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Abstract Evaluation of heterogeneity of treatment effect (HTE) is an essential aspect of

personalized medicine and patient-centered outcomes research. Our goal in this article is to

promote the use of Bayesian methods for subgroup analysis and to lower the barriers to

their implementation by describing the ways in which the companion software beanz can

facilitate these types of analyses. To advance this goal, we describe several key Bayesian

models for investigating HTE and outline the ways in which they are well-suited to address

many of the commonly cited challenges in the study of HTE. Topics highlighted include

shrinkage estimation, model choice, sensitivity analysis, and posterior predictive checking.

A case study is presented in which we demonstrate the use of the methods discussed.

Keywords Bayesian subgroup analysis � Heterogeneity of treatment effect � Hierarchical

modeling � Personalized medicine � Precision medicine � Treatment–covariate interaction

1 Introduction

The conventional focus of clinical trials has been on assessing the average effect of a

treatment in a target population. However, examining only the average treatment effect in

the presence of patient heterogeneity may mask important differences in treatment efficacy

or in treatment safety across subsets of patients. Heterogeneity of treatment effect (HTE)

refers to differences in treatment effectiveness attributable to observable patient attributes
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such as demographic characteristics, genetic characteristics, and other baseline risk factors.

For many diseases, understanding the extent and nature of treatment effect heterogeneity is

key to the development of improved treatment strategies more tailored to individual patient

needs.

Heterogeneous treatment effects are typically explored by examining patient outcomes

in mutually exclusive subgroups defined by observable patient characteristics. In cases

where a beneficial overall treatment effect has been found, such subgroup analyses are

performed to examine the consistency of the claimed treatment effect across major patient

sub-populations. Existence of subgroups that appear to respond differently to treatment can

affect inclusion criteria in later clinical trials or in labeling decisions for approved drugs

(Alosh et al. 2015). Though subgroup analyses are often recommended and routinely

performed, there are a number of concerns which lead many to interpret the results of

subgroup analyses with caution. As highlighted by many authors (Yusuf et al. 1991; Wang

et al. 2007; Berger et al. 2014), these include problems related to multiplicity, post-hoc

analyses performed after seeing the data (‘‘data-dredging’’), and small within-subgroup

sample sizes. Proper adjustments for multiplicity in subgroup analysis can result in sub-

stantial loss of power to detect differences across subgroups, and small subgroup-specific

sample sizes lead to highly variable estimates which frequently makes it challenging to

assess the source and magnitude of HTE. In addition to concerns about low power and

post-hoc analyses, conventional approaches to subgroup analysis have difficulty in char-

acterizing variation in treatment effect after a treatment interaction has been determined to

be present.

A Bayesian approach to HTE can address many of the common concerns with subgroup

analysis while also providing more informative characterizations of HTE. Among the more

compelling reasons to employ Bayesian methods for subgroup analysis is their excellent

estimation performance in multi-parameter settings. A key feature of most Bayesian

approaches to subgroup analysis is the inclusion of all subgroup-level treatment effects in

one joint model. Incorporating all treatment effects in one common probability model,

allows inferences in each subgroup to be driven by all the data rather than only the data in

that particular subgroup. This has the consequence of stabilizing highly variable subgroup

effect estimates by allowing these highly variable cases to ‘‘borrow information’’ from the

data in other subgroups. Moreover, the borrowing of information across subgroups

increases the precision of the individual estimates. The utilization of all the data alleviates

to a large extent the common problem in subgroup analysis of small within-subgroup

sample sizes and highly variable estimates. Indeed, these advantages of using Bayes

estimates in multi-parameter settings have been widely acknowledged (Efron and Morris

1973; James and Stein 1961) and represents one of the main areas in which Bayesian

methods can offer an improvement over other methods.

In addition to improved estimation and precision, the Bayesian framework can arguably

provide answers to questions more in line with the goals of personalized/patient-centered

medicine. Bayesian approaches naturally lend themselves to characterizations of HTE

because such heterogeneity may be directly expressed through the distribution of the

subgroup treatment effect parameters. While other approaches emphasize hypothesis

testing and detection of HTE, the Bayesian models discussed here have the built-in

assumption that HTE is present, and the statistical challenge is to estimate and characterize

this heterogeneity in treatment effect. The implications of the estimated variation in

treatment effect can then be evaluated taking into account posterior uncertainty, the prior

information used, and the context of the problem. The Bayesian framework is also useful in

its ability to automatically give direct probability statements to a wide range of questions
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of clinical interest. For example, from a personalized medicine perspective, a natural

question to ask is: what is the probability that individuals from a particular subgroup will

benefit from this treatment? A direct answer to such a question can be obtained from the

full posterior distribution without the need to refer to repeated sampling characteristics as

in frequentist inference. Addressing complex clinical questions such as these and providing

associated uncertainty measures is often challenging when operating outside the Bayesian

framework.

Our goal in this article is to promote the use of Bayesian methods for subgroup analysis

and to lower the barriers to their implementation by describing the ways in which the

companion software beanz can facilitate these types of analyses. To this end, we provide in

this paper an overview of the models implemented by the beanz software tool (Wang et al.

2016), describe their merits, and outline other important factors to consider when using

Bayesian methods for subgroup analysis. The web-based software tool beanz can be

accessed from https://www.research-it.onc.jhmi.edu/dbb/custom/A6/, and the R package

version of this software entitled beanz is available from the Comprehensive R Archive

Network (http://cran.r-project.org). Information regarding the usage and capabilities of

beanz is provided in greater detail in Wang et al. (2016), and a beanz software manual is

also available from the beanz website. This article is organized as follows. In Sect. 2, we

begin by introducing our motivating example—the SOLVD trial—and describe the key

patient subgroups to be investigated in our data analysis. In Sect. 3, we then review several

of the more conventional, frequentist approaches to subgroup analysis and examine their

application to the SOLVD trial. In Sect. 4, we introduce several Bayesian models sug-

gested in Jones et al. (2011) that can be used in subgroup analysis and describe several of

their prominent features. Throughout this section, the Bayesian methods for subgroup

analysis are illustrated through their use in analyzing the SOLVD data, and we compare

and contrast the results of both the frequentist and Bayesian approaches. Connections

between the data analysis and the capabilities of the beanz software are also emphasized

throughout this section. Remarks regarding multiplicity issues in Bayesian subgroup

analysis are made in Sect. 5, and Sect. 6 describes approaches for model comparison and

model checking. We conclude in Sect. 7 with a few final remarks.

2 Motivating example: the SOLVD trial

The studies of left ventricular dysfunction (SOLVD) described in The SOLVD Investi-

gators (1991) examined the impact of the drug Enalapril in a group of patients with

congestive heart failure and low ejection fraction. In total, 2569 patients were enrolled in

the treatment trial with 1285 patients being assigned to the treatment arm and 1284 patients

being assigned to the placebo arm. After the scheduled end of the study, 510 patients had

died in the placebo group while 452 had died in the Enalapril group.

Due to the importance of ejection fraction in determining the target population, we

examine response to treatment in subgroups defined by baseline ejection fraction, gender,

and age. We dichotomized age into B65 and [65 years subgroups, and we discretized

baseline ejection fraction by tertiles as was done in the original paper (The SOLVD

Investigators 1991) describing this study. This way of discretizing age and ejection fraction

yielded 12 subgroups in total. One patient was dropped from our analysis due to a missing

ejection fraction value. Table 1 shows cross-tabulations for each of the variables used in
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the subgroup analysis, and Fig. 1 shows the number of patients within each of the 12

subgroups.

The original paper reporting on this study (The SOLVD Investigators 1991) concluded

that the addition of Enalapril to standard therapy had a positive impact on patient mortality

Table 1 Number of patients by
treatment and subgroup
covariates

Subgroup Enalapril Placebo Total

Gender

Female 259 244 503

Male 1025 1040 2065

Age

B65 866 862 1728

[65 418 422 840

Ejection fraction

6–22 468 474 942

23–29 407 417 824

30–35 409 393 802

treatment effect

−1.25 −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

low ≤ 65 Female 108

medium ≤ 65 Female 92

high ≤ 65 Female 107

low > 65 Female 54

medium > 65 Female 62

high > 65 Female 80

low ≤ 65 Male 563

medium ≤ 65 Male 459

high ≤ 65 Male 399

low > 65 Male 217

medium > 65 Male 211

high > 65 Male 216

Ejec.Frac. Age Gender Size
Sbgrp

Fully Stratified
Basic Shrinkage

Fig. 1 Basic shrinkage model. SOLVD data. Posterior means and frequentist estimates for each of the 12

subgroups defined by the variables gender, age, and ejection fraction. Frequentist estimates ĥg and

associated 95% confidence intervals are in black while Bayes estimates and associated 95% credible
intervals are in red. The solid vertical line represents the estimated overall treatment effect from the basic
shrinkage model, namely, the posterior mean of s (Color figure online)
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and hospitalization. Fitting a Cox-proportional hazard model using patients from the

treatment trial supports this conclusion; the estimated log-hazard ratio of the Enalapril

group to the control group was �0:32 with an associated standard error of 0.06. The

survival endpoint used here and throughout the paper is time-to-death or hospitalization.

While Enalapril appears to have had a beneficial overall effect in this trial, we are mainly

interested in exploring any treatment effect heterogeneity in terms of key baseline

covariates.

3 Frequentist methods for subgroup analysis

3.1 Univariate subgroup analysis

Univariate tests of interaction investigate each variable one-at-a-time to determine if there

is an interaction between treatment and the specified variable. Because any such treatment

interaction is an indication that the treatment effect varies across the levels of a subgroup

variable, interaction tests are deemed important in assessing consistency of treatment effect

across patient subgroups. Indeed, the FDA Guidance for Industry (see Food and Drug

Administration 1998; Varadhan and Wang 2014) states that investigators provide evidence

for ‘‘consistency across key patient subsets’’ in order to address concerns about the gen-

eralizability of trial results.

Suppose that for subjects ð1; . . .; nÞ we have observed continuous outcomes y ¼
ðy1; . . .; ynÞ and assigned treatments T1; . . .; Tn with either Ti ¼ 0 or Ti ¼ 1. Suppose fur-

ther that the jth covariate has K(j) levels and Xijk is an indicator of whether or not patient i

has the ðk þ 1Þst
level of the jth covariate. Then, in the following regression for the

expected outcome

EðyijXijk; TiÞ ¼ b0 þ c0Ti þ
XKðjÞ�1

k¼1

bkXijk þ Ti

XKðjÞ�1

k¼1

ckXijk; ð1Þ

a univariate test of interaction (for the jth covariate) tests the null hypothesis

H0 : c1 ¼ � � � ¼ cKðjÞ�1 ¼ 0. In other words, a univariate test of interaction (for the jth

covariate) tests whether or not the effect of treatment is the same across all levels of the jth

covariate. Analogous univariate tests may be performed for other types of responses such

as binary or time-to-event outcomes.

To test for consistency of effect across the key identified patient subgroups in the

SOLVD trial, we separately performed univariate tests of treatment interaction using the

variables age, gender, and baseline ejection fraction. For each variable, we tested whether

or not the variable–treatment interaction coefficients were all equal to zero or not. Because

the outcomes in SOLVD are time-to-event, we used a Cox-proportional hazard models

where the regression equations for the hypothesis tests were as in (1). These tests yielded

p-values 0.40, 0.034, and 0.029 for age, gender, and ejection fraction respectively. At first

glance, these results suggest there are treatment interactions with gender and ejection

fraction which could raise doubts about the consistency of treatment effect. However,

when performing a series of univariate tests, it is important to adjust for the multiplicity of

tests (see, e.g. Varadhan and Wang 2014), and when using the Bonferroni adjustment for

multiplicity, the adjusted p values for gender and ejection fraction were 0.102 and 0.087

respectively which considerably weakens the evidence for lack of consistency.
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Despite their effectiveness in detecting the presence of interactions, univariate one-

variable-at-a-time interaction tests have several limitations that restrict their usefulness in

assessing treatment effect heterogeneity. Firstly, univariate interaction tests are not, in

general, able to determine the direction or the magnitude of the treatment interaction of

interest (see e.g., Alosh et al. 2015). When the variable in question has more than two

levels, an interaction test can only lead to the conclusion that the treatment effects are not

the same in all the subgroups but cannot detect the direction of treatment effect changes.

Even when there are only two subgroup levels, interaction tests are not well-suited for

assessing the magnitude of an interaction effect. Estimates of effect are often highly

variable for small subgroups and are biased when only examined after they yield a sig-

nificant result. As a result, it can be difficult to judge the importance of the treatment effect

difference between two subgroups even when an interaction test yields a significant result.

3.2 Unstructured interaction tests

An additional concern with univariate analyses is that they ignore the correlation among

patient characteristics and examine each variable in isolation. As noted by Kent and

Hayward (2007), a limitation of univariate subgroup analysis is that the univariate sub-

groups are less likely to identify important heterogeneity in treatment effect since the

subgroups only differ in terms of a single characteristic. Overlooking such structure in the

correlation among subgroups can result in confounding and other misleading inferences

(Varadhan and Wang 2014). For example, suppose that the effectiveness of a drug varies

by body weight independently of gender. In this case, an apparent marginal treatment–

gender interaction would be largely driven by differences in treatment effectiveness by

weight despite there being no difference in treatment response by gender when adjusting

for body weight. This concern can be addressed by performing an unstructured interaction

test (Kovalchik et al. 2013) where all patient covariates are included rather than focusing

on one covariate at a time as is done in univariate analyses. In particular, using notation as

in (1), an unstructured interaction test will test the null hypothesis that all cjk equal zero in

the following regression model for the expected outcome

EðyijXijk; TiÞ ¼ b0 þ c0Ti þ
XJ

j¼1

XKðjÞ�1

k¼1

bjkXijk þ Ti

XJ

j¼1

XKðjÞ�1

k¼1

cjkXijk: ð2Þ

In contrast to the univariate one-at-a-time approach, the full unstructured interaction

approach tests whether or not there is at least one treatment–subgroup interaction when all

of the other covariates are present in the model. However, as with univariate interaction

tests, an unstructured interaction test can only determine if a treatment interaction is

present, and a rejection of the test does not directly indicate which subgroups are the source

of the interaction and does not characterize the magnitude of the subgroup treatment effect

differences.

Using the SOLVD data with the same three covariates of age, gender, and ejection

fraction, we performed a full, unstructured interaction test. For this test, we used a Cox-

proportional hazards model with a regression formulation as in (2). This test yielded a

p value of 0.018 suggesting that the treatment effect may not be constant across all

subgroups. Summary output from a fit of the full interaction model is shown in Table 2.

A fully stratified subgroup analysis calculates treatment effects in each subgroup

combination of the patient covariates. For example, if there are two covariates—gender

(male/female) and age (young/old), then a fully stratified analysis reports the results for
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each of the four possible subgroups. While addressing some of the problems with uni-

variate one-at-a-time analyses, fully stratified analyses will typically have much smaller

subgroup-specific sample sizes and highly variable subgroup effect estimates.

4 Bayesian methods for subgroup analysis

4.1 Sampling model and notation

In the following description of subgroup analysis, we assume that summary statistics

ðĥg; s
2
gÞ have been computed for each of the mutually exclusive subgroups g ¼ 1; . . .;G.

The estimates ĥg are typically fully stratified frequentist estimates with the statistic ĥg

representing an estimate of the treatment effect in subgroup g and sg representing the

standard error associated with ĥg. Reduction of data to the form ðĥg; s
2
gÞ includes a wide

range of possible settings including, for example, cases where ĥg is a difference of treat-

ment means, cases where ĥg represents an estimated log-odds ratio, or cases where ĥg is an

estimated log-hazard ratio. The beanz web-based software tool allows the user to either

input subgroup-level summary statistics ðĥg; s
2
gÞ or to input the subject-level raw data, in

which case beanz computes the necessary summary statistics for each subgroup.

Often, ĥg may be interpreted as a maximum likelihood estimate of the underlying

treatment effect of interest hg, and as such, standard statistical theory asserts that a good

approximation to the sampling distribution of ĥg is

ĥgjhg �Normal hg; s
2
g

� �
: ð3Þ

One criticism of (3) is that it ignores the uncertainty about the variance of ĥg and simply

plugs-in an estimate s2
g of this variance. However, in the absence of additional information

beyond ðĥg; s
2
gÞ, (3) serves as a suitable approximation in most cases and may be preferable

to inappropriate modeling of the uncertainty associated with sg. Indeed, several authors

including Jones et al. (2011) suggest using the sampling distribution in (3) as a reasonable

approximation.

For the SOLVD data, we define the subgroup treatment effect hg as the log-hazard ratio

between the treatment (Enalapril) group and the placebo group which implies that smaller

Table 2 Cox proportional haz-
ards model the covariates: treat-
ment, age, gender, baseline
ejection fraction, and the inter-
actions between treatment and
each of age, gender, and baseline
ejection fraction

Estimated regression coefficients
and corresponding standard
errors are shown

Coefficient SE z-value p value

trtment -0.183 0.147 -1.242 0.214

age[65 0.251 0.078 3.225 0.001

genderMale 0.153 0.095 1.605 0.108

ejecfrac-medium -0.291 0.087 -3.365 0.001

ejecfrac-high -0.638 0.093 -6.894 \0.001

trtment:age[65 -0.121 0.116 -1.045 0.296

trtment:Male -0.278 0.139 -1.998 0.046

trtment:ejecfrac-medium 0.112 0.129 0.868 0.386

trtment:ejecfrac-high 0.354 0.136 2.601 0.009
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treatment effects correspond to greater treatment benefit. The treatment effect estimates ĥg

and associated standard errors sg were computed by fitting a Cox-proportional hazards

model within each of the G ¼ 12 subgroups. The estimated treatment effect ĥg is the

estimated log-hazard ratio between the Enalapril and placebo groups. It is worth men-

tioning that the treatment effect estimates ĥg were computed using time-to-death or hos-

pitalization as the outcome while the example on the beanz website involving the SOLVD

data currently uses time-to-death or hospitalization after 1 year of follow-up as the out-

come. In beanz, when the responses are time-to-event and when the user inputs the

original, subject-level data rather than subgroup-level summary statistics, beanz computes

estimated log-hazard ratios ĥg and standard errors sg by fitting a Cox-proportional hazards

model within each of the defined subgroups.

4.2 The basic shrinkage model

4.2.1 Model description

The basic shrinkage model is a general approach for analyzing variation in treatment

effect. This model is employed in a wide range of applications and is particularly suited to

settings such as subgroup analysis where one is interested in separate units of analysis with

each unit having a relatively small sample size. Its effectiveness in these settings is largely

due to the ‘‘partial-pooling’’ or ‘‘shrinkage’’ phenomenon where individual subgroup effect

estimates are shrunken towards an overall global mean. Despite its reliance on the often

implausible assumption of full exchangeability, the basic shrinkage model is a useful

starting point because it illustrates many recurring themes of Bayesian analysis and

because it frequently serves as an effective and robust approximation. Moreover, from the

perspective of analyzing HTE, the exchangeability assumption serves as a reasonable

a-priori position since it does not make any a-priori distinctions among the subgroup-level

treatment effects.

The basic shrinkage model starts with the sampling model of (3) for the observed effect

estimates ĥg and adds the assumption that the underlying subgroup treatment effects hg are

drawn from a common normal distribution with mean s and standard deviation x. A fully

hierarchical approach places a prior on the hyperparameters s and x, and as in Jones et al.

(2011), we suggest a normal prior for s and a half-normal prior for x in order to complete

the specification of the model

hgjs;x�Normalðs;x2Þ
s�Normalð0; r2

sÞ
x�Half � Normalðr2

xÞ:
ð4Þ

In the above, the parameter s should be thought of as the true overall or average treatment

effect and x should be thought of as the standard deviation of the treatment effect across

subgroups. Thus, larger values of x indicate greater treatment effect heterogeneity. When

x is treated as a fixed quantity, (4) is commonly referred to as a one-way random effects

model. Models similar to (4) are popular in random-effects meta-analysis (see e.g., Sutton

and Abrams 2001) where the parameters hg are thought of as study-specific treatment

effects drawn from a common population distribution, which in the case of model (4) is

assumed to be Normalðs;x2Þ. In the absence of substantial prior information regarding
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possible values of s and x, it is recommended to start with diffuse priors for s and x (i.e.,

large r2
s and r2

x) in order to accommodate a wide range of values for both the overall

treatment effect and the variation across subgroups.

In practice, the basic shrinkage model can be thought of as providing a compromise

between the fully stratified, separate analysis described at the end of Sect. 3 and a com-

pletely pooled analysis which ignores any differences among subgroups and only reports

the overall response to treatment. In contrast to these two extremes, estimates of the within-

subgroup treatment effects in the basic shrinkage model are determined by both the fully

stratified estimate ĥg and the overall treatment effect estimate ŝ. In particular, in the basic

shrinkage model, each estimate of the subgroup-level treatment effect is a weighted

average of the original subgroup-specific estimate ĥg and the global treatment effect

estimate which causes each Bayesian estimate to be pulled or ‘‘shrunken’’ towards the

estimated overall treatment effect. This shrinkage phenomenon may be more clearly

observed by looking at the form of the posterior mean of hg

E hgjy
� �

¼ ŝþ E
x2

x2 þ s2
g

�����y
 !

ĥg � ŝ
� �

; ð5Þ

where ŝ ¼ EðsjyÞ is the posterior mean of the overall treatment effect. In other words,

EðhgjyÞ is equal to the overall treatment effect estimate plus a proportion of the distance

between ĥg and ŝ. The posterior mean of the fraction rðx; sgÞ ¼ x2=ðx2 þ s2
gÞ determines

the magnitude of shrinkage with Eðrðx; sgÞjyÞ ¼ 0 implying complete shrinkage to the

overall treatment effect and E rðx; sgÞjy
� �

¼ 1 implying no shrinkage at all. The fact that

rðx; sgÞ increases with x and decreases with sg has two important consequences: sub-

groups with high estimation variance (i.e., higher sg) are shrunk more severely than sub-

groups with low estimation variance, and small values of x are associated with stronger

overall shrinkage effects. The greater shrinkage for those subgroups with higher estimation

error is a reflection of the association between data sparsity and shrinkage effects. That is,

subgroups with large sample sizes and consequent estimation precision are treated as more

reliable estimates and are not shrunken much towards the overall effect estimate. Turning

to the role of x, because small values of x indicate little heterogeneity in treatment effect it

should not be surprising that selecting a prior for x with most of the probability near zero

will induce greater shrinkage across subgroups resulting in tighter clustering of subgroup

effects near ŝ. Indeed, setting a prior for x which is concentrated near zero is an effective

approach for expressing prior skepticism regarding the presence of treatment effect

heterogeneity.

The shrinkage phenomenon and information sharing across subgroups arises from the

shared normal distribution of the underlying treatment effects hg. Because this distribution

acts as a kind of common prior for each specific subgroup effect hg, this enables an

estimate for a specific subgroup g to partly ‘‘learn’’ from the evidence provided by the

outcomes in the other subgroups rather than only using the data from subgroup g. For

instance, if the majority of other subgroup effect estimates are tightly centered around ŝ,

larger values of ĥg will tend to be pulled back towards the overall estimate because the

evidence from the other subgroups suggests there is very little heterogeneity in treatment

effect. This information sharing has the consequence of dampening the more extreme

subgroup outcomes that often occur when there are small within-subgroup sample sizes.
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Figure 1 presents an application of the basic shrinkage model to the 12 subgroups from

the SOLVD trial. The figure shows, for each of the 12 subgroups, estimates ĥg of the log-

hazard ratio between two treatments of interest along with the corresponding posterior

means and 95% credible intervals obtained from the basic shrinkage model. The solid

vertical line placed at �0:30 in Fig. 1 corresponds to the posterior mean ŝ of s from the

basic shrinkage model. The estimate ŝ can be interpreted as the estimated overall treatment

effect from the basic shrinkage model, and as is usually the case, this estimate ŝ ¼ �0:30 is

quite close to the overall treatment effect estimate of �0:32 obtained from fitting a Cox

proportional hazards model without any adjustment for baseline covariates. In addition to

nicely demonstrating the shrinkage of the Bayes estimates towards the estimated overall

treatment effect, Fig. 1 shows the usual greater precision of the Bayes estimates compared

to the raw, un-shrunken treatment effect estimates. Another feature of Fig. 1 worth

highlighting is the differential shrinkage across subgroups where, due to higher estimation

variance, treatment effect estimates for subgroups with fewer numbers of patients tend to

be shrunk more strongly. Differential shrinkage can sometimes result in cases where a

ranking of the Bayes estimates is different than that of the original frequentist estimates. In

fact, an example of this may be seen in Fig. 1 by comparing the (low ejec.frac./age[65/

female) subgroup and the (medium ejec.frac./age [65/male) subgroup. The original

treatment effect estimate for the (low ejec.frac./age[65/female) subgroup is more extreme

than that of the (medium ejec.frac./age[65/male) subgroup, but the greater shrinkage of

the highly variable (low ejec.frac./age[65/female) subgroup estimate results in the Bayes

estimate for the (low ejec.frac./age[65/female) subgroup being closer to ŝ than the Bayes

estimate for the (medium ejec.frac./age [65/male) subgroup. The beanz software tool

automatically generates forest plots similar to Fig. 1 for each of the Bayesian models that

the user chooses to fit.

Overall, Fig. 1 demonstrates substantial shrinkage of the fully stratified frequentist

estimates with particularly strong shrinkage for the female subgroups. With this strong

shrinkage towards the overall treatment effect there appears to be little evidence of par-

ticular subgroups that have a substantially different response to treatment. There does,

however, appear to be greater treatment effectiveness in men versus women and in sub-

groups with lower baseline ejection fraction. In addition to looking at the variation in

treatment effect across subgroups, another key question is whether or not there are sub-

groups where the treatment effect has a different sign than the overall effect. On this issue,

there is little evidence from the basic shrinkage model of such qualitative interactions. All

of the posterior means are less than zero with the most modest estimated treatment effect of

�0:12 occurring in the (medium ejec.frac./age B65/female) subgroup. This stands in

contrast to the frequentist estimates where the overall picture is not quite as coherent.

Three of the frequentist point estimates are positive, and one of the subgroup confidence

intervals does not cover the overall treatment effect of �0:30. Although the extreme point

estimates for subgroups (high ejec.frac./age[65/female) and (medium ejec.frac./age B65/

female) seem to point at interesting subgroup effects, such results should not be especially

surprising when analyzing a collection of highly variable estimates. The variation exhibited

by the un-shrunken estimates is usually much greater than the variation of the underlying

true treatment effects, and extreme values of the un-shrunken estimates should be viewed

with considerable skepticism. Subgroups with small numbers of patients tend to have the

highest variance, and indeed, as shown in Fig. 1, the two previously highlighted subgroups

with extreme point estimates of treatment effect [i.e., the (high ejec.frac./age[65/female)
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and (medium ejec.frac./age B65/female) subgroups] are among the smallest subgroups of

the 12 subgroups.

4.2.2 Role of priors and sensitivity analysis

Implementation of the basic shrinkage model requires a choice of the hyperparameters r2
s

and r2
x which refer to the priors for the overall treatment effect and the variation in

subgroup-specific treatment effect respectively. As a sensible default choice, we recom-

mended using ‘‘non-informative’’ priors for both s and x so that posterior inferences are

not unduly influenced by information not contained in the data being analyzed. Non-

informative priors are often implemented by choosing a vague or diffuse proper prior that

spreads the prior evenly over a broad range of possible values. For the overall treatment

effect s, one can specify a diffuse prior by choosing a large value of r2
s such as r2

s ¼ 106

recommended in Jones et al. (2011) or r2
s ¼ 103 as is the default setting in beanz. As

stated in Eq. (4), the standard deviation of treatment effect across subgroups is determined

by the parameter x which is assigned a half-normal prior with parameter r2
x. To assess the

plausibility of different values of r2
x, it is helpful to recall the definition of a half-normal

distribution. The random variable Y is said to have a half-normal distribution with

parameter b2 (i.e., Y �Half � Normalðb2) ) if Y has the same distribution as b|Z| where Z is

a standard normal random variable. This definition implies the median of the prior for x is

0:674 � rx, the 75th percentile is 1:150 � rx, and the 99th percentile is 2:576 � rx.

Densities of half-normal distributions for several values of rx are shown in Fig. 2.

In the context of selecting an approximately non-informative half-normal prior for the

random effects standard deviation x when the treatment effects are mean differences,

Gelman (2006) suggests setting rx ¼ 100. In other contexts where the parameters of

interest are on a different scale, it may be sensible to use a more informative prior. As

noted by Spiegelhalter et al. (2003) and others, when hg represents a log-odds ratio setting

rx ¼ 1 is a reasonable choice since a standard deviation greater than three in the log-odds

ratio across subgroups would be considered quite large in almost any context. The half-

normal prior with rx ¼ 1 can then be viewed as a weakly informative prior in the sense

0 2 4 6 8

0.0

0.5

1.0

1.5 σω = 1/2
σω = 1
σω = 2
σω = 5

p(ω)

ω

Fig. 2 Half-normal densities plotted for several values of the scale parameter: rx ¼ 1=2, rx ¼ 1, rx ¼ 2,
and rx ¼ 5
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that it is does not utilize any prior information specific to the problem at hand but only uses

what is known about the scale to construct a prior which gives most of its weight to all the

plausible values on this scale. Using the half-normal prior rather than more traditional non-

informative priors can have an impact on posterior inferences especially for cases when

there are few subgroups or for cases when the variation in treatment effect across sub-

groups is close to zero. In any setting, it is important to think about the scale on which the

outcome is measured and the interpretation of the corresponding parameters and priors. As

the default settings of r2
s and r2

x in the basic shrinkage model, beanz uses r2
s ¼ 1000 and

r2
x ¼ 100, but these values of the hyperparameters can be adjusted by the user in the

configuration panel of the beanz software tool.

Regardless of the choice of prior, it is advisable to conduct some type of sensitivity

analysis to examine the impact of changing the prior or other features of the model on

posterior inferences of interest. In the context of the basic shrinkage model, one way to

investigate the sensitivity of the results is to consider a range of values for the hyperpa-

rameter rx and compute posterior quantities such as subgroup-specific posterior means and

posterior quantiles for each value of rx. In this case, no practical changes in the main

inferences is an indication of robustness of these inferences to prior specification. If some

of the posterior inferences do change substantively in a sensitivity analysis, fitting the

model for several different priors will still enable one to analyze and report which con-

clusions are dependent on which features of the prior. One can then use this information to

further evaluate the strength of any claimed effect; for instance, reporting that a subgroup

seems to have a positive treatment effect except when using a highly skeptical prior for s
may be a useful conclusion and worth reporting. Here, a skeptical prior (see e.g.,

Spiegelhalter et al. 2003) for the overall treatment effect refers to a prior which is heavily

concentrated near zero and where large treatment effects are viewed skeptically and hence

given small prior probability.

As discussed in Sect. 4.2.1, the basic shrinkage model results shown in Fig. 1 provide

evidence against any substantial differences across subgroups though there is perhaps some

evidence of reduced treatment benefit in women and in those with higher ejection fraction

levels. To probe the sensitivity of these conclusions to sensible changes in the model, we fit

the basic shrinkage model for several different choices for the distribution of the variance

component x. We focused on the distribution of x because the choice of the variance

component distribution often has a meaningful impact on posterior inferences particularly

when there are few subgroups and/or when the variation in treatment effect is close to zero.

When varying the distribution of x for this sensitivity analysis, we used several dif-

ferent half-normal distributions along with the approximate Jeffreys prior suggested by

Dixon and Simon (1991). Posterior means and associated credible intervals are shown in

Fig. 3. Changing the value of rx in the half-normal distribution seems to have very little

impact even though this parameter was varied from 0.1 to 100. Using an approximate

Jeffreys prior for x also does not seem to have much of an impact when compared to the

half-normal priors. With regard to the approximate Jeffreys prior, it is worth mentioning

that there seems to be moderate sensitivity to the choice of the truncation point (i.e., 0.005

in the caption of Fig. 3) and that only the results for the truncation point suggested by

Dixon and Simon (1991) are shown in Fig. 3. The approximate Jeffreys prior suggested by

Dixon and Simon (1991) is used here because the true Jeffreys prior in this context is an

improper prior. In this case study, we have examined 12 subgroups. Posterior inferences

will likely be more sensitive to the prior for x when there are fewer subgroups because, in
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these case, there is not much information regarding the variation in treatment effect across

subgroups.

Embedded in the basic shrinkage model is the assumption of exchangeability of the

subgroup treatment effects. This means that, a-priori, there is no reason to favor any

specific subgroup or to group any collection of subgroups in a particular way. Essentially,

the exchangeability assumption is one that must be made if the subgroups were simply

labeled 1; . . .;G without any further information about the covariates which make up the

subgroups. Exchangeability is often a reasonable assumption, for example, when the

subgroups are defined by the levels of one variable and there is no prior information

suggesting that the treatment effects will be larger in any specific subgroup. In other

contexts, exchangeability may be seen as simply a reasonable working assumption. More

flexible modeling which relaxes the assumption of exchangeability can be done by

employing regression models for the subgroup treatment effects, which are discussed in the

following subsection.

treatment effect

−0.75 −0.5 −0.25 0 0.25 0.5

low ≤ 65 Female 108

medium ≤ 65 Female 92

high ≤ 65 Female 107

low > 65 Female 54

medium > 65 Female 62

high > 65 Female 80

low ≤ 65 Male 563

medium ≤ 65 Male 459

high ≤ 65 Male 399

low > 65 Male 217

medium > 65 Male 211

high > 65 Male 216

Ejec.Frac. Age Gender Size
Sbgrp

ω ~ Half−N( 0.1 )
ω ~ Half−N( 1 )
ω ~ Half−N( 100 )
ω ~ Jeffreys

Fig. 3 Basic shrinkage model—sensitivity to choice of prior. SOLVD data. Posterior means and associated
credible intervals for the following choices of the prior for x: x�Half � Normalð0:1Þ,
x�Half � Normalð1Þ, x�Half � Normalð100Þ, and x� Jeffreys. The approximate Jeffreys prior for

x2 employed here is pðx2Þ / x�2 for x2 � 0:005 and pðx2Þ ¼ 200 otherwise
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4.3 Regression models

4.3.1 Dixon–Simon

Compared to the basic shrinkage model, regression models for the treatment effects offer a

more flexible way to represent the influence of each variable on the subgroup-specific

treatment effects and to capture the relationships among the subgroups. One of the most

straightforward regression models assumes that each subgroup treatment effect can be

expressed as a linear combination of individual variable effects. In particular, the rela-

tionship between the subgroup treatment effect hg and the variables that compose subgroup

g is modeled as

hg ¼ sþ
XJ

j¼1

XKðjÞ�1

k¼1

Xgjkbjk; ð6Þ

where KðjÞ� 2 is the number of levels of variable j and where Xgjk ¼ 1 when the ðk þ 1Þst

level of variable j belongs to subgroup g and Xgjk ¼ 0 otherwise. In the parameterization of

(6), s no longer represents the overall treatment effect but, rather, represents the treatment

effect in the subgroup where each variable has the reference level (i.e., level 1). The

regression coefficient bjk should then be interpreted as the change in the treatment effect

when variable j moves from the reference level to level k þ 1. For the SOLVD data, the

reference level used for the gender variable was female; the reference level used for the age

variable was age B65; and the reference level used for the ejection fraction variable was

the high ejection fraction category.

In the context of using (6) for subgroup analysis, Dixon and Simon (1991) suggest

basing the prior on the assumption that the regression coefficients are drawn from a

common normal distribution with mean zero and standard deviation x, and the authors

assign x2 the approximate non-informative Jeffreys prior pðx2Þ / ½maxfx2; eg��1
, where

e is a small, positive quantity. If, as in Jones et al. (2011), we replace the Jeffreys prior for

x with a half-normal distribution, then the modified Dixon–Simon model has the following

structure

s�Normalð0; r2
sÞ

bjk �Normalð0;x2Þ
x�Half � Normalðr2

xÞ:

In comparison to estimates of bjk computed in the classical approach to regression, the

shared distribution of the regression coefficients in the Dixon–Simon specification shrinks

the posterior means of bjk towards zero. In addition to inducing desirable shrinkage of

subgroup treatment effects, the regression model (6) is able to better account for the

correlation that exists among subgroups than the basic shrinkage model. For example,

suppose we have subgroups defined by the two variables gender (male/female) and age

(young/old). If we consider subgroup g (female/young) and subgroup g0 (female/old), the

treatment effects for these two subgroups using the regression model (6) would be

hg ¼ sþ b11

hg0 ¼ sþ b11 þ b21:
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Correlation between these two subgroups is induced through the shared intercept s and

shared gender coefficient b11. Moreover, the regression structure implies that subgroups

which are ‘‘further apart’’ have less correlation than more closely related subgroups. For

instance, the prior correlation between the subgroups (female/young) and (female/old) is

greater than that between subgroups (female/young) and (male/old) since the former pair

share the coefficients ðs; b11Þ while the latter pair only share the intercept term. This richer

correlation structure of the Dixon–Simon model stands in contrast to the basic shrinkage

model which models the correlation equally across all subgroups. As in the basic shrinkage

model, we suggest using diffuse priors as the default choices for both the intercept s and

the regression coefficients. This can be done by choosing relatively large values of r2
s and

r2
x such as 1000 and 100 respectively.

4.3.2 Other regression models and the extended Dixon–Simon model

A number of other regression models for subgroup analysis have been suggested in Jones

et al. (2011) and implemented in the beanz software tool. These include a basic regression

model which places diffuse priors on the coefficients without a shared variance component,

and a basic regression and shrinkage model which adds a regression component to the

basic shrinkage model. Descriptions of these additional regression models are provided in

Wang et al. (2016).

In addition to these, beanz implements an extension of the Dixon–Simon model sug-

gested in Jones et al. (2011) which allows for higher orders of interaction between the

patient covariates. In the case of three covariates with two levels each, for example, the

extended Dixon–Simon model for the treatment effects is

hg ¼ sþ
X3

j¼1

Xgj1bj1 þ
X2

j¼1

XJ

h¼jþ1

cjhXgj1Xgh1 þ dXg11Xg21Xg31: ð7Þ

The regression coefficients for each order of interaction in (7) are assigned a Normal

distribution with a common variance. In particular, the priors for the model parameters in

(7) are s�Nð0; r2
sÞ, bj1jx1 �Nð0;x2

1Þ, cjhjx2 �Nð0;x2
2Þ, and djx3 �Nð0;x2

3Þ. The

variance components x1;x2;x3 are assigned independent half-normal priors.

Figure 4 shows posterior means and 95% credible intervals obtained from applying the

extended Dixon–Simon model [Eq. (7)] to the SOLVD data. Quantities from the basic

shrinkage model along with the fully stratified frequentist estimates are also displayed in

Fig. 4. It can be seen from this figure that the treatment effect estimates from the extended

Dixon–Simon model exhibit somewhat more variability than the estimates from the basic

shrinkage model. The most notable difference between the two Bayesian models in Fig. 4

is the reduced treatment effectiveness in women with medium or high ejection fraction

levels suggested by the extended Dixon–Simon model. This is because, whereas the basic

shrinkage model treats the subgroup categories as completely exchangeable labels, the

regression structure of the extended Dixon–Simon model is able to better recognize that

subgroups with higher ejection fraction levels consistently tend to respond worse to

treatment and that male subgroups consistently respond better to treatment.
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5 Multiple comparisons

A chief concern in subgroup analysis is the multiple comparisons that arise from the

various subgroups being considered. When using conventional approaches to hypothesis

testing, the probability of falsely rejecting at least one of the no-interaction hypotheses

grows as the number of subgroups increases, and failure to take this multiplicity into

account can result in high error rates. Traditional approaches to handling multiplicity

include reporting Bonferroni-adjusted p-values for each test performed, or adjustments that

increase confidence interval widths. Despite their role in controlling Type I errors, such

multiplicity adjustments can result in increased Type II errors and loss of power.

Tests of point hypotheses such as those discussed in Sect. 3 that test whether or not

specific interaction terms are exactly equal to zero are not applicable within the context of

the Bayesian models discussed thus far. The supposition in these models is that there is

variation in treatment effect across subgroups, and they assign zero probability to the

hypothesis that the parameters equal any particular value. Nevertheless, there may be

concern about making certain erroneous statements regarding subgroup differences; for

treatment effect

−1.25 −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1

low ≤ 65 Female 108

medium ≤ 65 Female 92

high ≤ 65 Female 107

low > 65 Female 54

medium > 65 Female 62

high > 65 Female 80

low ≤ 65 Male 563

medium ≤ 65 Male 459

high ≤ 65 Male 399

low > 65 Male 217

medium > 65 Male 211

high > 65 Male 216

Ejec.Frac. Age Gender Size
Sbgrp

Fully Stratified
Basic Shrinkage
Ext Dixon−Simon

Fig. 4 Extended Dixon–Simon model. SOLVD data. Posterior means and credible intervals for each of the
12 subgroups defined by the variables: gender, age, and baseline ejection fraction. Point estimates and
uncertainty intervals from the basic shrinkage model and from the fully stratified frequentist analysis are
also shown
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example, claiming that a subgroup-specific treatment effect is positive when the true

treatment effect is actually negative.

In the context of the basic shrinkage model, making explicit adjustments for multiplicity

is usually not necessary. Rather, one can just compare the individual credible intervals with

the threshold of interest without taking into account the number of subgroups considered in

the analysis. This is because shrinkage of more highly variable subgroup estimates tends to

not only produce more reasonable point estimates of treatment effect but also prevents

more ‘‘false positive’’ cases. As noted in Gelman (2006), Bayes procedures from hierar-

chical models that make no explicit multiplicity adjustments typically tend to be quite

conservative when compared to their classical counterparts. This conservatism of Bayes

estimates is exhibited in Fig. 1 where one can note that the posterior means from the basic

shrinkage model tend to not deviate much from the estimated overall treatment effect.

Because such automatic multiplicity adjustments arise from the joint modeling of the

subgroup effects, such claims are dependent upon a well-calibrated model, and one should

perform checks to ensure that the model used is justifiable. Approaches for model checking

are discussed in the next section.

6 Model choice and diagnostics

Factors to consider when selecting a model include: goodness-of-fit measures, model

complexity, interpretability, plausibility of model assumptions, and scientific knowledge,

among other possible considerations. Measures of predictive accuracy usually incorporate

both goodness-of-fit and model complexity. The deviance information criterion (DIC)

suggested by Spiegelhalter et al. (2011) is a measure of predictive performance analogous

to the widely used Akaike information criterion (AIC) and can be easily computed for a

wide range of Bayesian models. An attractive feature of DIC is that it can be used to

compare models with widely different structure and complexity where the number of

model parameters does not have a clear meaning. As with the AIC, the DIC is based on

combining a measure of goodness-of-fit with a penalty term for model complexity. For the

sampling distribution (3) assumed by beanz, the goodness-of-fit is captured by the pos-

terior expected deviance �D ¼ E Dðh1; . . .; hGÞjyð Þ where

Dðh1; . . .; hGÞ ¼
XG

g¼1

� ĥg � hg

sg

�2

;

is a measure of deviance. The ‘‘effective number of parameters’’, pD, is defined as the

difference pD ¼ �D � Dð�h1; . . .; �hGÞ where �hg ¼ EðhgjyÞ is the posterior mean of the sub-

group treatment effect hg. The effective number of parameters can be directly computed in

a wide range of hierarchical models such as the basic shrinkage model where the number of

parameters does not have a clear, unambiguous definition. The DIC is then defined as the

posterior expected deviance plus the effective number of parameters

DIC ¼ D þ pD ¼ 2D � Dðh1; . . .; hGÞ:

Lower values of the DIC imply better measures of fit. A rough rule-of-thumb suggested by

Carlin and Louis (2009) is that meaningful differences between DIC values start at dif-

ferences of greater than three to five.
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In total, beanz currently offers seven different Bayesian models for subgroup analysis.

Of these seven different models, the extended Dixon–Simon model had the lowest value of

the DIC when looking at the SOLVD data with the 12 subgroups defined by age, gender

and ejection fraction. The difference in DIC between the basic shrinkage model and the

extended Dixon–Simon model was 2.56. Though the extended Dixon–Simon is best in

terms of DIC, this relatively small difference in DIC suggests that both the basic shrinkage

and extended Dixon–Simon models could be justified as model choices.

While DIC is a useful tool for model comparison, the DIC alone is not necessarily helpful

in checking whether a particular model provides a good fit to the data. Posterior predictive

checks (Rubin 1984 or Gelman 2003) are a useful tool for checking the plausibility of a model

and for uncovering particular features of the observed data that are not captured well by the

model under consideration. In a nutshell, posterior predictive checks are performed by

comparing hypothetical data generated from the fitted model with the observed data. If the

posterior provides a good fit, one should expect samples from the posterior predictive dis-

tribution to resemble the observed data, or at least, one should not expect there to be sys-

tematic discrepancies between the posterior predictive distribution and the observed data.

Posterior predictive checks are often carried out by choosing a particular test statistic TðyÞ or a

collection of test statistics and comparing the posterior predictive distribution of TðyÞ (usually

denoted as p TðyrepÞjyð Þ) with the observed value of TðyÞ. Samples from the posterior pre-

dictive distribution can be used to visually assess whether or not the observed value of the

statistic TðyÞ seems typical of hypothetical replications from the fitted model. More formal

testing approaches involving the computation of posterior predictive p values have been

suggested by others, for example, Meng (1994).

Summary of key factors to consider when using Bayesian methods to analyze heterogeneity of treatment
effects

Model specification

The models described in Jones et al. (2011) and implemented by beanz offer a number of useful options
for subgroup analysis. Parameters for the prior distributions can be chosen using common default
values such as those used in the beanz software, through incorporating external information, or
through knowledge about the scale of the outcome. In all cases, one should ensure that interpretations
of the model parameters are well-understood and that the choice of priors is defensible.

Diagnostics and model criticism

If multiple models are considered, the deviance information criterion (DIC) can be used to compare
model performance. Small differences (less than 3–5) in DIC are often not considered meaningful.
Sensitivity analyses should be conducted by investigating changes in key posterior quantities over a
range of different priors. Looking at posterior inferences in other plausible alternative models can also
serve as a way of examining the sensitivity of the results. Posterior predictive simulations as depicted
in Fig. 5 are a useful tool for checking if replicated data sets from the fitted model seem plausible in
light of the observed data. Notable differences between posterior predictive simulations and the
observed data suggest that one should consider modifying the model.

Reporting and interpreting results

Reporting posterior summaries for all subgroup parameters is often effective for characterizing HTE and
for interpreting particular subgroups effects. Forest plots such as those shown in Figs. 1 and 4 are an
effective way to visually represent this information. Posterior summaries related to many questions of
clinical interest can usually be obtained from the full posterior distribution. For instance, an important
question to consider is often whether or not there are qualitative interactions; that is, are there
subgroups whose treatment effect is in the opposite direction of the average treatment effect? Finally,
for full transparency, one should describe all steps taken in the analysis; for example, one should
describe any changes made to the model during the course of the analysis, or if multiple models were
originally entertained, one should describe why the final model was chosen.
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In the context of the models discussed Sect. 4 where the sampling distribution is

assumed by (3), one can generate a sample ĥpred;s
g of subgroup effects from the posterior

predictive distribution by first drawing hpost;s
g � pðhgjyÞ from the posterior distribution of hg

and then sampling ĥpred;s
g �Normalðhpost;s

g ; s2
gÞ using the draw from the posterior as the

assumed mean of the normal distribution. A sample from the posterior predictive distri-

bution of TðyÞ is then computed from the individual draws ĥpred;s
1 ; . . .; ĥpred;s

G . Figure 5

shows posterior predictive simulations for both the basic shrinkage and extended Dixon–

Simon models, and for each of these models, the median, standard deviation, minimum,

and maximum were chosen as the test statistics TðyÞ to examine. There is no suggestion in

these posterior predictive checks that either of the models is deficient in any particular way.

For both models, the observed values of the test statistics appear to be quite typical values

in terms of the posterior predictive distribution, though the observed standard deviation and

maximum seem to be somewhat more representative of predicted values from the extended

Basic Shrinkage Model

−0.6 −0.4 −0.2 0.0

T(y) = median

Extended Dixon−Simon Model

−0.6 −0.4 −0.2 0.0 0.2

T(y) = median

0.1 0.2 0.3 0.4 0.5 0.6 0.7

T(y) = standard deviation

0.1 0.2 0.3 0.4 0.5 0.6

T(y) = standard deviation

−1.5 −1.0 −0.5

T(y) = minimum

−1.5 −1.0 −0.5

T(y) = minimum

0.0 0.5 1.0

T(y) = maximum

0.0 0.5 1.0

T(y) = maximum

Fig. 5 Posterior predictive checks. Samples from the posterior predictive distribution using both the basic
shrinkage model and the extended Dixon–Simon model on the SOLVD data. Samples from the posterior
predictive distribution of various test statistics T(y) are shown: median, standard deviation, minimum, and
maximum. For each panel, the solid vertical line represents the observed value of the statistic T(y)
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Dixon–Simon model. If the values of one or more of the test statistics TðyÞ were nearer to

the tails of the posterior predictive distribution, this would be an indication that the model

should be changed in some way or that one should consider an alternative model.

7 Conclusion

The Bayesian approach offers both an effective and practical framework for evaluating

differences in treatment effectiveness due to heterogeneity in patient characteristics.

Bayesian methods have particular advantages in the analysis of HTE as they provide a

flexible framework for synthesizing evidence of all types such as prior information or

information across subgroups. Despite these merits, a number of factors has limited wider

adoption of Bayesian methods including lack of accessible software and concerns about the

choice and impact of priors. We have addressed these concerns by outlining specific

models that can be used to examine HTE and by highlighting the important issues involved

in their implementation. We have also demonstrated these ideas using a case study and a

software tool called beanz, which can be used as a web-server version or as a stand-alone

R package.
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