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Abstract: This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm
based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed
logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian
prior, which helps to achieve performance improvement on sparse representation. The logarithmic
Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better
focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly
estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum
a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to
estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier
Transform (FFT) and Hadamard product are used to minimize the required computational efficiency.
Experimental results based on both simulated and measured data validate that the proposed
algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution
improvement and noise suppression.

Keywords: inverse synthetic aperture radar imaging (ISAR); sparse signal recovery; logarithmic
Laplacian prior; autofocusing; maximum a posterior (MAP); quasi-Newton method

1. Introduction

Due to the capability of achieving high resolution images of moving targets (aircrafts, satellites,
vessels, etc.), the Inverse Aperture Radar Imaging (ISAR) technique has been used for various
civil and military applications [1–3]. The Range Doppler (RD) algorithm [4], which is supported
by the 2D Fast Fourier Transform (FFT), is the most widely applied ISAR imaging algorithm.
However, the radar image achieved by the RD algorithm often suffers from high sidelobe and low
resolution [5], which hardly meets the requirement of newly developed Automatic Targets Recognition
(ATR) techniques. Additionally, complicated motion of targets and low Signal to Noise Ratio (SNR)
condition further deteriorate the performance of the RD algorithm [6].

The ISAR image is generally sparse, and only contains a small region of targets with a clear
background. Therefore, ISAR imaging can also be achieved by the sparse signal recovery algorithms.
Numerous research efforts in this direction have been reported in the past two decades. The sparse
signal recovery has led to advanced ISAR imaging methods offering a number of benefits, including the
increased resolvability of scatterers, reduced sidelobe, and robustness to limitations in data quality and
quantity [7–10]. The kernel of sparsity-driven ISAR is the sparse signal recovery algorithm, wherein
some strategies have been proposed to solve the inverse problems under sparse constraint, such as
the basis pursuit (BP) [11], the focal underdetermined system solver (FOCUSS) [12], the orthogonal
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matching pursuit (OMP) [13], etc. These sparse recovery algorithms often suffer from sensitiveness to
noise, low computational efficiency or manually tuning of algorithm parameters.

Sparse signal recovery can also be accomplished within the Bayesian framework [14,15].
Compared with the formerly mentioned spare recovery algorithms, the Bayesian sparse signal recovery
algorithm performs better in terms of parameter selection, recovery precision, robustness to noise,
etc. [15]. In recent years, the Bayesian sparse signal recovery algorithms have been introduced to ISAR
imaging to improve the quality of radar image [16–20]. The Laplacian prior is utilized in [16,20] to
model the ISAR image of the target, and the sparse signal recovery with Laplacian prior is accomplished
by the maximum a posterior (MAP) estimation and the quasi-Newton method. The ISAR imaging based
on the sparse Bayesian leaning (SBL) utilizes the Gaussian scale mixture (GSM) prior to model targets
and the variational Bayesian inference [21] based on expectation maximization (EM) to achieve sparse
signal recovery [17–19].

Compared with the GSM prior, the Laplacian prior enforces the sparsity constraint more heavily,
since the distribution of Laplacian prior has a narrower main lobe than the GSM prior, which
encourages the signal coefficients closing to zero [22]. Additionally, the log-concavity of Laplacian
prior provides a very useful advantage of eliminating local-minima since it leads to unimodal
posterior distributions.

In this paper, we propose a novel sparse Bayesian ISAR imaging algorithm with a newly proposed
logarithmic Laplacian prior, which is achieved by putting a logarithm on the exponent of the Laplacian
prior. Compared to the GSM and Laplacian prior, the proposed logarithmic Laplacian prior has a
narrower main lobe and higher tail values, and performs better on sparseness representation. Noting
that the ISAR image generally exhibits strong sparse character, the proposed logarithmic Laplacian
prior is expected to be more suitable for sparse modeling in ISAR imaging than the widely used GSM
and Laplacian prior. Then, the logarithmic Laplacian prior based ISAR image is reconstructed by the
MAP estimation, and the phase errors are estimated based on minimum entropy criterion during
the iteration of sparse signal recovery. Moreover, the fast Fourier transform (FFT) and Hadamard
product are utilized to ensure computational efficiency of the proposed algorithm. Both simulated and
measured data based experimental results validate the effectiveness of the prosed method.

This paper is organized as follows. The logarithmic Laplacian prior is defined in Section 2, and the
signal model for Bayesian ISAR imaging is presented in Section 3. The Bayesian ISAR imaging based on
the logarithmic Laplacian prior, including Bayesian sparse signal recovery, model parameter learning
and initialization setting, are derived in Section 4. Experimental results based on both simulated and
measured data are illuminated in Section 5, and conclusions are drawn in Section 6.

2. Logarithmic Laplacian Prior

The sparse characteristic of the ISAR image makes it possible to achieve ISAR imaging with the
sparse Bayesian framework. The image to be reconstructed is usually modeled with some sparse priors,
such as the Laplacian prior [16], the Gaussian scale mixture prior [17–19], and so on. The probability
density function (PDF) of the sparse prior often has a narrower main lobe to promote the reconstructed
coefficients to close to zero, and high tail values to guarantee the reconstruction of non-zero coefficients.
Generally, the prior with a narrower main lobe and higher tail values can conduct a sparser image.
From this perspective, we modify the Laplacian prior to achieve a sparser prior, which is achieved
by taking the logarithm on the exponent of the Laplacian distribution, and therefore is called the
logarithmic Laplacian prior. Its PDF is defined as:

p (x) =
λ

2
exp [−2 ln (|x|+ λ)] (1)

where x denotes the random variable and λ is defined as a scale parameter. Because
∫ +∞
−∞ p (x) dx = 1

is satisfied, p(x) is an effective valid PDF.
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Figure 1 shows the comparison between the logarithmic Laplacian prior with λ = 0.5 and the
Laplacian prior (The Laplace distribution is defined as p (x) = 1√

2σ
exp

(
−
√

2
σ |x|

)
) with σ = 1√

2
a. It is

seen that the logarithmic Laplacian prior has a narrower main lobe with higher tail values than the
Laplacian prior to obtain better performance on sparse representation.

-5 0 5
0

0.2

0.4

0.6

0.8

1

 

 

Logarithmic Laplacian
Laplacian

Figure 1. Comparison of the Laplacian and logarithmic Laplacian priors.

3. Signal Model with the Logarithmic Laplacian Prior

Supposing the range alignment has been accomplished [23], the process of autofocusing and
azimuth compression for ISAR imaging can be modeled as [24,25]:

g(k, n) =
1√
M

M−1

∑
m=0

h(m, n) exp (jϕm) exp
(
−j

2π

M
km
)

(2)

where h (m, n), g (k, n) and ϕm denote the aligned range profiles, the ISAR image and the phase
errors to be compensated, respectively, and n, m and k denote the index of range bin, slow time and
Doppler bin, respectively. The aligned range profiles, h (m, n), can be inversely derived from the ISAR
image, g (k, n), as:

h (m, n) =
1√
M

exp (−jϕm) ·
M−1

∑
k=0

g (k, n) exp
(

j
2π

M
km
)

(3)

It can be expressed as:

h = EFg + ε (4)

where h and g represent the vectorization of h (m, n) and g (k, n), respectively, i.e.,
h = [h (0, 0) , h (1, 0) , · · · , h (M− 1, N − 1)]T , g = [g (0, 0) , g (1, 0) , · · · , g (M− 1, N − 1)]T . E is a
block diagonal phase error matrix as:

E =

 eM
. . .

eM


MN×MN

eM =

 exp (−jϕ0)
. . .
exp (−jϕM−1)


M×M

(5)

F in Equation (4) represents an MN ×MN block diagonal inverse fast Fourier transform (IFFT)
matrix, expressed as:
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F =

 fM
. . .

fM


MN×MN

fM = 1√
M


1 1 · · · 1

1 W−1
M · · · W−(M−1)

M
...

...
...

1 W−(M−1)
M · · · W−(M−1)2

M


M×M

(6)

where WM = exp
(
−j 2π

M
)
. We also have FFH=FHF =IMN , where IMN is an MN×MN identity matrix,

and (·)H is the conjugate transpose operator.
The additive noise ε in Equation (4) is assumed to be zero-mean complex Gaussian distributed:

p (ε) = CN (ε|0, αIMN)

= π−MNα−MN exp
(
−α−1 ‖ε‖2

2

) (7)

where α is the noise variance and ‖·‖2 represents the l2 norm. Then, the likelihood is derived as:

p (h|g; α) = CN (h|EFg, αIMN)

= π−MNα−MN exp
(
−α−1 ‖h− EFg‖2

2

) (8)

The ISAR image, g, is assumed to be logarithmic Laplacian distributed:

p (g; λ) =
MN−1

∏
k=0

λ

2
exp [−2 ln (|gk|+ λ)] (9)

where gk denotes the k-th element of g.

4. Bayesian ISAR Imaging

This section is to derive the Bayesian ISAR imaging based on the logarithmic Laplacian prior.

4.1. Sparse Reconstruction of ISAR Image

In this section, the maximum a posterior (MAP) estimation based on the quasi-Newton method
is utilized to reconstruct the sparse ISAR image. According to the Bayesian theorem, the posterior
distribution of the ISAR image, g, can be achieved as follows:

p (g|h; α, λ) =
p (h|g; α) p (g; λ)

p (h; α, λ)
(10)

where p (h; α, λ) is the marginal likelihood which is obtained as:

p (h; α, λ) =
∫

p (h|g; α) p (g; λ) dg (11)

Because it is difficult to compute the integral in Equation (11) analytically, the posterior in
Equation (10) cannot be derived. Therefore, we utilize the MAP estimation to reconstruct the ISAR
image, g, as

ĝ = arg max
g

[p (g|h; α, λ)] (12)

Noting that the marginal likelihood, p (h; α, λ), is independent of g, Equation (12) can be
simplified as:

ĝ = arg max
g

[ln p (h|g; α) + ln p (g; λ)] (13)
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where the logarithm operator is used for computational convenience. Putting Equations (8) and (9)
into Equation (13), and keeping only the terms depending on g, we obtain:,

ĝ = arg max
g

[
−MN ln π −MN ln α− α−1 ‖h− EFg‖2

2 + MN ln λ
2 − 2

MN−1
∑

k=0
ln (|gk|+ λ)

]
= arg max

g

[
−α−1 ‖h− EFg‖2

2 − 2
MN−1

∑
k=0

ln (|gk|+ λ)

]
= arg min

g

[
‖h− EFg‖2

2 + 2α
MN−1

∑
k=0

ln (|gk|+ λ)

] (14)

For convenience, we let q = ‖h− EFg‖2
2 + 2α

MN−1
∑

k=0
ln (|gk|+ λ). Noting that g is a complex

vector, the conjugate gradient of q with respect to g represents the convergence direction [16], which is
derived as:

∇g∗ (q) = H (g) g− FHEHh (15)

where

H (g) = IMN + α · diag
[
1
/(
|gk|2 + λ |gk|

)]
MN×MN

, (16)

where the properties FHF =IMN and EHE =IMN are utilized and diag [·] denotes a diagonal matrix
whose diagonal elements are defined in the bracket. The Hessian matrix of q against g should further
be derived to utilize the quasi-Newton method. It is seen from Equation (15) that H (g) resembles
a coefficient of g and is used to approximate the Hessian matrix of q [26]. Then the quasi-Newton
iteration is derived as:

ĝ(i+1) = ĝ(i) −H
(

ĝ(i)
)−1
∇g∗ (q) (17)

where ĝ(i) denotes the ISAR image reconstructed in the i-th iteration. Substituting Equation (15) into
Equation (17), we obtain:

ĝ(i+1) = H
(

ĝ(i)
)−1

FHÊ(i)Hh (18)

where Ê(i) represents the phase error estimated in the i-th iteration.
Furthermore, we utilize the minimum entropy based autofocusing algorithm [24] to estimate the

phase error in the iteration, which is achieved as:

ϕ̂
(i+1)
m = ϕ̂

(i)
m −

(∂2Ẽg

∂ϕ2
m

)−1
∂Ẽg

∂ϕm

∣∣∣∣∣∣
ϕm=ϕ̂

(i)
m

(19)

where Ẽg represents the simplified entropy [24] of the ISAR image, and ∂Ẽg
∂ϕm

and ∂2 Ẽg

∂ϕ2
m

denote the first

and second derivatives of Ẽg with respect to ϕm, respectively, given as:

∂Ẽg

∂ϕm

∣∣∣∣∣
ϕm=ϕ̂

(i)
m

= −2Im
{

exp
(

jϕ̂(i)
m

)
Qm

{[
FvectorMN

(
ĝ(i)k + 2ĝ(i)k ln

∣∣∣ĝ(i)k

∣∣∣)]∗ � h
}}

(20)

∂2 Ẽg

∂ϕ2
m

∣∣∣∣
ϕm=ϕ̂

(i)
m

= 2Re
{

exp
(

jϕ̂(i)
m

)
Qm

{[
FvectorMN

(
ĝ(i)k + 2ĝ(i)k ln

∣∣∣ĝ(i)k

∣∣∣)]∗ � h
}}

−2 · 1T
MN

{
vectorMN

[(
2 + 2 ln

∣∣∣ĝ(i)k

∣∣∣) |hm (k mod N)|2
]} (21)
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where Im {·}, Re {·}, �, “mod” and ∗ represent the operators for imaginary and real part,
respectively, Hadamard product, arithmetical compliment and conjugate operations, respectively.
In addition, vectorMN (·) denotes a MN × 1 vector. Qm = [0, · · · , 0, 1

mN
, · · · , 1

(m+1)N−1
, 0, · · · , 0], and

1MN = [1, · · · , 1]TMN , hj (i) = hjN+i.
Equations (18) and (19) are iterated until convergence is reached, which can be judged by:∥∥∥ĝ(i+1) − ĝ(i)

∥∥∥
2∥∥ĝ(i)

∥∥
2

≤ µ (22)

where µ denotes the expected precision. It should be noticed that the computational burden of
updating Equation (18) would be intolerable since it needs to inverse the Hessian matrix, H

(
ĝ(i)
)

,
which has a dimension of MN × MN. Noting that H (g) derived in Equation (16) is a diagonal

matrix, its inverse matrix is H
(

ĝ(i)
)−1

= diag
[(∣∣∣ĝ(i)k

∣∣∣2 + λ
∣∣∣ĝ(i)k

∣∣∣)/(α +
∣∣∣ĝ(i)k

∣∣∣2 + λ
∣∣∣ĝ(i)k

∣∣∣)]
MN×MN

.

Therefore, Equation (18) is equivalent to multiplying each element of the ISAR image by a coefficient,
which can be accomplished by the Hadamard product . Additionally, FFT operation with respect to
the slow time can be utilized to achieve the multiplication of FH. With these efficient calculations, the
computational efficiency can be largely improved.

4.2. Model Parameters Learning

The model parameters, including the noise variance, α, and the scale parameter, λ, should also
be estimated to put the proposed Bayesian ISAR imaging based on logarithmic Laplacian prior into
practice. Firstly, we use the maximum likelihood (ML) estimation method to estimate the noise
variance, α, which is derived as:

α̂ = arg max
α

[ln p (h|g; α)] (23)

where the likelihood, p (h|g; α), is given in Equation (8). The derivative of ln p (h|g; α) with respect
to α is obtained as:

∂ ln p (h|g; α)

∂α
= −MN

α
+

1
α2 ‖h− EFg‖2

2 (24)

Setting it to zeros, the noise variance, α, is estimated as

α̂(i+1) =
1

MN

∥∥∥h− Ê(i)Fĝ(i)
∥∥∥2

2
(25)

where α̂(i) represents the noise variance estimated in the i-th iteration. Ê(i) and ĝ(i) are achieved by
Equations (18) and (19), respectively. Furthermore, the MAP method is utilized to estimate the scale
parameter, λ, which is given as:

λ̂ = arg max
λ
{ln [p (h|g; α) p (g; λ)]}

= arg max
λ

[ln p (g; λ)]
(26)

The derivative of ln p (g; λ) with respect to λ is derived as:

∂ ln p (g; λ)

∂λ
=

MN
λ
− 2

MN−1

∑
k=0

1
|gk|+ λ

(27)

Setting it to zero, we obtain:
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λ(i+1) =
MN

2

MN−1

∑
k=0

1∣∣∣g(i)k

∣∣∣+ λ(i)

−1

(28)

4.3. Initialization

This subsection presents the initialization of the proposed algorithm, which is significant for its
practical implementation.

Firstly, we utilize the Doppler centroid-based autofocusing method (DCA) to initialize the phase
error [27], which is implemented efficiently but suffers from low estimation precision. The initialization
of the ISAR image, g, can be achieved by the traditional RD imaging as

ĝ(0) = F−1Ê(0)−1h = FHÊ(0)Hh (29)

where ĝ(0) and Ê(0) denote the initial ISAR image and the phase errors, respectively. However, it
should be noticed that ĝ(1) = ĝ(0) when Equation (29) is utilized to initialize g, which can be derived
by combining Equations (18), (25) and (29). It means the initialization with Equation (29) will lead to a
local minimal located at ĝ(0). In order to avoid this, it is multiplied by a coefficient, 1√

M
, as:

ĝ(0) =
1√
M

FHÊ(0)Hh (30)

Finally, the initialization of λ can be set in the range of 0 to 1. The flow chart of the
logarithmic Laplacian prior based Bayesian ISAR imaging is given in Figure 2. After initialization,
Equations (18), (19), (25) and (28) are iterated until convergence is reached, which is evaluated by
Equation (22).

No

Yes

Is (22) satisfied?

Initialize       by DCAE

Initialize       0ˆ, 0 1  

Initialize g by (30)

Update          by (19) 1ˆ iE

Update          by (25) 1ˆ i 

Update          by (28) 1ˆ i 

Update          by (18) 1ˆ ig

 1ˆ ˆ ig g

1i i 

i=0

Initialization

Updating

Figure 2. Flow chart of the logarithmic Laplacian prior based Bayesian inverse synthetic aperture radar
(ISAR) imaging algorithm.
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5. Experimental Results

In this section, experimental results based on both simulated and measured data are analyzed to
compare the performance of the proposed logarithmic Laplacian prior based Bayesian (LLB) ISAR
imaging algorithm with those of the Laplacian prior based Bayesian (LB) ISAR imaging algorithm [16]
and the minimum entropy based on RD (ME-RD) algorithm [24]. The experimental data include
the simulated data of a small-sized battleplane (Mig-25), and the measured data of a medium-sized
commercial aircraft (Yak-42).

5.1. Data Set 1: Simulated Data of Mig-25

The simulated Mig-25 is composed of 120 scatterers of the same scattering intensity [9]. The radar
transmits the stepped frequency signal with a center frequency of 9 GHz, a bandwidth of 512 MHz,
and a pulse repetition frequency of 15 kHz. The number of the stepped frequencies in a sweep is 64,
and the number of sweeps is 512. The Keystone transform [28] and the phase cancellation method [29]
are utilized to compensate the migration through range cells and Doppler cells, respectively.

Firstly, four types of phase errors, including the second order, the sinusoinal, the random error,
and their mixture, are added to the range profiles to testify the validity of LLB for different phase
errors. The four phase errors are given in the first column of Figure 3. The terminal parameter, µ, in
Equation (22), and the initial scale parameter, λ, in Equation (9) are set as 0.005 and 1, respectively.
Figure 3 gives the imagery results of RD and the proposed LLB. It is seen that the results of RD are
defocused for the cases of random and mixture phase errors. In contrast, the proposed LLB obtains
well-focused images in any cases, which validates its performance is not affected by the type of
phase errors.

Let us next add the complex Gaussian noise to the radar echo to simulate the noise environment, so
as to validate the effectiveness of LLB under low signal to noise ratio (SNR) conditions. Each pulse of the
radar echo is added with noise separately, because the noises in different pulses are independent with
each other in the real radar system. Figure 4 shows the original range profile and those reconstructed
by LB and the proposed LLB with SNR = 0 dB, respectively. It is seen that both LB and LLB obtain
clear range profiles with noise largely suppressed, and LLB performs relatively better.

Figure 5 shows the normalized imagery results of Mig-25 achieved by ME-RD, LB and LLB with
SNR = 10 dB, 5 dB and 0 dB, respectively. The threshold is set as 0.005 for both algorithms. As given
in the first row of Figure 5, the results of ME-RD are much noisy and affected by high sidelobes.
Compared with ME-RD, LB obtains relatively better focused and less noisy images shown in the
second row of Figure 5. However, it is still affected by sidelobes and noise. The proposed LLB achieves
the best images with little effect of sidelobes and noise under all these SNR conditions, which are given
in the third row of Figure 5, which validates the effectiveness of the proposed LLB. The fourth row of
Figure 5 gives the azimuth profiles in the 22-th range cell of the image results obtained by these three
algorithms. It is seen that the proposed LLB achieves the azimuth profiles with the highest resolution
and the lowest noise floor when compared with ME-RD and LB.

Let us use the image entropy [24] to quantitatively compare the performances of these three
algorithms, and lower image entropy generally indicates better focused image. Figure 6 gives the
image entropy curves versus SNR obtained by different algorithms. It is seen that the proposed LLB
obtains lower image entropy than ME-RD and LB under all these SNR conditions, and, therefore, it
achieves better focused images compared with ME-RD and LB. Additionally, it is noticed that the
curve of ME-RD is decreasing, while those of LB and LLB are flat, which indicates the Bayesian ISAR
imaging algorithms are more robust to noise than ME-RD.
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Figure 3. Imagery results of Mig-25 with different phase errors.
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Figure 4. Range profiles of Mig-25 with SNR = 0 dB: (a) original; (b) the Laplacian prior based Bayesian
(LB) method; (c) the logarithmic Laplacian prior based Bayesian (LLB) method.
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Figure 5. Imagery results of Mig-25 under different signal to noise ratio (SNR) conditions.
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5.2. Data Set 2: Real Measured Data of Yak-42

Real measured data of Yak-42 [7,30] is utilized to further analyze the performance of the proposed
algorithm. Yak-42 is a twin engine commercial aircraft with a size of 36 m × 35 m, and during the
interval of ISAR imaging, it is flying smoothly at an approximate speed of 380 km/h. The radar
transmits the signal with a center frequency of 5.52 GHz and a bandwidth of 400 MHz. The numbers
of samples and sweeps are both 256. The original SNR is 15.2 dB, and it is adjusted by additional
complex Gaussian noise.

Figure 7 shows the comparison of the original range profile and those obtained by LB and LLB
with SNR = 0 dB, respectively. It is seen that, compared with LB, the proposed LLB obtains clearer
range profile with lower noise floor, which indicates it performs better on noise reduction than LB.
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Figure 7. Range profiles of Yak-42 with SNR = 0 dB: (a) original; (b) LB; (c) LLB.

Figure 8 shows the ISAR imagery results obtained by these algorithms under different SNR
conditions. Compared with ME-RD and LB, the proposed LLB obtains the best focused images with
the clearest background. Additionally, it should be noticed that the images obtained by LLB for lower

SNR are sparser, because the weighted matrix, H
(

ĝ(i)
)−1

, in Equation (18), is inversely proportional
to the noise variance, α, and stronger noise induces smaller weighted coefficient, which broadens the
gap between the weighted coefficients of the strong and weak scatterers, and makes the obtained
image sparser. Furthermore, the azimuth profiles in the 154-the range cell of the images obtained by
different algorithms are given in the fourth row of Figure 8 to compare the algorithms performances
more clearly. It is seen that, compared with ME-RD and LB, the proposed LLB achieves the azimuth
profiles with narrower peaks and clearer background, which indicates better performances on side
lobe suppression and noise reduction, respectively.

Figure 9 shows the image entropy curves versus SNR achieved by three algorithms. It is seen
that the proposed LLB obtains the lowest image entropy under any SNR conditions, which further
confirms its effectiveness. The computational time of three algorithms under different SNR conditions
is shown as Figure 10. It shows that the computational burden of the proposed LLB is comparable
with that of LB, which is slightly heavier than that of ME-RD.

Last but not least, the parameter updating process of the proposed LLB, including the noise
variance, α, and the scaling parameter, λ, is presented to confirm the effectiveness of learning model of
LLB. Figure 11a,b show the converging curves of α and λ, respectively. It is seen that the noise variance,
α, converges at 2.173× 104 within seven iterations, and the scaling parameter, λ, converges at 0.001991
within four iterations, which confirms the effectiveness of the updating rules given in Equations (25)
and (28). Additionally, it should be noticed that the scaling parameter, λ, falls to a small value after
one iteration, and the small value of λ conducts a spiky PDF with a narrow peak and heavy tail values,
which is beneficial to the sparse image reconstruction and helps to achieve a well-focused ISAR image
within several iterations.
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Figure 8. Imagery results of Yak-42 under different SNR conditions.
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Figure 9. Comparison of image entropy curves versus SNR for different algorithms.
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Figure 10. Comparison of computational time versus SNR for different algorithms.
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Figure 11. Update of model parameters: (a) noise variance α; (b) scale parameter λ.

6. Conclusions

A new sparse prior called the logarithmic Laplacian prior is presented to conduct a better
performance on sparse representation than the Laplacian prior. Then, a novel Bayesian ISAR imaging
method based on the logarithmic Laplacian prior is proposed, in which the ISAR image is reconstructed
by the MAP estimation based on the quasi-Newton method, and the autofocusing is accomplished
based on the minimum entropy criterion. Experimental results based on both simulated and measured
data confirm that the proposed algorithm performs better than the Laplacian prior based Bayesian ISAR
imaging on sidelobe suppression and noise reduction. Bayesian ISAR imaging based on the logarithmic
Laplacian prior for the targets with the complex motion will be the next focus of our research.
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