distinct tumor cells expressing vascular markers. Samples from three PA patients harbored the KIAA1549 exon 15, BRAF exon 9 fusion gene. In two patient samples with abundant MVP, RT-PCR assay detected strong bands arising from the KIAA1549-BRAF fusion gene in both tumor cells and cellular components of MVP. Digital PCR showed that vis-à-vis tumor tissue, its relative expression in cellular components of MVP was 42% in one- and 76% in another sample. FISH revealed amplified signals in both tumor cells and cellular components of MVP indicative of tandem duplication. Our findings suggest that in patients with PA, some cellular components of MVP contained tumor derived cell and/or phenotypically distinct tumor cells expressing vascular markers.

LGG-55. OUTCOME OF BRAF V600E PEDIATRIC GLIOMAS TREATED WITH TARGETED BRAF INHIBITION

Liana Nobre¹, Michal Zapotocky², Vijay Ramaswamy¹, Scott Ryall¹, Julie Bennet¹, Daniel Alderete³, Julia Balguer Guill⁴, Lorena Baroni³, Ute Bartels¹, Abhishek Bavle⁵, Miriam Bornhorst⁶, Daniel R. Boue⁷⁷, Adela Canete⁴, Murali Chintagumpala⁸, Scott L. Coven⁹, Ofelia Cruz¹⁰, Sonika Dahiya¹¹, Peter Dirks¹, Ira J. Dunkel¹², David Eisenstat¹³, Cecile Faure Conter¹⁴, Elizabeth Finch¹⁵ Jonathan L. Finlay⁷, Didier Frappaz¹⁶, Maria Luisa Garre¹⁷ Karen Gauvain¹⁸, Anne Grete Bechensteen¹⁹, Jordan R. Hansford²⁰, Inga Harting²¹, Peter Hauser²², Lili-Naz Hazrati¹, Annie Huang¹, Sarah G. Injac⁸, Valentina Iurilli¹⁷, Matthias Karajannis¹², Gurcharanjeet Kaur¹², Martin Kyncl², Lenka Krskova², Normad Laperriere¹, Valerie Larouche²³, Alvaro Lassaletta²⁴, Sarah Leary²⁵, Frank Lin⁸, Samantha Mascelli¹⁷, Tara McKeown¹, Till Milde²¹, Andres Morales La Madrid²⁶, Giovanni Morana¹⁷, Helena Morse²⁷, Naureen Mushtaq²⁸, Diana S. Osorio⁷, Roger Packer⁶, Zdenek Pavelka²⁹, Eduardo Quiroga-Cantero³⁰, James Rutka¹, Magnus Sabel³¹, Duarte Salgado³², Palma Solano³⁰, Jaroslav Sterba²⁹, Jack Su⁸, David Sumerauer², Michael D Taylor¹, Helen Toledano³³, Derek S Tsang¹, Mariana Valente Fernandes³², Frank van Landeghem¹³, Cornelis M van Tilburg²¹, Bev Wilson¹³, Olaf Witt²¹, Josef Zamecbik², Eric Bouffer¹, Cynthia Hawkins¹, and Uri Tabori¹, ¹The Hospital For Sick Children, Toronto, ON, Canada, ²University Hospital Motol, Prague, Czech Republic, 3Hospital of Pediatrics S,A,M,I,C, Prof, Dr, Juan P, Garrahan, Buenos Aires, Argentina, ⁴Hospital Universitario y Politécnico La Fe, Valencia, Spain, 5 Oklahoma Health Sciences Center, Oklahoma City, OK, USA, 6Children's National Health System, Washington, DC, USA ⁷Nationwide Children's Hospital, Columbus, OH, USA, ⁸Texas Children's Cancer Center, Houston, TX, USA, 9Indiana University, Indianapolis, IN, USA, ¹⁰4Hospital Sant Joan de Déu, Barcelona, Spain, ¹¹Washington University School of Medicine, St Louis, MO, USA, ¹²Memorial Sloan Kettering Cancer Center, New York, NY, USA, 13Stollery Children's Hospital, Edmonton, AB, Canada, ¹⁴Institute d'Hémato-Oncologie Pédiatrique, Lyon, Canada, ¹⁵University of North Carolina, Chapel Hill, NC, USA, ¹⁶Institute d'Hémato-Oncologie Pédiatrique, Lyon, France, ¹⁷G,Gaslini Children's Hospital, Genoa, Italy, ¹⁸Washington University, St Louis, MO, USA, 19Oslo University Hospital, Oslo, Norway, 20The Royal Children's Hospital, Melbourne, Australia, ²¹Hopp Children's Cancer Center, Heidelberg, Germany, ²²Semmelweis, Budapest, Hungary,
²³Ubiversite Laval, Quebec City, Canada, ²⁴Hospital Infantil Universitario Nino Jesus, Madrid, Spain, ²⁵Seattle Children's Hospital, Seattle, WA, USA,
²⁶Ubaseria Canter de Déer de Déer Seater 2014. ²⁶Hospital Sant Joan de Déu, Barcelona, Spain, ²⁷Lund University, Lund, Sweden, 28 Aga Khan University Hospital, Karachi, Pakistan, 29 University Hospital Brno, Brno, Czech Republic, ³⁰Hospital Infantil Virgen del ³²Portuguese Cancer Institute, Lisbon, Portugal, ³³Schneiders Children's Medical Center Of Israel, Petah Tikva, Israel

Children with pediatric gliomas harboring BRAF V600E mutation have a poor outcome with current chemoradiation strategies. Our aim was to study the role of targeted BRAF inhibition in these tumors. We collected clinical, imaging, molecular and outcome information from BRAF V600E glioma patients treated with BRAFi across 29 centers from multiple countries. Sixty-seven patients were treated with BRAFi (56 pediatric low grade gliomas, PLGG and 11 pediatric high grade gliomas, PHGG) for up to 5.6 years. Objective responses were observed in 80% of PLGGs compared to 28% with conventional chemotherapy (p<0.001). These responses were rapid (median, 4 months), and sustained in 86% of tumors up to 5 years while on therapy. PLGG which discontinued BRAFi, 76.5% (13/17) progressed rapidly after discontinuation (median 2.3 months). However, upon re-challenge with BRAFi therapy, 90% achieved an objective response. Poor prognostic factors to conventional therapies, such as concomitant homozygous deletion of CDKN2A, were not associated with a lack of response to BRAFi. In contrast, only 36% of PHGG responded to BRAFi with all but one tumor progressing within 18 months. In PLGG, responses translated to 3-year progression-free survival of 49.6% (95%CI, 35.3% to 69.5%) vs 29.8% (95% CI, 20% to 44.4%) for BRAFi vs chemotherapy respectively (p=0.02). The use of BRAFi results in robust and durable responses while on therapy in BRAF V600E PLGG. Prospective studies are required to determine long-term survival and functional outcomes with BRAFi therapy in childhood gliomas.

LGG-56. INFANTILE HEMISPHERIC BRAIN TUMOR WITH A GOPC-ROS1 FUSION GENE: A CASE REPORT

<u>Ricko Taniguchi</u>¹, Atsushi Natsume², Nozomu Kawashima¹, Shinji Tanioka³, Hideki Muramatsu¹, Motoharu Hamada¹, Daisuke Ichikawa¹, Masayuki Imaya¹, Kotaro Narita¹, Michihiro Kurimoto^{1,2}, Yoshiki Shiba², Kosuke Aoki², Fumiharu Ohka², Junko Hirato^{4,5}, Toshihiko Wakabayashi², and Yoshiyuki Takahashi¹; ¹Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan, ²Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Japan, ³Department of Pediatrics, Nagasaki University Hospital, Nagasaki, Japan, ⁴Department of Pathology, Gumma University Hospital, Maebashi, Japan, ⁵Department of Pathology, Public Tomioka General Hospital, Tomioka, Japan

INTRODUCTION: Infantile hemispheric gliomas with ROS1 fusion genes have been reported to have a relatively poor prognosis. Treatment using a ROS1 inhibitor is expected to generate less toxicity and effective for brain tumors with ROS1 fusion genes. CASE PRESENTATION: A onemonth-old female presented with a seizure, and a large hypervascular mass in the right hemisphere was found on MRI. The tumor was not biopsied over concerns of an increased risk for bleeding. The mass was clinically diagnosed as an atypical teratoid rhabdoid tumor. She received neoadjuvant chemotherapy using the modified EU-RHAB protocol. The tumor gradually decreased to 70% of its original size with a reduction of vascularity. A neartotal resection (> 95%) was performed at eight months of age. Pathological examination revealed the unusual histology with immunostaining positive for INI-1, GFAP, synaptophysin, neurofilament, and slightly positive for NeuN. MIB-1 labeling index was 6%. The pathological diagnosis was a glioneuronal tumor with desmoplastic infantile ganglioglioma-like features, suggestive of low grade. She received adjuvant chemotherapy with carboplatin and vincristine, which is the standard treatment for low-grade gliomas, and achieved a partial response. The GOPC-ROS1 fusion gene was detected in the tumor by FoundationOne® CDx. CONCLUSION: Chemotherapy may effectively reduce the size of an infant's brain tumor which is initially considered to be inoperable. A gene profile should be performed as soon as possible in order to direct appropriate management.

LGG-57. SIGNALLING MECHANISMS IN PAEDIATRIC LOW-GRADE GLIOMA

<u>Ankit Patel</u>¹, Tania Jones¹, Lewis Woodward¹, Arran Dokal², Vinothini Rajeeve², Pedro Cutillas², Thomas Stone^{3,4}, Thomas Jacques^{3,4}, and Denise Sheer¹; ¹Barts and the London School of Medicine and Dentistry, London, United Kingdom. ²Barts Cancer Institute, London, United Kingdom. ³UCL Great Ormond Street Institute of Child Health, London, United Kingdom. ⁴Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom

Paediatric low-grade gliomas (pLGGs) constitute the largest group of childhood CNS tumours. They often cause significant disability and morbidity, despite their indolent growth and the good survival rate of patients. The most common genetic alterations in these tumours, KIAA1549:BRAF fusion and BRAFV600E mutation, lead to abnormal activation of MAPK signalling. The central role of this pathway in pLGG development is emphasized by the occasional presence of other MAPK-activating alterations such as RTK mutations. It is not known how these different aberrations can induce the variety of clinical phenotypes seen in pLGG. Here, we compared pilocytic astrocytomas (PAs) containing the KIAA1549:BRAF fusion with glioneuronal tumours (GNTs) containing the BRAFV600E mutation, to identify differentially activated downstream targets of the MAPK pathway. Liquid chromatography tandem mass spectrometry (LC-MS/MS) was used as a multi-proteomic approach. Kinase Set Enrichment Analysis (KSEA) using PhosphositePlus and NetworkIN was used to determine relative enrichment of kinase activity in the tumours compared to healthy control brain tissue. Significant similarities and differences were found in the two tumour types. For example, more robust MAPK activation was found in the GNTs than in PAs. However, while PI3K/AKT1/mTOR signalling was active in both PAs and GNTs, there was statistically higher activation in the PAs. In both tumour types, there was significant reduction in casein kinase 2 activity, which likely affects nuclear translocation of ERK and, in turn, alters the range of its phosphorylated substrates. We will present these data together with transcriptomics to further characterise the downstream targets of these genetic alterations.