathologists (MJF, DLT, and KP). Their qualitative assessments based on 
histology aligned with our quantitative embryonic differentiation scores (Table S19). 

Evidence for mutations and copy number alterations in HBC cells were derived from OncoScan, snDNA-
Seq (Figure S7), snRNA-Seq (Figure S8), and WES (Figure S9) assays; see Methods for details. We first 
categorized cells into genetic subclones based on their common genetic alterations, and then, each 
genetic subclone was further classified according to cancer cell types (HB, HBC, and HCC) and 
embryonic differentiation stages (early, intermediate, and late). The resulting phylogenies and cellular 
classifications are illustrated in Figures 5D-E. TLTX18 and TLTX33 profiles indicated the presence of 4 
and 5 distinct genetic subclones, respectively, as determined by WES and snDNA-Seq profiles. However, 
only 3 out of 4 and 2 out of 5 of these subclones, respectively, corresponded with snRNA-Seq profiles in 
adequate cell abundance. Figures 5B-C present the inferred phylogenies and composition of TLTX18 
and TLTX33, demonstrating that each genetic subclone encompassed cells from all cancer cell types, 
with each subclone subpopulation containing cells at early embryonic differentiation stages. Few HB cells 
from TLTX23 and HCC cells from TLTX25 were effectively profiled by snRNA-Seq, but similar to TLTX18 
and TLTX33, each genetic subclone included undifferentiated cells from each tumor type (Figures 5D-
E). Given the extremely low likelihood that, in each tumor, cells of each tumor type and each 
differentiation stage independently gained the same genetic alterations, these phylogenies revealed that 
transitions from HB to HBC and HBC to HCC take place during the early stages of differentiation among 
genetically distinct cancer cells within each profiled HBC tumor.  

DISCUSSION  

The provisional HCN NOS diagnostic category was included in the International Pediatric Liver Tumors 
Consensus during the International Pathology Symposium14 in 2014 and is recognized by the World 
Health Organization. A detailed examination of HCN NOS and related tumors, including HBs that 
demonstrate focal atypia or pleomorphism, indicated that these tumors have common clinical, 
histological, and molecular characteristics4. Consequently, these tumor types were collectively referred 
to as HBs with HCC features (HBCs)4. Sumazin et al. (2022) distinguished between HBCs with 
histologically distinct HB or HCC tumor regions (biphasic), those exhibiting intermediate histological traits, 
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characterized by cells that display overlapping HB and HCC histological features (equivocal), and tumors 
with focal high-grade HB-HCC features (focal). Bulk molecular profiles of these tumors revealed that both 
HB- and HCC-specific gene expression and pathway activity levels are heightened in HBCs. 
Nevertheless, analysis of these profiles did not resolve a critical question regarding the cellular 
composition of HBCs: Are HB- and HCC-specific biomarkers elevated in HBC tumors because they 
comprise both HB and HCC cells, or do HBCs contain cells that express both HB- and HCC-specific 
genes?  

We showed that most of the cells in HBC resections express both HB- and HCC-specific genes and 
pathways (HBC cells). Notably, this observation encompassed analyses of biphasic tumors, which were 
hypothesized to consist of homogeneous HB and HCC regions based on histological assessments. 
Furthermore, while previous reports based on bulk RNA-Seq profiles of HBC tumors indicated that HBCs 
possess intermediate HB-HCC expression programs4, our findings revealed that each profiled HBC 
contained both HB and HCC cells with expression patterns akin to those found in HB and HCC tumors, 
respectively. Notably, most cells in HBC tumors displayed expression profiles that ranged from HB-like to 
HCC-like (Figure 2D), indicating that insights about the intermediate HB-HCC characteristics of HBC 
tumors extend to HBC cells. We note that HBC resections were obtained from post-treatment samples, 
where a diminished presence of HB cells was expected due to their lower chemoresistance. 

We investigated the clonal evolution of HBCs using tumor maps that illustrated their clonal composition, 
categorized by tumor type and embryonic differentiation stages, as well as the phylogenetic relationships 
among genetic subclones (Figure 5). These maps revealed that HBC tumors emerge from multiple 
asynchronous transitions between HB and HBC, as well as between HBC and HCC. Specifically, we 
deduced that each genetic subclone consists of a blend of molecular cancer cell types—HB, HBC, and 
HCC—and that each clonal subpopulation encompasses cells at early stages of hepatoblast 
differentiation. Given the improbability of genetic convergence and embryonic differentiation reversal at 
this magnitude across all profiled tumors and genetic subclones, we concluded that each tumor is a 
product of multiple transitions originating from HB cells at early differentiation stages. This evidence 
negates the single-progenitor model for HBC genesis, which posits that all HBC cells stem from a singular 
HB-to-HBC transition event. Instead, it demonstrated that HBCs occupy an intermediate state between 
HBs and HCCs, indicating that HBCs derive from cells exhibiting HB molecular and histological 
characteristics, and that HBC cells have the potential to transition into cells displaying HCC features. 

HBs have an average of fewer than 0.2 somatic mutations per Mb of sequenced DNA27, while HBC 
mutation rates are estimated to be 10-20 times higher. Despite these low mutation rates, mutations in 
WNT-signaling pathway (WNT mutations) are hallmarks of HBs, HBCs, and pediatric non-fibrolamellar 
HCCs, with over 90% of HBs27 and 100% of HBCs4 harboring WNT mutations. WNT signaling plays a 
key role in regulating liver differentiation43,52, and WNT mutations initiate liver tumor transformation22, 
including in HBCs (Figure 5). Moreover, the extent of WNT-signaling pathway activation correlates with 
hepatoblast differentiation and is predictive of patient outcomes (Figures 4A-C and S4A). Our findings 
indicate that WNT-signaling pathway inhibition promotes liver cancer cell differentiation (Figures 4D-F 
and S5) and increases their sensitivity to chemotherapy (Figures 4H-I). This evidence suggests that 
initiating WNT mutations drive embryonic cell differentiation arrest in pediatric liver cancers and resolves 
key questions about the observed phenotypic heterogeneity of liver cancers. Specifically, heterogeneous 
HBs may undergo transformation during early stages of hepatoblast embryonic differentiation due to 
changes in WNT-signaling activity, which slows but does not halt the differentiation process of childhood 
hepatocellular tumor cells. This finding also implies that childhood hepatocellular tumors are composed 
of cells at multiple embryonic differentiation stages, including cells that may transition from HBs to HBCs 
and HCCs. Thus, HBs and HBCs can exhibit phenotypic heterogeneity even in the absence of genetic 
diversity. 

HBCs exhibit a high prevalence of mutations commonly associated with HCC, with 84% of HBCs 
containing such mutations, even when excluding the frequently altered CTNNB1 gene. HBCs are also 
enriched in alterations in pathways associated with stem cell pluripotency, PI3K-AKT, and mTOR 
signaling. Notably, mutations in the TERT promoter and NFE2L2 have been recurrently identified in 
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HBCs, and HBCs are characterized by recurrent gains in chromosomes 1q, 2q, and 20, alongside losses 
in chromosomes 1p and 4q4. In our HBC cohort, we observed TERT promoter mutations in 33% of cases 
and NFE2L2 mutations in 5% (Table S1). Tumors from patients with HBC that were profiled at single-cell 
resolutions (Figure 5) exhibited mutations in NFE2L2, KEAP1, ARID1B and NRAS; note that KEAP1 is a 
regulator of the protein coded by NFE2L2. These genetic alterations were recurrently found in HB cells 
across HBC genetic subclones, suggesting that these alterations may precede and facilitate transitions 
from HB to HBC. However, note that while we have established that HBC tumors are a product of 
transition events, specific molecular drivers that could be targeted in HBCs remain unidentified.  

The study demonstrates that HBC composition, clonal genetic alterations, and differentiation stages play 
a role in tumor cell resistance to chemotherapy (Figure 4). Notably, HBC cells exhibit a higher resistance 
to chemotherapy than even high-risk HB cells (Figure 4J), and the 2-year survival of patients with HBC 
is below 50% (Figure 1). While chemotherapy is a prerequisite for complete surgical resection and 
successful treatment for most patients10-12,25,53, its combination with surgery is primarily effective for lower-
risk HBs. The overall survival rate for high-risk HBs and HCCs is below 50%54,55. The inherent 
heterogeneity of HBCs, which encompasses a wide transcriptomic range, from HB to HCC, poses 
significant challenges to their treatment. Although we have proposed strategies to target chemoresistant 
HBCs and other high-risk undifferentiated cancer cells, there is a pressing need for further high-resolution 
molecular investigations to uncover the underlying mechanisms driving their transition and associated 
chemoresistance. By leveraging the findings and conclusions of our study, these subsequent 
investigations will guide the development of combination therapies aimed at effectively targeting HBCs. 

METHODS  

snRNA-Seq protocol 
To prepare nuclei, we added cold lysis buffer (NST-DAPI buffer with 0.1-0.2 U/μL murine RNase inhibitor) 
to frozen tumor tissues and cut the tissues into tiny pieces with scalpels. We used 1.5 mm beads to 
isolate nuclei by using a bead blaster at 4.0 m/s for three cycles of 20s on, with 10s pauses between 
cycles. We incubated the nuclear extract on ice for 5 min and passed it through a fluorescence-activated 
cell sorting (FACS) filter. We sorted the cells using FACS (BD FACSMelody) into 6 to 10 μL RNase 
inhibitor in 1.5 mL low-binding tubes coated with phosphate-buffered saline (PBS) + 1% bovine serum 
albumin (BSA). Suspensions were filtered through a 40-μm mesh, and single nuclei were flow-sorted. 
The DAPI intensity was used to set gates for both diploid and aneuploid cell populations. After sorting, 
we centrifuged the samples at 550 g for 5 min at 4°C and removed the supernatant (~20 μL left). Then, 
we slowly added resuspension buffer (PBS + 1% BSA + 0.2 U/μL RNase inhibitor) without resuspending 
the nuclei pellets and incubated the samples on ice for 5 to 10 min for buffer exchange. Finally, we 
centrifuged the samples at 550 g for 5 min at 4°C, removed the supernatant (~40 μL left), counted the 
cells, and performed snRNA-Seq51.  

Isolation of single nuclei by FACS  
Frozen tumor tissue was lysed using an NST-DAPI lysis buffer as previously described56. Cell 
suspensions were filtered through a 40-μm mesh, and single nuclei were flow-sorted (BD FACSMelody). 
The DAPI intensity was used to set gates for both diploid and aneuploid cell populations. Single nuclei 
were sorted and then deposited into individual wells of 384-well plates (Eppendorf, 951020702). The 
sorting instrument alignment was assessed under a microscope before each experiment to ensure single 
nuclei were accurately deposited into the center of each well using a flat-bottom 384-well plate (Greiner, 
781091).  

Acoustic cell tagmentation procedure 
FACS-sorted cells in 384-well plates were spun at 1500 g for greater than 4 min. The Echo 525 liquid 
handler (Labcyte) was used to dispense tagmentation reagents (Illumina, FC-131–1096) at nanoliter 
scales, with plate and liquid types detailed in the following steps. Thorough mixing and spinning of each 
plate after every dispense and incubation period is crucial to maximizing assay performance. Nuclei were 
lysed in 200 nL (384PP_SPHigh) of freshly prepared Tx lysis buffer (1.36 AU/mL protease diluted 1:9 in 
5% Tween 20, 0.5% Triton X-100, and 30 mM Tris pH 8.0). Lysis thermocycler settings were programmed 
as 55°C 10 min, 75°C 15 min, 4°C ∞, lid = 80°C, vol = 1 μL. After lysis, 600 nL tagmentation reaction 
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mixture (TD: ATM 2:1, 384PP-Plus_GPSA) was dispensed per well. The ACT reaction settings on the 
thermocycler were 55°C 5 min, 4°C ∞, lid = 60°C, vol = 1 μL. The ACT reaction was neutralized with 200 
nL (384PP_SPHigh) of NT buffer for 5 min at room temperature. The final polymerase chain reaction 
(PCR) included 1.11 μM N7XX (5′-
CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCTCGG-3′) and S5XX (5′-
AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC-3′) primers 
(384PP_AQBP) in 2× HiFi HotStart ReadyMix (Roche, KK2602, 6RES_GPSA). Dual barcode sequences 
in primers are denoted by “XXXXXXXX.” Unique dual barcode combinations for each well of a 384-well 
plate were achieved by dispensing 16 unique N7XX barcodes across each row and 24 unique S5XX 
barcodes across each column. The PCR settings were 72°C 3 min, 98°C 30 s, then 15 to 18 cycles of 
98°C 10 s, 63°C 30 s, 72°C 30 s, followed by 72°C 5 min, 4°C ∞, lid = 105°C, vol = 6 μL. ACT performance 
was evaluated by fluorometer (Qubit) and TapeStation (Agilent) from selected cell libraries. Final libraries 
were pooled and purified with 1.8× AMPure XP beads. The final libraries were sequenced at 50 single-
read cycles with dual barcodes on the Illumina NextSeq 2000 P3. 

Single nuclei 10x Genomics Chromium Single Cell 3′ protocols 
We FACS-sorted nuclear suspensions (in PBS with 1% BSA and RNase inhibitor) and manually counted 
and concentrated the nuclei within the recommended range of 300 to 700 cells/μL for loading at a volume 
to recover 3000 to 8000 cells for snRNA-Seq. Single-nuclei capture, barcoding, and library preparation 
followed 10x Genomics Chromium Single Cell 3′ protocols (CG000183, v3.1). Four libraries were pooled 
to give a final concentration of 10 nM, and pooled samples were further tested by quantitative PCR for 
final concentration before submission for sequencing with the Illumina NextSeq 2000 sequencer using 
the P3 100 cycles flowcell. The samples were sequenced with 28 cycles for read 1, 8 cycles for i7 index, 
and 91 cycles for read 2 through the Advanced Technology Genomics Core at the University of Texas 
MD Anderson Cancer Center. Reads from single cells were demultiplexed and aligned using the human 
GRCh38-2020-A genome reference using the 10x Genomics Cell Ranger 6.1 pipeline for snRNA-Seq.  

snRNA-Seq and scRNA-Seq preprocessing and clustering 
The R package Seurat (v4.3.0)57 was used for single-cell data preprocessing and clustering. For patient 
snRNA or scRNA-Seq data, cells with mitochondrial gene content above 15% and expressing fewer than 
200 genes were excluded. The raw count matrix was normalized using the “LogNormalize” method with 
a scale factor of 10,000 and then scaled across cells. Principal component analysis was performed on 
all the genes. HBC samples profiled in two batches were integrated using canonical correlation analysis58. 
Clustering was based on the first 15 principal components and visualized by UMAP. Annotation of tumor 
and normal cell clusters was based on established pediatric liver cancer markers26,27 and the automated 
annotation tool SingleR (v2.0.0)59. Because we focused on tumor composition, only high-confidence 
tumor cell clusters were included in further analyses. Cell clusters with ambiguous tumor or normal 
assignments were excluded. P17 cell clusters were integrated by sample using the standard Seurat 
package based on integration anchor identification (FindIntegrationAnchors function). When analyzing 
scRNA-Seq profiles of PDX samples, we classified the xenograft-derived sequence read data for further 
analyses using Xenome60, which effectively handles a mix of reads from both the host and the graft. Cells 
from PDXs with mitochondrial gene content higher than 15% and those expressing fewer than 500 genes 
or more than 4000 genes were excluded to eliminate poorly or inconsistently profiled cells.  

snDNA-Seq analysis 
AneuFinder61 R package (v1.24.0) was used for snDNA-Seq data preprocessing, quality control, and 
detecting aneuploidy. We used this tool to align reads to the GRCh38 reference genome, partition the 
genome into 1-Mb non-overlapping bins per cell, and apply a hidden Markov model to the binned data 
for unbiased detection of CNVs and aneuploidy. 

Inferring CNVs from snRNA-Seq 
We used the inferCNV R package (v1.8.1) to infer CNVs for each tumor cell from snRNA-Seq profiles of 
TLTX18, TLTX23, TLTX25, and TLTX33. A total of 3189 non-cancer hepatocytes from pediatric adjacent 
normal liver samples were used as the reference for CNV inference. To reduce false-positive detections, 
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only CNVs that were supported by at least one additional DNA profile of the same patient, either snDNA-
Seq, WES, or Affymetrix OncoScan, were included in further analyses.  

To define copy number states of each cell for detected CNV regions, we used two alternative criteria, in 
which the first assigned CNVs for more cells, while the second was more restrictive and aimed to 
eliminate potential contamination between genetic subtypes: (1) The inferCNV package applied a hidden 
Markov model to predict the CNV states. To reduce false-positive detections, CNVs supported by more 
than 7 of 10 runs of the hidden Markov model were used to define the CNV patterns for each cell. (2) For 
copy number gain, the average inferred copy number value across the chromosome regions of interest 
greater than an upper cutoff was defined as copy number gain, while less than a lower cutoff was defined 
as copy number neutral. The lower cutoff was set at the 50% quantile of the inferred copy number value 
of normal reference cells for each CNV region. For TLTX23, TLTX25, and TLTX33, the upper cutoff was 
set at the 95% quantile of the inferred copy number value of normal reference cells for each CNV region. 
For TLTX18, which had more tumor cells profiled, the upper cutoff was set at the 99% quantile. Similarly 
for copy number loss, the average inferred copy number value across the chromosome regions of interest 
less than a lower cutoff was defined as copy number loss, while greater than an upper cutoff was defined 
as copy number neutral. The upper cutoff was set at the 50% quantile of the inferred copy number value 
of normal reference cells for each CNV region. For TLTX23, TLTX25, and TLTX33, the lower cutoff was 
set at the 5% quantile of the inferred copy number value of normal reference cells for each CNV region. 
For TLTX18, the lower cutoff was set at the 1% quantile.  

Whole exome sequencing analysis 
A total of 40 tumor samples, including two biopsies of TLTX23 and TLTX36, and 12 matched normal 
samples were collected with consent from 12 patients from Texas Children’s Hospital with approval from 
the institutional review board (H13999). The exon regions of these 52 DNA samples were captured using 
Agilent SureSelect and sequenced. Quality control was performed on sequence reads with FastQC62, 
and sequence reads were trimmed with Trimmomatic63. Somatic variant discovery was performed with 
the Genome Analysis Toolkit (v4.1.9.0)64. The quality-controlled reads were aligned to the human 
GRCh38 reference genome65 with the BWA-MEM algorithm in the Burrows-Wheeler Aligner66 using 
options --TRAILING 20, --MINLEN 25, and PE, and the BAM files were indexed using Samtools67. 

To detect somatic variants, the two modes of Mutect268, single tumor sample and jointly multiple tumor 
samples, with the panel of 12 normal samples were used to call somatic variants. Single nucleotide 
variants (SNVs) and small insertions and deletions (indels) were filtered with PASS tags by GATK 
FilterMutectCalls with default parameters and subsequently annotated by ANNOVAR (October 4, 2019, 
release) with refGene reference69. The results of these 2 modes were intersected to extract the final SNV 
and INDEL files for subsequent analysis. Mutations in select genes were also called using the Texas 
Children’s Pediatric Solid Tumor Cancer Mutation Panel.  

To detect CNVs in WES data, FACETS (v0.6.2)70 was used to calculate the total copy number, minor 
copy number, and cancer purity based on SNV read counts from tumor-normal BAM files, with 
GRCh38p7_GATK_00-common_all as the reference. The cellular fraction (CF) of CNV (copy number 
alteration) estimated by FACETS can be transformed into a cancer cell fraction (CCF) using the formula 
CCF = CF/p, where p denotes tumor purity71. 

Inferring CNVs by Affymetrix OncoScan 
Genome-wide copy numbers were estimated using DNA isolated from formalin-fixed paraffin-embedded 
(FFPE) tumor tissue using the Affymetrix OncoScan FFPE Assay Kit and OncoScan Console 1.3, and 
data were analyzed by Affymetrix ChAS 3.1 and OncoScan Nexus Copy Number 7.5 after Burrows-
Wheeler Aligner alignment to GRCh38, as previously reported4. Affymetrix OncoScan detects copy 
number alterations at a 50-kb resolution and was extensively validated in our laboratory for clinical use. 

RNA expression profiling by NanoString 
We profiled the gene expression of each FFPE tissue region using a custom NanoString nCounter panel 
(Table S21), partially based on the PanCancer Pathways Panel and HB-specific genes (Table S22), as 
previously reported4. HB-specific genes were selected based on differential expression and risk-
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predictive potential observed in previously reported HB expression profiling efforts and to represent key 
hepatocarcinogenesis pathways. Multiplexed measurements of gene expression through digital readouts 
of the relative abundance of mRNA transcripts were performed as follows: Hybridization of RNA to 
fluorescent reporter probes and capture probes, purification of the target/probe complexes using 
nCounter SPRINT cartridges, and imaging and analysis using nCounter SPRINT Profiler. Gene 
expression profiles across samples were normalized to equate positive-control probes, and expression 
estimates were z-score-normalized independently for each probe.  

Tumor histopathology and patient characterization  
With institutional review board approval, we clinically and molecularly characterized patients with HBC, 
including collecting information about age, diagnoses, observations in surgical pathology reports, 
histological reviews, and material available for molecular profiling. Histological reviews of glass slides 
from all cases, including diagnostic biopsies and resection, transplant, and metastasis samples, were 
performed by three pathologists (MJF, DLT, and KP), who confirmed the features in clinical pathology 
reports and selected representative areas of the tumor most suitable for molecular testing. Frozen 
samples and representative tumor areas were selected from resections based on displays of 
heterogeneity, atypia, or pleomorphism. Selected clinical information was collected for these patients, as 
allowed by the approved protocol. 

HB17 Culturing and drug-response assays 

The HB17 patient-derived cell line was cultured in media composed of 50% Minimum Essential Media 

(MEM) and 50% Hepatocyte Basal Media (HBM, Lonza, Walkerville, MD). The cells were incubated at 

37°C in an atmosphere containing 5% CO2. Cisplatin and ICG-001 were administered at specified doses 

and time points. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) assays. IC values were determined by GraphPad Prism (GraphPad Software, Inc., La 

Jolla, CA) employing a nonlinear regression model of log(inhibitor) versus normalized response with a 

variable slope. RNA was extracted from the treated cells for qRT-PCR experiments to measure the 

expression levels of DKK1 and LIN28B. Treated cells were also profiled by scRNA-Seq. 

Estimation of cancer cell fractions 
Variants that met the following criteria were analyzed using PyClone-VI (--num-clusters 20 --density beta-
binomial --num-restarts 100)22,71,72: (1) The exonic function of mutations is neither a synonymous SNV 
nor unknown, following the annotations from the GRCh38 reference genome; (2) the coverage of 
mutations is at least 10 reads in all samples from a patient; and (3) the total copy number of the segment 
overlapping the mutations is not equal to zero. We ensured that variants with zero copy number were 
analyzed by adjusting the total copy number input to 2 if the copy number was zero and if the cancer cell 
fraction (CCF) of the CNV was less than 1. 

SNVs with exonic function, i.e., non-synonymous SNV, startloss, stopgain, and stoploss, analyzed in 
PyClone-VI were converted to browser extensible data (BED) files to generate pileup files for scDNA and 
to variant call format (VCF) files for scRNA by Samtools mpileup. GRCh38.d1.vd1.fa and refdata-gex-
GRCh38-2020-A (10x Genomics) were used in mpileup as references in scDNA and scRNA, respectively. 
The pileup files of each cell were used to extract reference counts and alternative counts. VCFs were 
used to check whether WES SNVs were identified in the scRNA BAM files before extracting a single-cell 
variant. The VarTrix coverage mode from 10x Genomics was used to extract single-cell reference counts 
and alternative counts for scDNA-Seq. 

Reconstructing evolutionary trees from WES and single-cell resolution profiles 
TLTX36 phylogeny was reconstructed based on the WES profiles of six tumor regions, a tumor-adjacent 
region, and a blood sample; TLTX36 A1, included in Figure 5A, is the diagnostic biopsy, while the rest 
are resection samples. Phylogeny inference by Chimaera followed previously described protocols22. For 
TLTX18 and TLTX25, the phylogenetic trees were reconstructed based on observations from their 
snDNA-Seq profiles (Figures S5A and S5C), assuming that tumor cells evolve continuously and each 
CNV arises only once. Tumor cells from the snRNA-Seq profiles with the corresponding inferred CNV 
patterns were then assigned to each node in the phylogenetic trees. We used criterion (1) for Inferring 
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CNVs from snRNA-Seq when defining CNV patterns. Any cells with contradictory node assignments 
based on CNVs from snRNA-Seq inference criterion (2) were excluded from further analysis. For TLTX23 
and TLTX33, the phylogenetic trees were reconstructed based on inferred CNVs from their snRNA-Seq 
profiles. Using criterion (2) with a more stringent cutoff (upper cutoff at the 99% quantile for copy gain 
and lower cutoff at the 1% quantile for copy loss), we tested the sequence of CNV pairs of interest based 
on the number of cells supporting which CNV occurred first. If there were significantly more cells with 
CNV A and without CNV B than cells with CNV B and without CNV A, then CNV A was considered to 
occur before CNV B (p<0.01, hypergeometric). CNV pairs that could not be ordered were not 
distinguished and were included in the same node. Cells were assigned to the established nodes based 
on criterion (2). Finally, predicted ancestral relations between genetic subclones were tested to ensure 
criteria were significant and non-overlapping (Figure S8). Mutations inferred from snRNA-Seq data 
supported by at least one additional DNA profile from the same patient—either by snDNA-Seq or WES—
were mapped to their comprising nodes in our phylogenetic trees.  

HB-HCC subtype classification 
We identified HB and HCC biomarker sets using a 2-step process. First, differential expression analysis 
comparing snRNA-Seq profiles of HB and HCC resections identified genes that were differentially 
expressed between HB and HCC cells. The samples included 2375 HB and 1468 HCC cells that passed 
quality control (Figure S2A). We identified 1427 differentially expressed genes, including 484 upregulated 
in HB and 943 upregulated in HCC. Then, to avoid sampling bias and ensure the generalizability of the 
gene set, we refined the gene set using two independent single-cell datasets. For HB, we compared 1918 
HB cells with 1792 adjacent normal hepatocytes using a published scRNA-Seq dataset33 and identified 
45 of 484 of the HB genes as upregulated in HB cells relative to adjacent normal hepatocytes. Similarly, 
a comparison of 1487 HCC cells and 6170 adjacent normal cells from two pediatric AGAR-trial patients 
with HCC30 found that 265 of 943 of the HCC genes were upregulated in HCC cells relative to adjacent 
normal hepatocytes. The resulting gene sets comprised the HB and HCC biomarker sets. 

Cancer cell-type evaluations of profiled cells and nuclei samples were performed by comparing the mean 
normalized expression of the HB and HCC biomarker sets. For single-cell resolution profiles, raw count 
matrices were log-normalized with Seurat57, and the expression values for HB- and HCC-specific genes 
were min-max normalized across cells. Raw HB and HCC scores were obtained by summing the 
normalized expression values of HB- and HCC-specific genes within cells. Finally, raw HB and HCC 
scores of tumor cells were transformed into z-scores using the means and standard deviations of raw HB 
and HCC scores of adjacent-normal cells. For the high-risk HB and 5 HBC resection samples, z-score 
transformations were based on adjacent normal cells in 5 HBCs. For the 2 AGAR-trial HBC samples, z-
score transformations were based on adjacent normal cells within these 2 samples.  

The cell-type classification criteria were as follows: Cells with an HB z-score greater than 2 and an HCC 
z-score less than 2 or a z-score difference of at least 2 between HB and HCC were classified as HB cells. 
Cells with an HB z-score less than 2 and an HCC z-score greater than 2 or a z-score difference of at 
least 2 between HB and HCC were classified as HCC cells. Cells with both HB and HCC z-scores greater 
than 2 were classified as HBC cells. Tumor cells that showed no significant upregulation (z-scores less 
than 2) of either HB or HCC genes were considered unassigned tumor cell types and were excluded from 
further analysis. The proportion of cells excluded in each sample was as follows. TLTX01: 25.7%; 
TLTX11: 4.3%; TLTX18: 2.6%; TLTX23: 4.0%; TLTX25: 0.5%; TLTX33: 5.9%; AGAR HBC: 4.1%. The 
visualization in Figure 2A shows evaluations of random samples (100 cells). When analyzing bulk profiles, 
evaluations were performed based on the available biomarkers—5 HB- and 8 HCC-specific genes by 
NanoString nCounter and 42 HB- and 245 HCC-specific genes by bulk RNA-Seq. The expression values 
for HB- and HCC-specific genes were min-max normalized across samples. Raw HB and HCC scores 
were obtained by summing the normalized expression values of HB- and HCC-specific genes within each 
sample. Like the methods described for single-cell resolution profiles, the raw scores were transformed 
into z-scores based on the means and standard deviations of the raw scores of the normal samples.  
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Liver cell embryonic differentiation inference 
We trained a classifier to predict embryonic liver differentiation stages using scRNA-Seq profiles of 
human embryonic and fetal liver samples32. This dataset includes profiles of nine developing liver 
samples taken from embryos from 5 weeks (5W) to 19 weeks post-conception (19W) (Figure S3A). Cell-
type annotation followed the outline provided by Wang et al32. We included 19,557 developing liver cells 
from the hepatoblast-hepatocyte lineage. We trained a random forest model to distinguish between 5W 
(early differentiation) and 19W (late differentiation) cells, selecting 20 tree-classifiers based on 
performance in training: Increasing the number of classifiers beyond 20 failed to result in significant 
training error improvement (Figure S3D). A total of 811 differentially expressed genes were used as 
predictive features. Here, given a profile, each classification tree produces a binary decision, 
<differentiated> or <undifferentiated>, and the differentiation score is the normalized count of 
<undifferentiated> calls, from 0 to 1. Namely, the predicted differentiation stage was quantified by a 
differentiation score as the proportion of <undifferentiated> votes among the 20 trees. To compare the 
proportion of undifferentiated cells in each tumor, we set a differentiation score cutoff based on its 95% 
quantile in profiles of 11,480 normal hepatocyte cells from a tumor-adjacent sample, producing a 
differentiation score cutoff of 0.4 (Figure S3E). To address modality differences and improve the 
generalizability of the trained model on bulk RNA profiles, each profile was transformed into ranks and 
the classifier evaluated gene ranks in each sample, pseudobulk, or cell profiles independently. Cells from 
intermediate time points (6W-16W) were used to evaluate classification quality, and independent testing 
was performed on an embryonic mouse liver scRNA-Seq dataset derived from samples taken from 11 
(E11) to 17.5 (E17.5) embryonic days post-conception with 12,393 developing liver cells from the 
hepatoblast-hepatocyte lineage by Wang et al32. The results suggest significant quantitative predictive 
ability for human liver cells (Figure S3B, p=8E−3, hypergeometric distribution) and mouse liver cells 
(Figure S3C, p=7E−3, hypergeometric distribution). 

Cisplatin-resistance prediction 
Hirsh et al. profiled RNA and evaluated cisplatin resistance in nine pediatric liver cancer cell lines29. We 
identified 37 genes whose expression profiles were individually significantly predictive of cisplatin 
resistance in these lines (0.01% quantile by rank). This set included 20 genes whose expression 
correlated with cisplatin resistance (AGPAT3, BRPF3, DENND5B, DTX2, FBXO6, FOXA1, GRTP1, 
IQCH-AS1, KLHL9, LINC00235, NFATC2, NFX1, PIK3C2A, RNPEP, SERPINB1, TAF8, THRB, UBAP1, 
UHRF2, ZNF417), and 17 genes whose expression was negatively correlated with cisplatin resistance 
(ANKRD34A, APEX2, ASB4, BMERB1, CA11, CAMTA1-IT1, CCDC74B, CERCAM, FAM216A, HMOX2, 
IL27RA, MAP4K1, MCTS1, METTL27, PRICKLE3, TBL3, UBE2A). We computed the cisplatin-resistance 
score as the ratio between the mean expression profiles of genes in the two sets. When evaluating 
snRNA-Seq and scRNA-Seq data, the score was calculated based on pseudobulk transformation.  

We evaluated our cisplatin-resistance score on the training data (Figure S6A, p=2E−4), on low- and high-
risk HBs27 (Figure S6B, p<0.01), on our reference HB and HCC samples (Figure S6C), on an HB PDX 
before and after treatment with cisplatin (Figure S6D), and on 4 HB organoids profiled and treated by 
Song et al.33 (Figure S6E, p<0.04, hypergeometric distribution). When evaluating the cisplatin-resistance 
score for our HBC clusters, each cluster shown in Figure 2C for each patient was evaluated 
independently. The resistance scores were then normalized to ensure comparability by calculating the 
ratio of each resistance score to the resistance score of the corresponding patient’s normal cells. 

Evaluation of HBC proliferation vs. quiescence 
We estimated the proliferative activity of HBC tumor cells across differentiation stages using cell cycle S-
related genes identified by Whitfield et al73. To produce Figure S3I, HBC cells were categorized into early, 
medium, and late differentiation stages based on differentiation score cutoffs at 0.2 and 0.45. A 
proliferation score was calculated for each differentiation stage in the five patients with HBC by evaluating 
the mean of the pseudobulk expression values across the cell cycle S-related gene set and adjusting for 
the number of cells in each differentiation stage for each patient. To ensure comparability among the five 
patients with HBC, each proliferation score was converted to a ratio relative to the proliferation score of 
the early differentiation stage within each patient.  
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Differential gene expression analysis 
When looking for differentially expressed genes—including during classifier construction—we used the 
“FindMarkers” function in Seurat, including genes that were detected in a minimum fraction of 25% of the 
cells in either of the two tested populations. Genes with a log2-fold change of greater than 0.5 and 
adjusted p-value of less than 0.01 (Bonferroni correction) were considered significantly expressed. 

Gene set enrichment analysis 
We performed gene set enrichment analysis (GSEA) to calculate pathway enrichment in single-cell 
clusters using the R package fgsea (v1.24.0). Gene sets were ranked based on fold change between the 
cell clusters so they could be compared, and the number of permutations was set at 10,000. Gene sets 
for pathways were obtained from the “C2” collection of the MSigDB database74. In Figure 2, GSEA was 
used to compare each HBC tumor cluster and adjacent normal cells. Figure 2D shows the −log10(adjusted 
p) values, with positive and negative signs determined by upregulation or downregulation relative to 
adjacent normal cells. For visualization, pathway scores were z-score transformed across the 10 HBC 
tumor clusters. 

Estimating miRNA activity and data processing inequality from snRNA-Seq data 
We used miReact75 based on predicted miRNA targets76,77 to estimate let-7-family38 miRNA activity in 
cells with more than 1000 mapped unique molecular identifiers. Normalized mutual information (MI) was 
calculated between (i) estimated let-7 activity and LIN28B expression, (ii) cell differentiation scores and 
LIN28B expression levels, and (iii) cell differentiation scores and estimated let-7-family miRNA activity. 
To evaluate MI significance and normalize MI, the expression values of LIN28B, estimated let-7 activity, 
and cell differentiation scores were shuffled 1000 times, and the normalized MI calculated from the 
shuffled triplets was used to fit a generalized extreme value distribution. Furthermore, the differences 
were calculated between the smallest normalized MI values: One between let-7 activity and LIN28B, and 
the other between cell differentiation scores and LIN28B expression levels, compared with the normalized 
MI between let-7activity and cell differentiation scores; p-values were estimated using a generalized 
extreme value distribution fit to the differences from shuffled data. The normalized MI was also calculated 
between (i) the expression levels of let-7 targets and LIN28B, (ii) cell differentiation scores and LIN28B 
expression levels, and (iii) cell differentiation scores and the expression levels of let-7 targets. The same 
analysis was conducted for differentiation-related non-let-7 target genes. A chi-squared test was used to 
examine whether the distribution of triplet pairs having the smallest normalized MI between cell 
differentiation scores and target genes differed significantly from that of differentiation-related non-let-7 
target genes. To evaluate the data processing inequality, the 3 MI values were compared across 223 
verified let-7-family targets. For all but one target, the MI between the cell differentiation scores and the 
estimated let-7-family miRNA activity was the smallest of the three. Assuming that each comparison is 
as likely to be greater than the other, we can conclude that the relationship between cell differentiation 
scores and let-7-family miRNA activity is indirect at p<1E−13 (binomial distribution).  
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FIGURES  

Figure 1. HBCs exhibit poor clinical outcomes. (A) Event-free survival analysis for our HBC cohort 
compared to three HB cohorts with recorded events; p-value by log-rank test. (B) Overall survival rates— 
based on at least two years of post-diagnosis surveillance— were compared between our HBC cohort 
(“HBC”) and six HB cohorts with published patient outcome data; p-values were calculated using Fisher’s 
exact test. CHIC refers to the Children’s Hepatic Tumors International Collaboration. 

Figure 2. HBC tumors comprise HB, HBC, and HCC cells. (A) The upregulation of HB and HCC 
biomarker sets (represented as z-scores) as observed in cells from a high-risk HB resection, five HBC 
resections, and AGAR-trial HBC biopsies, and (B) the cellular compositions estimates of each resection; 
a z-score exceeding 2 for either HB or HCC signature gene set or a z-score difference greater than 2 
indicate significant evidence for HB or HCC; HBC cells demonstrated comparable z-scores greater than 
2 for both signature gene sets. (C) UMAP analysis of 25,881 tumor cells from five HBC resections 
identified distinct cell clusters based on cancer-type classification. (D) Unsupervised hierarchical 2D 
clustering of cell profiles from our reference HB and HCC resections (left) and five HBC resections (right); 
cells are represented in columns, genes in rows, with genes ordered according to the reference clustering 
(left). (E) Expression levels of selected HB and HCC biomarkers in 15 HB, 16 HCC, 34 HBC, and 9 
normal bulk samples profiled using the NanoString nCounter assay; statistical significance indicated as 
***: p<0.0001, ***: p<0.001, **: p<0.01. (F) GSEA identified selected pathways enriched by cluster. 

Figure 3. Tumor embryonic differentiation stages are predictive of risk. (A) Tumor embryonic 
differentiation scores and (B) the expression levels of the differentiation biomarker LIN28B were found to 
be predictive of HB risk; statistical significance indicated as ****: p<0.0001, ***: p<0.001. S.E.M. shown. 
(C) Distribution of embryonic differentiation scores in pediatric and adult liver cancer and non-cancer 
samples. (D) LIN28B expression was correlated with embryonic differentiation, while the activity of its 
miRNA biogenesis targets (let-7 miRNA family) showed an inverse correlation with embryonic 
differentiation. The data processing inequality, based on mutual information (MI) estimates between cell 
embryonic differentiation scores, LIN28B abundance, and let-7 activity (pairwise), suggests that the 
correlation between embryonic differentiation scores and let-7 activity is contingent upon LIN28B 
abundance. (E) Selected pathways associated with early (differentiation score≥0.45, red) and late 
(differentiation score≤0.2, green) embryonic differentiated cells in HBC resections by GSEA. 

Figure 4. WNT-signaling activation regulates liver differentiation and chemoresistance. The 
expression of DKK1, a marker of WNT-signaling activation, is (A) predictive of HB risk and correlates with 
(B) HB and (C) HBC embryonic differentiation stages; DKK1 expression remains relatively elevated in 
HBCs across differentiation stages, with z-score normalized expression and S.E.M. shown. (D) UMAP of 
scRNA-Seq profiles from 14,194 patient-derived P17 cells before and after treatment with the WNT-
inhibitor ICG-001. (E) Cumulative distributions of the inferred embryonic differentiation stages for wildtype 
untreated P17 cells and ICG-001-treated cells over 5 or 10 days; all cells were cultured for 10 days, with 
the 5-day treatment followed by 5-day inhibitor-free growth; p-values were calculated using the chi-
squared test. (F) Composition of P17 cells exhibiting differential expression of LIN28B—a differentiation 
marker—and DKK1—a WNT-signaling activity marker—before and after ICG-001 treatments. (G) 
Correlation between inferred cisplatin resistance and LIN28B expression in P17 cell clusters, with LIN28B 
expression z-score transformed; circle sizes reflect cluster sizes. The Pearson correlation coefficient (r) 
and corresponding p-value are provided. (H) Inferred cisplatin resistance in wildtype P17 cells and post-
ICG-001 treatments. (I) Relative P17 cell viability following low-dose treatment with ICG-001 (IC5), 
cisplatin (IC0 and IC10), or both; cells were treated with ICG-001 for 5 days and then rested for 5 days 
(IC5-A) and vice versa (IC5-B); S.E.M. is shown. Cis refers to cisplatin. (J) Inferred cisplatin resistance 
across cell clusters in five HBC resections (see Figure 2); p-values by t-test. 

Figure 5. HBC phylogeny and composition reveal multiple transition events during early 
hepatoblast developmental stages. (A) The phylogeny of HBC TLTX36, including mutations and copy 
number alterations, was inferred from whole exome sequencing of a pre-treatment biopsy (A1) and five 
regions of a post-treatment resection (A14, A17, A18.B, A11.A, A18.A). Embryonic differentiation scores 
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for each region were derived from their NanoString RNA expression profiles. LOH denotes loss of 
heterozygosity. (B-E) The phylogeny, composition, and embryonic differentiation stages of cells in the 
HBC tumors (B) TLTX18, (C) TLTX33, (D) TLTX23, and (E) TLTX25 were inferred from single-cell 
resolution RNA and DNA profiles, as well as whole exome sequencing and SNV array profiling of multiple 
regions. The inferred phylogenies include mutations and copy number alterations; the sizes of the circles 
represent the number of cells, and colors indicate differentiation stages; relative tumor-type 
compositions—HB, HBC, and HCC—of each genetic subclone are presented for clarity. 

 

SUPPLEMENTARY FIGURES 

Figure S1. Representative histopathology of pre- and post-treatment HBC. Pre-treatment HBCs are 
composed of HB, HBC, and HCC cells. (A) Multiple regions of the pre-treatment biopsy of the equivocal 
HBC TLTX16 reveal cells with HB-like histology at variable embryonic differentiation stages (embryonal 
and fetal) and cells with HBC-like histology that are enveloped in regions that mainly comprise cells with 
HB-like histology. (B) The post-treatment resection (4 cycles of chemotherapy, including cisplatin, and 
vincristine-irinotecan) of TLTX16 reveals extensive necrotic regions adjacent to areas primarily containing 
viable cells with HBC-like histology. 

Figure S2. Evaluation of HB and HCC biomarker sets. Our HB and HCC biomarker sets were derived 
from single-cell resolution profiles of HBs and HCCs, as reported by Song et al. (2022), samples from 
the AGAR trial by Steffin et al. (2024), and additional profiles, encompassing 2375 HB and 1468 HCC 
cells, respectively. We refer to these profiles—including snRNA-Seq profiles of 2375 HB and 1468 HCC 
cells—as our reference profiles. (A) The UMAP of our reference profiles demonstrates a perfect 
separation between HB (light blue) and HCC (red) cells using unbiased clustering. (B) HB and HCC 
biomarker z-scores of cells represented in our reference profiles, AGAR-trial HCCs, and adjacent normal 
cells (orange) within the reference HB and HCC and in 5 HBC samples. Z-scores greater than 2 indicated 
significant upregulation of HB or HCC biomarker gene sets. (C) HB and HCC biomarker gene set z-
scores using bulk RNA-Seq profiles of 29 HBs, 4 HCCs, and 6 fetal samples from patients without cancer, 
alongside NanoString nCounter profiles of 15 HB, 16 HCC, and 9 fetal samples from patients without 
cancer. The NanoString panel includes only 5 of 45 HB and 8 of 265 HCC biomarker genes; p-values 
denote the significance of the separation between HB and HCC z-scores. (D) We classified HBC-profile 
clusters—in Figure 2C—into HBs, HB-HBCs, HBCs (purple), and HBC-HCCs. Random samples from 
each classification are displayed here. Namely, HB clusters predominantly contain cells with z-scores 
greater than 2 for HB biomarkers and less than 2 for HCC biomarkers. HBC clusters contain cells with z-
scores greater than 2 for both HB and HCC biomarkers. HB-HBC and HBC-HCC clusters contain 
mixtures of cell types. Z-scores greater than 2 indicate significant upregulation of biomarker genes. 

Figure S3. Liver cell differentiation inference. We used profiles of embryonic liver cells by Wang et al. 
(2020), spanning 5 to 19 weeks post-conception, to infer liver cell differentiation. Specifically, we 
developed a classifier based on profiles from cells at weeks 5 and 19 post-conception, while profiles of 
cells taken from embryos 6 to 16 weeks post-conception were used for evaluation. The classifier 
produces a differentiation score for each cell profile. (A) UMAP of 19,557 developing human liver cells 
from 5 to 19 weeks post-conception. (B) Differentiation scores for human embryonic liver cells from 5 to 
19 weeks post-conception. (C) Differentiation scores of mouse embryonic liver cells from 11 to 17.5 days 
post-conception. (D) Differentiation inference was based on a random forest differentiation prediction 
classifier that could be trained with any given number of classification trees. We opted for a 20-tree 
classifier because increasing the number of trees to more than 20 did not significantly reduce the training 
error. Here, we show the training error as a function of the number of trees; OOB, out-of-bag error. (E) 
To compare the proportion of embryonically undifferentiated cells in each tumor, we set a differentiation 
score cutoff based on its 95% quantile in profiles of 11,480 normal hepatocyte cells from a tumor-adjacent 
sample, producing a differentiation score cutoff of 0.4; higher scores indicate undifferentiated embryonic 
cell stages, while lower scores indicate differentiated stages. (F) Inferred undifferentiated cell fractions of 
our HB reference sample, HCC reference sample, 2 AGAR-trial HBC samples, and 2 AGAR-trial HCC 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2024. ; https://doi.org/10.1101/2024.12.24.630261doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630261
http://creativecommons.org/licenses/by-nc/4.0/


samples. All differences are significant, and the results suggest that these pediatric HCC samples are 
less embryonically differentiated than HBs, while cancer cells remaining after AGAR-trial treatments are 
predominantly undifferentiated. (G) Inferred embryonically undifferentiated cell fractions of 7 HB samples 
by Song et al. Higher-risk samples are significantly less embryonically differentiated. (H) Inferred 
undifferentiated cell fractions of 5 HBC samples. TLTX23, characterized by predominant HCC and HBC 
composition, is less embryonically differentiated. (I) Normalized proliferation score of early (differentiation 
score ≤ 0.2), intermediate (0.2 < differentiation score < 0.45), and late (differentiation score ≥ 0.45) 
differentiated tumor cells in 5 HBC samples; p-values are based on the paired sample t-test. (J) 
Normalized expression of LIN28B in the human fetal liver during embryonic development (top) and in 
HBs across predicted embryonic differentiation stages (bottom). Normalized expression profiles of (K) 
HMGA2 and (L) IGF2 in human fetal liver development, HBs profiled by Song et al. (2022). and HBCs 
across predicted embryonic differentiation stages; S.E.M. is shown. 

Figure S4. WNT-signaling inhibition decreases DKK1 and LIN28B expression. DKK1 is a widely 
used indicator of WNT-signaling activity, while LIN28 indicates liver cell differentiation (Sumazin et al., 
2017). (A) Normalized expression of DKK1 in the human fetal liver during development suggests reduced 
WNT-signaling activity as a function of liver differentiation; S.E.M. is shown. (B-C) In vitro treatment with 
the WNT-inhibitor ICG-001 for 5 or 10 days at variable dosages reduced (B) DKK1 and (C) LIN28B 
expression in the patient-derived cell line P17; 5 biological replicates, S.E.M. is shown. 

Figure S5. WNT-signaling inhibition promotes cancer cell differentiation in vitro. We treated the 
patient-derived cell line P17 with the WNT-inhibitor ICG-001 at 5 μM for 10 days, comparing WNT-
signaling activity, cell differentiation, and resistance to cisplatin, the standard-of-care chemotherapy. All 
cells were cultured for 10 days: either untreated, treated for 5 days with the inhibitor and the following 5 
days without the inhibitor (5+5), or treated for 10 days with the inhibitor. Cells were then profiled by 
scRNA-Seq. (A) UMAP of 14,194 P17 cells grouped by 5 μM ICG-001 treatment for 5+5 or 10 days. (B) 
The composition of cell clusters (from Figure 4D) in the integrated scRNA-Seq profiles identifies clusters 
with low and high DKK1 (WNT-signaling) and LIN28B (differentiation) expression. (C) Mean expression 
of DKK1 and LIN28B and the mean predicted differentiation score in each cell cluster after z-score 
transformation (mean and standard deviation based on cluster 0-11 only, due to limited cell counts in 
clusters 12 and 13); red and green indicate high and low values, respectively.  

Figure S6. Gene expression-based scores predict resistance to cisplatin. (A) Correlation between 
predicted cisplatin-resistance scores and cisplatin drug test results, measured with the area under the 
curve (AUC) in nine pediatric cancer cell lines as reported by Hirsch et al (2021). Pearson correlation 
coefficient and associated p-value are shown. (B) Predicted cisplatin-resistance scores of 4 HB patient-
derived organoids (PDOs) profiled and treated by Song et al. (2022), with their cell viability measurements 
after cisplatin treatment. Cisplatin-resistance inference was trained on bulk RNA-Seq profiles and 
evaluated on either bulk RNA-Seq or pseudobulk of scRNA-Seq profiles; S.E.M. is shown. (C) Predicted 
cisplatin-resistance scores in low-risk and high-risk HB cohorts profiled by bulk RNA-Seq; **: p<0.01. (D) 
Predicted cisplatin-resistance scores of our reference HB and HCC samples. (E) Predicted cisplatin-
resistance scores of a PDX before and after cisplatin treatment profiled by scRNA-Seq.  

Figure S7. Biclustering of cells and their copy number alterations. The results of the biclusterings 
of the snDNA-Seq profiles of (A) TLTX18, (B) TLTX23, (C) TLTX25, and (D) TLTX33.  

Figure S8. Distinct evaluations of genetic alterations across HBC phylogeny nodes. (A-D) 
Distributions of the inferCNV scores—mean normalized expression estimates across all genes in the 
region—in the queried regions in cells from nodes in phylogenies presented in Figure 5. (A) TLTX18 
nodes 2 and 3 inferCNV scores for chromosome 4q, which was identified as lost in node 3 cells. (B) 
TLTX23 nodes 2 and 3 inferCNV scores for chromosome 1q, which was identified as gained in node 3 
cells. (C) TLTX25 nodes 2 and 5 inferCNV scores for chromosome 8, which was identified as gained in 
node 5 cells. (D) TLTX33 nodes 4 and 5 inferCNV scores for chromosome 19q, which was identified as 
lost in node 5 cells. (E-L) Cell-type composition of genetically distinct nodes. (E) TLTX18 node 2 and (F) 
node 3 were both composed of HB, HBC, and HCC cells. (G) TLTX23 node 2 and (H) node 3 were both 
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composed of HBC and HCC cells. (I) TLTX25 node 2 and (J) node 5 were both composed of HB and 
HBC cells. (K) TLTX33 node 4 and (L) node 5 were both composed of HB, HBC, and HCC cells. 

Figure S9. CNV calls from multi-region WES data. CNV calls from WES profiles of 6 tumor regions of 
TLTX36, 1 tumor region of TLTX18, 3 tumor regions of TLTX33, 6 tumor regions of TLTX23, and 7 tumor 
regions of TLTX25.  

 

SUPPLEMENTARY TABLES 

Supplementary Table 1. Clinical information of our HBC cohort and the Sumazin et al. (2017) HB cohort 
with published patient outcomes data.  

Supplementary Table 2. 45 HB- and 265 HCC-specific genes were identified from our reference HB and 
HCC snRNA-Seq sample. For each gene, the mean log2-fold changes, the proportion of HB and HCC 
cells expressing the gene, and the adjusted p-values are shown. 

Supplementary Table 3. Evaluation of HB and HCC biomarker sets in reference samples—including 
HB, HCC, and HBC-adjacent samples—profiled at single-cell resolutions. HB and HCC biomarker z-
scores of each cell are shown. 

Supplementary Table 4. Evaluation of HB and HCC biomarker sets in bulk samples. HB and HCC 
biomarker z-scores of each bulk sample profiled by RNA-Seq or the NanoString nCounter assay.  

Supplementary Table 5. HB and HCC biomarker z-scores of each cell and predicted cell-type 
composition for 1 high-risk HB resection, 5 HBC resections, and 2 AGAR-trial HBC biopsies. HB and 
HCC biomarker z-scores of each cell are shown. 

Supplementary Table 6. Hierarchical clustering of the expression values of 45 HB- and 265 HCC-
specific genes in our reference HB and HCC samples and 5 HBC resections.  

Supplementary Table 7. Selected pathways enriched in the 10 HBC tumor clusters. Adjusted p-values 
and normalized enrichment scores (NES) by GSEA are shown.  

Supplementary Table 8. Evaluation of liver cell differentiation prediction in human and mouse embryonic 
liver cells. Predicted differentiation scores of each cell are shown.  

Supplementary Table 9. Predicted differentiation scores of each cell for the tumor-adjacent sample, 
reference HB and HCC samples, AGAR-trial HBC and HCC samples, 7 HB samples by Song et al., and 
5 HBC resections.  

Supplementary Table 10. Predicted differentiation scores of each sample for pediatric and adult liver 
cancer and non-cancer bulk samples.  

Supplementary Table 11. Estimated MI between differentiation scores, the expression profile of LIN28B, 
and the expression profiles of let-7miRNA targets, for each verified target. This comparison included all 
cells with non-zero LIN28B mRNA counts. To evaluate data processing inequality (DPI), we counted the 
number of verified targets where MI (differentiationScore, let-7target expression) was smaller than both 
MI (differentiationScore, LIN28B expression) and MI (LIN28B expression, let-7target expression). This 
relationship was true for 222 of the 223 let-7 targets. 

Supplementary Table 12. Selected pathways enriched in differentiated and undifferentiated tumor cells. 
Adjusted p-values and normalized enrichment scores (NES) by GSEA are shown.  

Supplementary Table 13. Expression of DKK1 and LIN28B by quantitative PCR in wildtype untreated 
P17 cells and in ICG-001-treated P17 cells for 5 or 10 days.  

Supplementary Table 14. Predicted differentiation scores of each cell for wildtype untreated P17 cells 
and ICG-001-treated cells for 5+5 or 10 days.  
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Supplementary Table 15. The composition of cell clusters in the integrated scRNA-Seq profiles of P17 
cells.  

Supplementary Table 16. Predicted cisplatin-resistance scores of each patient in an HB cohort profiled 
by bulk RNA-Seq. 

Supplementary Table 17. Predicted cisplatin-resistance scores based on pseudobulk profiles of P17 
cell clusters and HBC tumor clusters.  

Supplementary Table 18. Relative P17 cell viability after low-dose treatment with cisplatin, ICG-001, or 
both in three biological replicates per condition.  

Supplementary Table 19. Predicted differentiation scores and histological examinations of each region 
for TLTX36. Predicted differentiation scores and cancer cell type regarding cancer maps for TLTX18, 
TLTX23, TLTX25, and TLTX33 as shown in Figure 5.  

Supplementary Table 20. Mutation calls from WES, snDNA-Seq, and snRNA-Seq regarding cancer 
maps for TLTX36, TLTX18, TLTX23, TLTX25, and TLTX33 as shown in Figure 5.  

Supplementary Table 21. The identities of probes used in NanoString assays. 

Supplementary Table 22. NanoString expression profiles of 15 HB, 34 HBC, 16 HCC, and 9 normal bulk 
samples, in addition to NanoString expression profiles of six tumor regions and one adjacent normal 
region from TLTX36.  
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Figure S8

HB component

(16 cells) 
HBC component

(199 cells) 

HCC component

(79 cells) 

TLTX18 node 2

Z
 S

c
o

re

HB HCC HB HCC HB HCC

Features

E

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2024. ; https://doi.org/10.1101/2024.12.24.630261doi: bioRxiv preprint 

https://doi.org/10.1101/2024.12.24.630261
http://creativecommons.org/licenses/by-nc/4.0/


Figure S8
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