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Abstract

Avian influenza virus (AIV) can infect a variety of avian species and mammals, leading to

severe economic losses in poultry industry and posing a substantial threat to public health.

Currently, traditional virus isolation and identification is inadequate for the early diagnosis

because of its labor-intensive and time-consuming features. Real-time RT-PCR (RRT-PCR)

is an ideal method for the detection of AIV since it is highly specific, sensitive and rapid. In

addition, as the new quencher MGB is used in RRT-PCR, it only needs shorter probe and

helps the binding of target gene and probe. In this study, a pan-AIV RRT-PCR for the detec-

tion of all AIVs and H5-AIV RRT-PCR for detection of H5 AIV based on NP gene of AIV and

HA gene of H5 AIV were successfully established using Taqman-MGB method. We tested

14 AIV strains in total and the results showed that the pan-AIV RRT-PCR can detect AIV of

various HA subtypes and the H5-AIV RRT-PCR can detect H5 AIV circulating in poultry in

China in recent three years, including H5 viruses of clade 7.2, clade 2.3.4.4 and clade

2.3.2.1. Furthermore, the multiplex detection limit for pan-AIV and H5-AIV RRT-PCR was 5

copies per reaction. When this multiplex method was applied in the detection of experimen-

tal and live poultry market samples, the detection rates of pan-AIV and H5 AIV in RRT-PCR

were both higher than the routine virus isolation method with embryonated chicken eggs.

The multiplex RRT-PCR method established in our study showed high sensitivity, reproduc-

ibility and specificity, suggesting the promising application of our method for surveillance of

both pan AIV and prevalent H5 AIV in live poultry markets and clinical samples.

Introduction

Avian Influenza Virus (AIV) infection in poultry can lead to various symptoms, including

growth retardation [1, 2], respiratory signs [1, 3] and decreased egg production[4]. Human
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beings and other animals also can be infected by AIV [5–8] which consists of 16 HA (Hemag-

glutinin, HA) subtypes and 9 NA (Neuraminidase, NA) subtypes [9]. Among these subtypes,

the H5 AIV has been a substantial threat to public health as WHO reported 858 people infected

by H5N1 while 453 people died by March 2017 [10]. Moreover, H5N1 and H5NX viruses of

clade 7.2, clade 2.3.2.1c and 2.3.4.4 which occurred through mutation and recombination cur-

rently with other N2, N6 and N8 influenza viruses in poultry [11] have been the most prevalent

H5 viruses in China [2, 12, 13], Viet Nam, Laos [14] and other countries [15].

Until now, the gold standard method of identifying AIV and its subtypes encouraged by

OIE (Office International Des Epizooties, OIE) is virus isolation with embryonated chicken

eggs before hemagglutination assay (HA) and hemagglutination inhibition test (HI) [16].

However, this traditional method is time-consuming and thus cannot be used as a rapid

diagnostic technology. Other methods such as gold immunochromatographic assay [17],

microarray [18, 19], immunosensor [20], immune-fluorescence [21] and enzyme linked

immunosorbant assay [22–25] are also used in AIV detection. However, some of them fail to

subtype AIV while others cannot be applied in early diagnosis owing to inadequate sensitivity

[17, 26–28].

Real-time reverse transcriptase/polymerase chain reaction (RRT-PCR) [29] is a method

with high specificity as well as high sensitivity. Taqman-MGB (minor groove binding, MGB)

probe is a new probe firstly reported in 2000 [30]. This probe replaces traditional Tamra at

3’end with MGB as a quencher. Recently, Taqman-MGB probes are widely applied in patho-

gen detection and single nucleotide polymorphism (SNP) diagnosis. E.g., Taqman-MGB

probes were used in the detection of equine herpes virus 5 (EHV-5) [31], infectious bursal dis-

ease virus (IBDV) [32], clostridium piliforme [33], coliforms [34], trisomy 21 [35] and differ-

entiation of virulent and vaccine strains of avian paramyxovirus type 1 [29]. However, as far as

we know, there are no reports associated with Taqman-MGB probe that targeting NP (nucleo-

protein) gene of AIV despite of its high conservation. Additionally, no article about Taqman-

MGB probe for the detection of multiple H5 clades was ever found although virus variation

has occurred frequently.

In this study, in order to efficiently and simultaneously detect pan-AIV and prevalent H5

clades, two Taqman-MGB probes targeting AIV-NP and H5-HA fragments were designed re-

spectively and used in reaction simultaneously. Our study suggest that the multiplex RRT-PCR

method established in this study has a higher sensitivity than traditional virus isolation and

can be used in live poultry markets for surveillance of pan-AIV and prevalent H5 clades.

Materials and methods

Ethics statement

This study was carried out in strict accordance with the recommendations in the Guide for

the Care and Use of Laboratory Animals of the Ministry of Science and Technology of the Peo-

ple’s Republic of China. The protocols for animal experiments were approved by Jiangsu

Administrative Committee for Laboratory Animals (approval number: SYXK-SU-2007-0005),

and complied with the guidelines of Jiangsu laboratory animal welfare and ethics of Jiangsu

Administrative Committee of Laboratory Animals. All efforts were made to minimize suffer-

ing and to reduce the number of animals used.

Animals

Ten male 6-weeks-old SPF chickens were purchased from Weike Technology Co. (Yangzhou,

China). All experiments involving live viruses and animals were performed in negative-pres-

sure isolators with HEPA filters in a biosafety level 3 (BSL3) animal facilities in accordance
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with the institutional biosafety manual. Animal suffering was minimized by providing free

access to food and water. Moreover, the temperature was between 20–25˚C and a 12-h light/

dark cycle was kept. During experiment, animals were monitored by laboratory staff twice a

day and there were no animal illnesses or unexpected deaths. Animals were euthanized with

sodium pentobarbital after experiments.

Preparation of H5-HA and NP plasmids

For quantitative standard plasmids, we constructed two plasmids targeting NP gene and HA

gene respectively. NP and HA genes were originated from a previously reported strain QD5

(Accession Number, KT221066-KT221067) [2], which was a H5N8 AIV of clade 2.3.4.4

isolated in 2014. They were amplified with universal primer sets of NP and HA gene [36]

with BsmB I restriction sites (New England Biolabs, Beijing, China) and then cloned into

PHW2000 vectors. The nucleotides of plasmids were sequenced (GenScript, Nanjing, China)

and purified with a QIAprep Spin Miniprep Kit (Qiagen, Hilden, Germany).

Viruses

The H5 subtype AIV of different clades and H1, H3, H4, H6, H7, H8, H9, H10, H11 subtype

AIVs (Table 1) were isolated from 2013 to 2016 in our laboratory and amplified in the

allantoic cavities of 10-day-old SPF chicken eggs. All gene accession numbers are available

from NCBI database (KY472791~KY472797, KY486469-KY486470, EF061123, KT221082,

KY437800, KY437768 and KY437776). In addition, Newcastle disease viruses (NDV), infec-

tious bursal disease virus (IBDV), infectious bronchitis virus (IBV) and Marek’s disease virus

(MDV) were also provided by our lab to serve as negative controls.

Reed-Muench method [16] is commonly used in the calculation of 50% lethal dose or 50%

infectious dose to measure the virulence of a toxin or pathogen. To determine the EID50 (50%

embryo infectious dose), 0.1mL of 10-fold serially diluted virus aliquots are inoculated in

embryonated eggs. After 3–4 days, embryo allantoic liquid was collected for HA titration and

the 50% infectious dose of the viruses were further calculated using the Reed-Muench method

[16].

Table 1. AIV strains used in this study and the detection limit of RRT-PCR method.

AIV Strain Subtype EID50
a Detection limit b

A/duck/Shandong/SDd11/2013 H1N1 10−8.625 0.042

A/duck/Jiangsu/YZD3/2013 H3N2 10−8.0 0.1

A/duck/Anhui/AHd38/2014 H4N6 10−7.625 0.42

A/goose/Yangzhou/0420/2014 H5N8, 2.3.4.4 10−7.33 0.021

A/duck/Beijing/BJ7/2014 H5N2, 7.2 10−6.625 0.42

A /chicken/Eastern China/1404/2014 H5N1, 2.3.2.1c 10−6.625 0.042

A/chicken/Yangzhou/YJD/2014 H5N6, 2.3.4.4 10−8.0 0.1

A/goose/Yangzhou/0403/2014 H5N1, 2.3.2.1c 10−8.33 0.021

A/duck/Jiangsu/119/2015 H6N2 10−5.67 0.046

A/Chicken/Zhejiang/JX164/2015 H7N9 10−7.65 0.044

A/duck/Yangzhou/02/2005 H8N4 10−6.67 0.046

A/Chicken/Eastern China/0923/2015 H9N2 10−8.167 0.14

A/duck/Jiangsu/XZD53/2014 H10N7 10−6.5 0.32

A/duck/Jiangsu/YZD1/2013 H11N9 10−8.0 1.0

a, EID50/0.1mL

b, Detection limit of RRT-PCR (EID50)

https://doi.org/10.1371/journal.pone.0178634.t001
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Extraction of viral nucleic acids

High Pure Viral Nucleic Acid Kit (Roche Molecular Biochemicals, Indianapolis, IN, USA) was

used to extract viral nucleic acids in allantoic fluids or antibiotics-containing PBS (penicillin

2000 unit/mL, streptomycin 10 mg/mL, gentamycin 250 μg/mL, kanamycin, 250 μg/mL).

Briefly, 200μL samples were incubated with Proteinase K at 72˚C for 10 minutes. After centri-

fugation, viral nucleic acids were purified with inhibitor removal buffer and then with wash

buffer in filter columns with collection tubes. Finally, nucleic acids were eluted in 20–30 μL

elution buffer and stored at -70˚C for RRT-PCR.

One-step Real-time PCR for detection of H5 subtype AIV and pan-AIV

Design of probe and primers. Sequences of H5-HA and AIV-NP gene from 2005 to 2015

were obtained from GenBank database. Clustal W alignments of H5-HA and NP multiple

sequences were performed in MEGA 5.0 software before conserved domains were selected for

the design of primers and probes. To detect H5 subtype AIV and pan-AIV, gene-specific

probes and primers of H5-HA and AIV-NP were designed respectively using ABI Primer

Express 3.0.1 and further tested by Oligo 7.0 software. Then the specificity of two sets of prim-

ers and probes were verified in Blastn search engine (http://www.ncbi.nlm.nih.gov/). The

primers and probes used in this study were listed in Table 2. Both probes were modified with

MGB at 3’-end.

Optimization of RRT-PCR. As we used commercial kit (HiScript II U+ One Step qRT-

PCR Probe Kit, Vazyme, Nanjing, China) in RRT-PCR, the PCR reaction system and pro-

grams were provided. So optimization consists of primer design, probe design and concentra-

tion adjustment. First, primers and probes were specifically chosen through gene alignments

and primer specificity analysis. Then we determined the optimal concentrations of the two

probes. Various concentrations of NP and H5-HA probes, i.e., 200nM, 250nM, 300nM and

350nM, were used in every single detection (Figure A and B in S1 Fig). Finally we confirmed

the concentrations of HA and NP primers in multiple detection. In this part, amplification

curves and dissociation curves (Figure C and D in S1 Fig) were performed at different con-

centrations of HA and NP primer pairs (350-450nM) with SYBR Premix Ex Taq II kit (Takara,

Shiga, Japan). The optimal primer and probe concentrations of H5-HA primer pairs, NP

primer pairs, H5-HA probe, NP probe in 20 μL RRT-PCR system were 400nM, 400nM,

350nM, 350nM, respectively. A single peak around 82.5˚C was obtained in melt curves

(Figure D in S1 Fig), suggesting no primer-dimer was formed.

One-step Real-time PCR. After optimization, primers and probes were ready for PCR

amplification. One-step Real-time PCR was performed in a 20μL reaction mixture after

Table 2. Primers and probes used in this study.

Name Sequence (5’-3’) Position Strand

H5-HA FP CTTGCGACTGGGCTCAGAAAT 985–1005 Sense

H5-HA RP TTTGGGTGGATTCTTTGTCTGC 1141–1163 Antisense

H5-HA P VIC-CATTCCTTGCCATCC-MGB 1071–1086 Antisense

NP FP ACCAGAAGATKTGTCMTTCCAGGG 1369–1393 Sense

NP RP TACTCCTCCGCATTGTCTCCGAAG 1473–1498 Antisense

NP P FAM-AAGGCAACGAACCC-MGB 1421–1435 Sense

Note: The NP and HA primers were 131bp and 178bp, respectively. FP, RP and P respectively represented forward primer, reverse primer and probe for

short.

https://doi.org/10.1371/journal.pone.0178634.t002

Detection of pan and H5 AIV by one-step PCR

PLOS ONE | https://doi.org/10.1371/journal.pone.0178634 June 2, 2017 4 / 13

http://www.ncbi.nlm.nih.gov/
https://doi.org/10.1371/journal.pone.0178634.t002
https://doi.org/10.1371/journal.pone.0178634


optimization. It consisted of 10μL 2x One Step PCR Mix (Vazyme), 1μL Enzyme Mix

(Vazyme) containing reverse transcription enzyme and DNA polymerase, 0.35μL H5-HA

probe (20μM), 0.35μL NP probe (20μM), 0.4μL H5-HA reverse primer (20μM), 0.4μL H5-HA

forward primer (20μM), 0.4μL NP reverse primer (20μM), 0.4μL NP forward primer (20μM),

6μL RNA sample, 0.4μL 50x ROX and 0.3μL RNase-free water. Reactions were carried through

in ABI 7500 Real-time PCR instrument (Applied Biosystems) with the following programs:

15min at 55˚C, 5min at 95˚C, 40 cycles of 5s at 95˚C and 34s at 60˚C. Meanwhile, NTC (no

template control) and positive control (RNA from H5 subtype AIV) were both used. The data

was then analyzed with 7500 Software Version 2.0.6 (Applied Biosystems).

Specificity, sensitivity and reproducibility of RRT-PCR. When referring to specificity,

we firstly used Blastn search engine to test two sets of primers with probes in Table 2. Organ-

ism option in Blastn was chosen to include every subtype of AIV or exclude AIV before results

analysis. Then the specificity was further evaluated using the nucleic acids of H1-H11 subtype

AIVs (except H2, Table 1) and other avian pathogens including NDV, IBDV, IBV and MDV.

And the sensitivity was determined using serially diluted mixture of HA and NP plasmids

(each plasmid was 5×105, 5×104, 5×103, 5×102, 5×101, 5×100 copies of DNA/ 5 μL) as quantita-

tive standards for the calculation of copy number. Furthermore, for RNA samples, serial loga-

rithmic dilutions of RNA according to EID50 were used for amplification by pan-AIV or H5

RRT-PCR. To test the reproducibility in our study, inter-assays and intra-assays were analyzed

by diluting plasmids mixture to 4 different concentrations. In intra-assays, triplicates were

made in multiplex RRT-PCR on one plate while in inter-assays we repeated multiplex RRT-

PCR on day 1, day 3, and day 5.

Experimental and clinical samples

Experimentally inoculated oral-pharyngeal and cloacal swabs. Three of ten SPF chick-

ens were infected intranasally (i.n.) with 103.0 EID50 of H5 AIV strain 0420 (Table 1). After

inoculation, all the chickens were kept in one isolator for mimicking natural infections

(n = 10). From 24 hours post infection (p.i.) to 48 h p.i., the oral-pharyngeal swab and cloacal

swab of each chicken were collected in 1 mL antibiotics-containing PBS. Samples were stored

at -70˚C until total nucleic acids were extracted with High Pure Viral Nucleic Acid Kit (Roche

Molecular Biochemicals).

Clinical cloacal swab samples collection. Oral-pharyngeal and cloacal swab samples

were collected from live poultry market of East China. Swab samples were immediately placed

into 1mL antibiotic-containing PBS as described above and then stored at -70˚C until total

nucleic acids were extracted with viral RNA/DNA extraction kit above.

Virus isolation and identification. After collecting swab samples from experimentally

inoculated chickens and live poultry markets, 200μL volume was used for viral nucleic acid

extraction followed by RRT-PCR. Meanwhile, another 200μL was used for traditional virus

isolation using 10-day-old embryonated SPF chicken eggs. After 3 days of incubation at 35˚C,

the presence of virus was determined by the hemagglutination assay using 1% chicken erythro-

cytes. In addition, the specific information of subtypes collected from market was further con-

firmed by hemagglutination inhibition test and PCR with AIV universal primers [36].

Results

Specificity of H5 and pan-AIV RRT-PCR

The primers and probes were obtained through gene alignment and primer design. The results

of Blastn were shown in S1 Table and S2 Table. As shown in S1 Table, there were 20333

results which matched primers and single probe targeting NP gene, suggesting the potential of

Detection of pan and H5 AIV by one-step PCR

PLOS ONE | https://doi.org/10.1371/journal.pone.0178634 June 2, 2017 5 / 13

https://doi.org/10.1371/journal.pone.0178634


this group of primers and single probe to detect pan-AIVs from H1 to H16. Similarly, 7598

results that matched primers and single probe targeting H5-HA gene were found in S2 Table,

indicating the possibility of the primers and single probe to detect H5N1 to H5N9. The results

showed that all 9 tested AIV subtypes as well as different clades of H5 could be specifically

detected (Table 1, S2–S4 Figs). In contrast, NDV, IBDV, IBV and MDV as the negative con-

trols could not be amplified with primers and probes in Table 2.

Standard curves for multiplex one-step RRT-PCR

In order to determine the detection limit of our method, two standard plasmids which carried

H5-HA gene and NP gene were constructed respectively. Standard curves were of linear corre-

lation between 5x105 and 5x100 copies of the target DNAs in multiplex detection (Fig 1). In

addition, the linear relation expresses of standard curves of NP and HA were y = -3.346x+

39.272 (Efficiency 99.01%, R2 0.997) and y = -3.43x+40.183 (Efficiency 95.67%, R2 0.998),

respectively. Moreover, the multiplex detection limit of H5-AIV and pan-AIV RRT-PCR was

as low as 5 copies per reaction (or 5 copies/μL).

Detection limits of RNA samples

The detection limit of different subtypes of AIVs and different clades of H5 were tested. As for

RRT-PCR for pan-AIV detection, the detection limit of different HA subtypes was between

0.021 to 1.0 EID50 (Table 1, S2 Fig and S3 Fig), suggesting a better sensitivity than virus isola-

tion. While in H5 detection, the detection limit of different clades was from 0.021 to 0.1EID50

(S4 Fig and Table 1).

Reproducibility assays

The results of intra-assays (Table 3) and inter-assays (Table 4) of AIV-NP and H5-HA detec-

tion revealed that the coefficients of variation (CV %) were all< 1%, suggesting our multiplex

RRT-PCR method is of high reproducibility considering a threshold of 3% for CV % [37, 38].

Comparison of RRT-PCR and virus isolation for AIV detection in

experimental samples

H5 AIV usually kills the infected chickens in 3 days, so we collected swabs at 24 h, 36 h and 48

h post infection. Three 6-weeks-old SPF chickens (n = 10) were inoculated i.n. with 0.2 ml 103

EID50 H5 subtype AIV and another 7 chickens of the group were kept contact with these

infected chickens. Duplicates were made for each sample in RRT-PCR and the criterion of pos-

itive sample was Ct of duplicates less than 40 in both FAM and VIC fluorescence channels. As

shown in Fig 2, the number of positive samples of each column in RRT-PCR was higher than

that of virus isolation method, except the time point of 48 h at which positive samples of two

methods were equal in number.

Comparison of RRT-PCR and virus isolation for AIV detection in clinical

samples

Oral-pharyngeal or cloacal swab samples were collected in May and June from live poultry

market of East China. All these samples were tested simultaneously by RRT-PCR and virus iso-

lation methods. Meanwhile, after HA test, positive samples in virus isolation method were fur-

ther classified into H5 and other subtypes through HA-HAI test and regular RT-PCR with

AIV universal primers. The result revealed that our RRT-PCR method was more sensitive than

virus isolation. Specifically, 36 (16.36% of 220) AIV strains containing 16 (7.27% of 220) H5

Detection of pan and H5 AIV by one-step PCR
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strains in these two months were collected via virus isolation in eggs (Fig 3), while 54 (24.55%

of 220) samples were AIV positive and 32 (14.54% of 220) samples were H5 positive by

RRT-PCR method.

Discussion

The frequent antigen shift and antigen drift of AIV increase the difficulty of AIV detection.

Among all the AIV subtypes, highly pathogenic H5 avian influenza virus often leads to high

morbidity and mortality in poultry. Therefore, early detection of AIV and H5 subtype is very

necessary in the surveillance and control of AIV outbreaks. RRT-PCR is an effective detection

Fig 1. Amplification plots and standard curves drew by ABI 7500 software in multiplex detection with standard plasmids. The threshold

lines in amplification plots and linear curves in standard curves were draw automatically by ABI 7500 software. (A) NP standard curve between 5x100

and 5x105 copies (y = -3.346x+39.272, R2 = 0.997, top), linear amplification plot (middle), and log amplification plot (bottom) in multiplex detection. (B)

HA standard curve between 5x100 and 5x105 copies (y = -3.43x+40.183, R2 = 0.998, top), linear amplification plot (middle), and log amplification plot

(bottom) in multiplex detection.

https://doi.org/10.1371/journal.pone.0178634.g001
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method and multiplex detection is an inevitable tendency in early detection because of its high

efficiency and reproducibility. When referring to RRT-PCR method based on MGB, it has

multiple advantages, including keeping high Tm, shortening the length of probe [30, 39], low-

ering the fluorescence background [40] and helping the combination of probe and template

[41]. Although some Taqman-MGB detection methods for H5 AIV have been reported before

2010 [39, 42], it is of high necessity that the sensitivity and specificity could be further devel-

oped owing to the high variation of influenza virus.

Among AIV detection methods, Teng [43] reported the detection of H3 AIV through Taq-

man-MGB method, with detection limit of 10 copies per reaction, which was 1000 times more

sensitive than conventional RT-PCR. Di [44] also found that the sensitivity of M gene Taq-

man-MGB probe for pan-AIV detection was 10–100 times higher than conventional RT-PCR

which was between 5–50 RNA copies per reaction. Payungporn [39] designed MGB probes

for M, NA and HA gene of H5N1 in 2006 and the LOD (limit of detection) of the multiplex

RT-PCR was 100 copies/uL. In 2007, Lu [42] designed Taqman-MGB probe targeting H5-HA

for the detection of H5 subtype and the detection threshold was 100 copies per reaction.

Although these Taqman-MGB detection methods for H5 AIV have been reported before 2010,

there is possibility that the sensitivity could be further developed. Moreover, none of them

have reported suitable Taqman probes for the detection of different clades of H5 AIV.

In our study, Taqman-MGB probes and primers were designed based on the conserved

regions of H5-HA gene and AIV-NP gene. High specificity and repeatability of the AIV-NP

Table 3. Intra-assay in multiplex detection of H5 AIV and pan-AIV.

Copies of plasmids Gene Ct Value in Intra-Assay Mean ± SD CV%

1 2 3

5x104 HA 22.899 23.113 23.013 23.014±0.108 0.469%

NP 22.356 22.239 22.309 22.301±0.059 0.264%

5x103 HA 26.558 26.658 26.686 26.634±0.067 0.253%

NP 25.770 25.748 25.835 25.784±0.045 0.175%

5x102 HA 29.982 29.982 30.094 30.019±0.065 0.215%

NP 29.231 29.280 29.237 29.249±0.027 0.091%

5x101 HA 32.759 32.927 32.946 32.878±0.103 0.313%

NP 32.280 32.561 32.561 32.373±0.163 0.503%

Note: Each concentration had 3 replicates. CV% (the threshold is 3%) and Ct values of each concentration were shown.

https://doi.org/10.1371/journal.pone.0178634.t003

Table 4. Inter-assay in multiplex detection of H5 AIV and pan-AIV.

Copies of plasmids Gene Ct Value in Inter-Assay Mean ± SD CV%

Day1 Day3 Day5

5x105 HA 18.319 18.239 18.332 18.297±0.050 0.274%

NP 20.153 20.332 20.139 20.208±0.107 0.532%

5x104 HA 22.085 21.914 21.968 21.989±0.087 0.397%

NP 22.999 23.088 22.988 23.025±0.055 0.239%

5x103 HA 25.039 24.745 24.866 24.883±0.147 0.592%

NP 26.306 26.527 26.533 26.455±0.130 0.490%

5x102 HA 28.841 28.368 28.701 28.637±0.243 0.848%

NP 30.157 30.569 30.056 30.405±0.302 0.897%

Note: We repeated multiplex RT-PCR on day 1, day 3, and day 5. CV% (the threshold is 3%) and Ct values of each concentration were shown.

https://doi.org/10.1371/journal.pone.0178634.t004
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Fig 2. Detection of H5 AIV in swabs from infected SPF chickens with virus isolation and RRT-PCR.

Oral-pharyngeal swabs and cloacal swabs of 10 SPF chickens were collected at 24 h, 36 h and 48 h. The

infection dose of SPF chicken was 0.2mL 103 EID50 of H5 AIV. At 24 h and 36 h, no H5 AIV was detected in

oral-pharyngeal samples in traditional virus isolation method while the number of positive trachea swabs

through RRT-PCR detection at 24 h and 36 h were 5 and 2 respectively. The number of positive samples in

RRT-PCR matched that in virus isolation at 48 h.

https://doi.org/10.1371/journal.pone.0178634.g002

Fig 3. Positive percentage by virus isolation and RRT-PCR for live-poultry market samples from May 2016

to June 2016. 110 oral-pharyngeal or cloacal samples were collected from live poultry market in May and June

respectively in 2016. Columns from left to right are 10%, 16.4%, 4.5%, 12.7%, 17.3%, 26.4%, 15.5%, 22.7%,

which showed RRT-PCR method was of higher positive percentage than virus isolation.

https://doi.org/10.1371/journal.pone.0178634.g003
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and H5-HA RRT-PCR was successfully achieved. As low as 0.021~1 EID50 AIV per reaction or

5 copies/μL (or 5 copies per reaction) nucleic acids of NP and H5-HA gene could be detected,

indicating the potential value of our method in application of early detection and rapid diag-

nosis of AIV. In the detection of experimental and clinical samples, our multiplex RRT-PCR

method showed higher sensitivity along with high efficiency. To the best of our knowledge,

this is the first Taqman-MGB method for the detection of multiple H5 clades and the first

report of NP Taqman-MGB probe for pan-AIV detection although NP is also a very conserved

gene except for M gene in AIV [45].

In conclusion, the multiplex RRT-PCR method established in our study showed high sensi-

tivity, reproducibility and specificity. As our RRT-PCR provides a fast and convenient method

for screening samples in large volumes during clinical diagnose, it can be applied before tradi-

tional virus isolation method which was used to verify and isolate AIV strains. It is expected

that this multiplex RRT-PCR for detection of pan-AIV and its H5 subtype will be applied in

surveillance of clinical samples in live poultry markets.

Supporting information

S1 Fig. Optimization of oligonucleotide concentrations. (A) Curves representing fluores-

cence and Ct values for H5-HA primers using 200, 250, 300 or 350nM in reaction. (B) Curves

representing fluorescence and Ct values for NP primers using 200, 250, 300 or 350nM in reac-

tion. (C) Curves comparing different concentration sets of H5-HA and NP primers in SYBR

Green PCR, i.e., NP350 and HA350nM, NP400 and HA350nM, NP400 and HA400nM,

NP400 and HA450nM. (D) Post-PCR melting curves displaying fluorescence versus tempera-

ture in SYBR Green PCR.

(TIF)

S2 Fig. Amplification plot of diluted RNA of H1, H3, H4, H6, H7, H8, H9, H10, H11 AIVs

in AIV-NP RRT-PCR with curves of other avian pathogens as negative controls. After

extraction, RNAs of different subtypes of AIVs were diluted logarithmically according to

EID50. E.g., The Ct values of H1N1 varies from 21 to 35 when RNA was diluted to 4200 ~

0.042 EID50.

(TIF)

S3 Fig. Amplification plot of diluted RNA of H5 clades in AIV-NP RRT-PCR with curves

of other avian pathogens as negative controls.

(TIF)

S4 Fig. The detection limit of different clades of H5 subtype AIV tested in H5-HA

RRT-PCR. Amplification plot of diluted RNA of H5 clades in H5-HA RRT-PCR, with curves

of other avian pathogens as negative controls. RNAs were diluted logarithmically according to

EID50. E.g., The Ct values of SQ1404 varies from 21 to 38 when RNA was diluted to 4200 ~

0.042 EID50.

(TIF)

S1 Table. Number of items of Blastn after inputting NP primers and probes for detecting

pan-AIV.

(DOC)

S2 Table. Number of items of Blastn after inputting HA primers and probes for detecting

all H5 AIV.

(DOC)
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