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The possibility of axillary lymph node metastasis differs in different breast cancer patients and is the strongest prognostic indicator in breast
cancer. The existing studies mainly explored the relationship of axillary ultrasound imaging and axillary lymph node metastasis, without
exploring whether ultrasound imaging of breast tumour can affect and perform axillary lymph node prediction. Therefore, this Letter
proposes a novel particle space-time distribution model to find the correlation between contrast-enhanced ultrasonography of breast
tumour and axillary lymphatic metastasis. Starting from the imaging principle of dynamic contrast-enhanced ultrasonography, the particle
space-time distribution model not only comprises space-time features of contrast-enhanced ultrasonography with an encoder–decoder
network, but also the flow field information of microbubble particles is integrated into the space-time features that better serves the
metastasis prediction by enhancing the particle distribution information. Extensive experiments on real patients have demonstrated
that dynamic contrast-enhanced ultrasonography of breast tumour can be used to predict the probability of lymphatic metastasis.
This conclusion can be interpretable from the clinical and pathological perspectives.
1. Introduction: Axillary lymph nodes (ALNs) are the earliest
affected sites of breast cancer metastasis [1]. Correct evaluation
of ALN metastases before surgery has important clinical value
for the choice of breast cancer surgery, estimation of prognosis
and the development of adjuvant treatment [2]. The traditional
method is to use axillary lymph node dissection (ALND) and
postoperative pathology to evaluate axillary metastases. However,
ALND surgery is not only over treatment for breast cancer
patients without ALN metastases, but also allows patients
to suffer the complications of the operation, which seriously
affects their quality of life [3]. Therefore, pre-operative
probability analysis of ALN metastasis using contrast-enhanced
ultrasonography will allow patients without ALN metastases to be
free of ALND, reducing the complications.

Today, ultrasound has been applied to all aspects of breast
examination, and inspection techniques are constantly improving.
As a kind of functional imaging, contrast-enhanced ultrasound is
a method of injecting microbubble particles (contrast agent) into
the human body through the vein, and real-time and continuous
observation of the whole process of circulating intra-tumour
particles in the lesion [4]. Therefore, contrast-enhanced ultrasound
can reflect the perfusion and microenvironment information of the
tumour, which has obvious advantages over traditional ultrasound
examination.

Related researches have been proposed to explore the relation-
ship between ALN metastasis and ultrasound features. On the
one hand, some existing research mainly uses traditional image
features such as time-grey curve and average grey scale for
contrast-enhanced ultrasound image analysis [5, 6] without
considering the imaging principle of dynamic contrast-enhanced
ultrasonography or information of microbubble particles. On the
other hand, existing studies mainly explored the relationship of
axillary ultrasound imaging and ALN metastasis [7, 8]. However,
from pathological view, the perfusion information of breast
tumour reflects the invasive ability of the tumour to a certain
extent, and is a direct factor affecting the ALN metastasis.
Therefore, this Letter explores whether contrast-enhanced ultra-
sound of breast tumour can affect and perform ALN metastasis
prediction.
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Specifically, the main uniqueness of our Letter includes:
(i) the patients with different grade of breast tumour and tumour
microenvironment has different manifestations of lymphatic metas-
tasis [9]. In our knowledge, this Letter first explores that dynamic
contrast-enhanced ultrasonography of breast tumour can be used
for predict ALN metastasis quantitatively by using a novel
model; (ii) starting from the imaging principle of dynamic
contrast-enhanced ultrasonography, the novel particle space-time
distribution model not only comprises space-time features of
contrast-enhanced ultrasonography with an encoder–decoder
network, but also the flow field information of microbubble
particles is integrated into the space-time features that better
serves the metastasis prediction by enhancing the particle distribu-
tion information; (iii) the conclusion that ultrasound imaging of
breast tumour does affect predicting the ALN metastasis, which
can be interpretable from the clinical and pathological perspectives.
The clinical explanations of this conclusion are also given in this
Letter. The quantitative conclusion will make researchers pay
more attention to the contrast-enhanced ultrasonography of breast
tumour for analysing ALN metastasis.

2. Method
2.1. Dataset: This study was approved by the Nanjing Drum Tower
Hospital. Between August 2016 and August 2018, all 162 breast
cancer patients who were eligible for an ALND with pathological
examination to evaluate axillary metastases as the ground-truth
label of metastasis were included in this study. Mean age was
56 years (range 32–75 years). Each patient underwent dynamic
contrast-enhanced ultrasonography imaging of the region of
breast tumour. Firstly, region of interest (ROI) of breast tumour is
drawn manually by the professional ultrasonologist (Fig. 1b).
The ROI was placed selectively in the area of the most rapid
and strongest enhancement. Areas of calcifications and necrosis
should be avoided. Secondly, the processed dynamic contrast-
enhanced ultrasonography images are a series of rectangular
images which contains ROI of breast tumour with black
background to fill (Fig. 1c) and the image size is 100*128*128.
As shown in Fig. 1a and c, contrast-enhanced ultrasonography
can finish real-time and continuous observation of the whole
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Fig. 1 Image frames of contrast-enhanced ultrasonography
a Image frames of original contrast-enhanced ultrasonography,
b Image frame of injecting microbubble particles (the green curve denotes the ROI for breast tumour),
c Image frames of contrast-enhanced ultrasonography after ROI extraction,
d Image structure of microbubble particles in contrast-enhanced ultrasonography
process of circulating intra-tumour particles to reflect tumour
microenvironment of the breast tumour. Fig. 1d shows the
image structure of microbubble particles in contrast-enhanced
ultrasonography. Therefore, the input of the particle space-time
distribution model is a series of 100 image frames Xt = {X1, X2,
. . . , X100} with size 128 × 128.
We represent the nth patient images of contrast-enhanced ultra-

sonography as a 3-tuple X s
n , X

p
n , ln

{ }
, where X s

n = ∑T
t=1 X

s
n,t [

Rds (T = 100) denotes the image frames in space-time domain
and Xp

n = ∑T/2
t=1 X

p
n,t [ Rdp denotes the image frames in particle

distribution field. ln is the corresponding ground-truth label of
ALN metastasis. Fs

n = C{X s
n} and Fp

n = c{Xp
n } are the feature

analysers of X s
n and Xp

n .

2.2. Feature analysers of space-time domain: The pipeline of the
feature analysers of space-time domain Fs

n = C{X s
n} is shown

in Fig. 2. We implemented convolutional neural network
(ConvNet) which contains alternating convolutional, pooling and
fully-connected (FC) layers to learn features from image frames
X s
n in space-time domain. The ConvNet has a multi-layer

perception with hidden feature size of 128, 64, 32 and 16, then
max-pooling over the resulting features over the image frame
followed by the Relu layer and FC layer, leading to feature of
size 1024. To further capture the long-range temporal dynamics,
the long short term memory (LSTM) for temporal information is
utilised.

2.3. Feature analysers of particle distribution domain: The
contrast-enhanced ultrasonography of breast records the whole
process of circulating particles in the breast organs. Starting from
Fig. 2 Pipeline of the feature analysers of space-time domain
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this imaging principle, flow field information of microbubble
particles is developed into the proposed particle space-time
distribution model (see Fig. 3). Firstly, we introduced how to
acquire the image frames in particle distribution field Xp

n , which
describe the displacement of particle patch. The input image X s

n,t
is divided into small patch Ps

i with size of 5× 5 (Fig. 3). The
pipeline of flow field information acquisition of contrast enhanced
ultrasound is similar to technology of particle imaging
velocimetry [10]. This technology is based on the measurement
of image patch similarity.

Statistical similarity of two patches Ia and Ib from the previous
and current images is used to find the average particle
displacement of the patch. Considering that ultrasound image
quality is poor and noise is complicated, the similarity measure
algorithm is modified by combining with the ultrasonic image
noise model. Research shows that the signal output by the
ultrasonic transducer array element in the ultrasonic probe is near
plural-like noise [11], therefore, the ultrasonic multiplicative
speckle noise model is z x( ) = m(y) + m(y)gh(x), here, z(x) is
observed image greyscale, and m(y) is real greyscale. h(x) is a
Gaussian noise with mean of zeros and variance of s2,
h(x) � N (0, s2) and the noise of ultrasound images can be well
restored when g = 0.5. Therefore, for each pixel of the images,
it can be obtained according to p(z(x)|m(y)) � N (m(y)2g, s2),
when measuring the degree of matching of two patches Ia and
Ib, the two blocks contain p pixels. Then the overall similarity
is equal to the product of the probability density of each
corresponding pixel in the two patches. Finally, the statistical
similarity of two patches Ia and Ib is calculated by correlation
calculation [12].
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Fig. 3 Pipeline of the feature analysers of particle distribution domain
The patches from two consecutive image frames are used to
calculate statistical similarity with each other, pixel by pixel.
This statistical similarity produces the signal peak that identifies
the common displacement between two frames. The velocity of
the patches can be calculated by dividing the common displacement
with the time delay between two frames. The flow field image
or particle distribution field Xp

n over the whole image is obtained
by repeating the statistical similarity calculation for each patch
over the two consecutive image frames. Then, we implemented
ConvNet and LSTM to finish feature analysis of particle
distribution domain.
2.4. Particle space-time distribution model: To fully exploit the
feature relationships between the features in space-time domain
Fs
n and particle distribution domain Fp

n , we proposed a regularised
framework based feature fusion method (Fig. 4). In the fusion
process, we impose a structural l21 norm to explore the relations
Fig. 4 Pipeline of the fusion process
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of the features. The optimisation problem of the particle
space-time distribution model is proposed as

min
W

L + l1F W( ) + l2
2
WE

2,1 (1)

Here W represents the weights of the other layer in the feature
analysers, WE = Ws

n , W
p
n

[ ]
[ RP×D represents the stacked weights

for the fusion layer. L = ∑N
i=1 ‘ X s

n , X
p
n

( )− l2i , ‘ denotes the non-
linear function approximated by the neural network.

(i) The other layer: Since there are no non-smooth regularisations
for other layers, we compute their gradients directly and then
update the weight matrix with gradient descent as in [13]. Let Gl
represent the gradients of W l , the weight matrix of the lth layer is
updated as

W l = W l − hGl (2)

(ii) The feature fusion process: To update the weights for the ith it-
eration, a proximal operator is implemented as

WE( ) i( )= Proxq((WE) i( ) − ∇p((WE) i( ))) (3)

where Proxq W( ) = argminVW − V + q V( ). Note that q here is ℓ2,1
norm, and thus the proximal operator can be derived as

WE
r = 1− l2

Ur2

( )
Ur (4)

where Ur = max{Vr, 0} · sign[Vr], and Wr, Ur, Vr represents the
rth row of matrix W , U and V , respectively. The overall training
process of the model is shown in Fig. 5.

3. Experiment and results
3.1. Implementation details: The ConvNet contains four
convolution layers with kernel size 3*3. The LSTM layer
contains 512 hidden neurons for the first layer and 256 units
for the second layer. To learn the optimal weights, we follow the
procedures described in Algorithm 1 (see Fig. 5) using the
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 266–270
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TensorFlow Toolbox. We use an adaptive-moment-estimation with
a batch size of 1, a learning rate of 0.01 and epochs of 200. l1 is
fixed to 2× 10−5 for preventing over-fitting. l2 is selected by
three-fold cross-validation.
In the experiment, the training set is comprised of 120 patients

of breast tumour including 86 patients with ALN metastasis, and
34 patients without ALN metastasis. The testing set consists
of 42 patients including 24 patients with ALN metastasis, and
18 patients without ALN metastasis. Each patient contains the
contrast-enhanced ultrasonography images of breast tumour and
the ground-truth label of ALN metastasis from ALND with patho-
logical examination. The used ultrasound data is the common
contrast-enhanced ultrasound of breast tumour, which is the basic
scanning examination, therefore, the general clinical workflow
will not be changed.

3.2. Results: To explore whether dynamic contrast-enhanced
ultrasonography of breast tumour can affect and perform ALN
prediction, we finished the prediction of ALN metastasis by using
the proposed prediction model. We evaluated the prediction
result with some index: the average precision (AP), classification
accuracy (Acc) and the average area under the receiver operating
characteristic curve (AUC) values. We compared three models:
particle space-time distribution model with both space-time
domain feature and feature of particle distribution domain
Fig. 5 Algorithm 1: training the particle space-time distribution model

Fig. 6 The prediction results of ALN metastasis by using the proposed prediction
a ROC curves and AUC values of different models,
b Particle space-time distribution model scores for patients with and without ALN
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(Model_combined); model with feature of space-time domain
(Model_space-time) and model with the feature of particle
distribution domain (Model_particle).

Fig. 6a shows the ROC curves and area under the ROC curve
(AUC value) obtained by applying different prediction models,
respectively. It reveals that our particle space-time distribution
model finishes the best results. Therefore, the proposed model is
effective by incorporating the space-time features of dynamic
contrast-enhanced ultrasonography and the flow field information
of microbubble particles that better serves the metastasis prediction
by enhancing the particle distribution information. More compre-
hensively, we give the AP, ACC and AUC values of different
models on the test set in Table 1. It clearly demonstrates that the
proposed model makes a big contribution by using new feature
fusion and extraction. As shown in Fig. 6b, in our particle space-
time distribution model, the mean probability (score) that a
patient with positive ALN metastasis is predicted to be a negative
ALN metastasis type is 0.68 [95% confidence interval (CI):
0.54–0.73], a patient with negative ALN metastasis is predicted
to be a positive ALN metastasis is 0.34 [95% confidence interval
(CI): 0.19–0.41] in testing data. Our method took computation
time of about 2.31 s to process a sequence of contrast-enhanced
ultrasound of breast tumour on an average.

To further validate our method, on the one hand, we added a
four-fold cross-validation experiment. Table 2 shows the results
of our cross-validation result. During the cross-validation experi-
ments, the average values of the AUC, AP and Acc during the
cross-validation experiments achieved 0.725, 0.569 and 0.788,
respectively. These results further validate our proposed method
for prediction of ALN metastasis. On the other hand, we finished
the comparison experiment between our method and with the stand-
ard video classification method of Two-Stream I3D [14]. The com-
parison results in Table 1 validate that our proposed method
outperformed the I3D model with higher prediction accuracy.
3.3. Clinical explanation of the results: Experimental results on real
patients demonstrated that ultrasonography information of breast
tumour needs to be considered for predicting the probability of
ALN metastasis. This result is interpretable from the clinical and
pathological perspectives. On the one hand, studies have shown
that higher grade of breast tumour detected in ultra-sonography
information are more prone to cause tumour cell drainage via
lymphatic duct, increasing the probability of lymphatic metastasis
[15]. On the other hand, contrast-enhanced ultrasound of breast
tumour reveals the whole process of vessel perfusion and
nourishing information of the cancer. Vascular growth factor
and micro-vessel density of tumour are closely related to ALN
model

metastasis
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Table 1 Performance of different models on the testing data

Models AP ACC AUC

Model_combined 0.574 0.797 0.732
Model_space-time 0.513 0.705 0.655
Model_particle 0.521 0.731 0.686
I3D 0.568 0.763 0.702

Table 2 Cross-validation accuracy results of our method

Average Min Max

AUC 0.725 0.698 0.742
AP 0.569 0.558 0.592
Acc 0.788 0.752 0.801
metastasis in breast cancer because neovascularisation is a
necessary condition for tumour growth, local invasion and distant
metastasis [16]. Therefore, the higher the rate of ALN metastasis
is, the more vessels nourished detected in ultrasonography of
breast cancer tumours are.

4. Conclusion: It is quite difficult for clinicians to predict ALN
metastases from ultrasound images directly [17]. In this Letter,
we finish probability analysis of ALN metastasis from
contrast-enhanced ultrasonography of breast tumour by using the
deep particle space-time distribution model. Therefore, our main
contribution is using the proposed prediction model to verify the
connection between dynamic contrast-enhanced ultrasonography
of breast tumour and ALN metastasis quantitatively. This
conclusion can be interpretable from the clinical and pathological
perspectives. Therefore, different from the current studies which
only focus on the prediction of lymph node metastasis with
axillary ultrasound, the next step of our work is collecting the
dynamic contrast-enhanced ultrasonography of breast and axillary
ultrasound, and finishing the prediction of ALN metastasis with
higher accuracy by using these two kinds of ultrasound images
together.
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