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ABSTRACT

Transcription of the HIV-1 genome yields a single
primary transcript, which is alternatively spliced to
.30 mRNAs. Productive infection depends on inef-
ficient and regulated splicing and appears to pro-
ceed in a tight 50 to 30 order. To analyse whether
sequential splicing is mediated by the quality of
splice sites or by the position of an intron, we
inserted the efficient b-globin intron (BGI) into the
30 region or 50UTR of a subgenomic expression vec-
tor or an infectious proviral plasmid. RNA analysis
revealed splicing of the 30 BGI only if all upstream
introns were removed, while splicing of the same
intron in the 50UTR was efficient and independent
of further splicing. Furthermore, mutation of the
upstream splice signal in the subgenomic vector
did not eliminate the inhibition of 30 splicing,
although the BGI sequence was the only intron in
this case. These results suggest that downstream
splicing of HIV-1 RNAs is completely dependent on
prior splicing of all upstream intron(s). This hypo-
thesis was supported by the mutation of the major
50 splice site in the HIV-1 genome, which completely
abolished all splicing. It appears likely that the tight
order of splicing is important for HIV-1 replication,
which requires the stable production of intron con-
taining RNAs, while splicing of 30 introns on
incompletely spliced RNAs would be likely to render
them subject to nonsense-mediated decay.

INTRODUCTION

The hallmark of retroviral replication is the reverse transcrip-
tion of the genomic RNA into dsDNA and the subsequent
integration into a host cell chromosome. The proviral DNA
then functions as a single expression unit with the 50 long
terminal repeat (LTR) serving as promoter and the 30 LTR
carrying the signals for 30 processing, respectively (1). In the
case of most retroviruses, a single primary transcript is pro-
duced by cellular RNA polymerase II. This polycistronic pre-
mRNA is used as genomic RNA and mRNA and, in addition,
serves as precursor for all retroviral mRNAs. Successful
infection and production of new infectious viruses requires
the balanced expression of all viral genes. This is accomp-
lished by a combination of alternative splicing, intron reten-
tion and regulated nuclear export of the primary transcript
(reviewed in 1–4). Accordingly, retroviral splicing has to be
incomplete and intron-containing RNAs need to be exported
from the nucleus, where they are normally retained in the case
of cellular RNA (5–7).

The genomic organization of the primary transcript of all
retroviruses is similar. The gag and pol open reading frames
(ORF) encoding the inner structural proteins (Gag) and the
replication enzymes (Pol) are located in the 50 half of the
transcript (Figure 1) and are expressed from the unspliced
primary transcript as polyproteins (Pr55 and Pr160 in the
case of human immunodeficiency virus type 1, HIV-1). All
primary retroviral transcripts contain a major 50 splice site
(50ss) upstream of the gag ORF in the 50 untranslated region
(UTR) and a 30ss at the end of the pol ORF, thus defining gag–
pol as an intron. The viral envelope glycoproteins (Env) are
encoded in the 30 half of the genome and are translated from a
spliced RNA lacking the gag–pol intron (1–4). In the case of
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simple retroviruses, this is the only splice event, while com-
plex retroviruses contain additional genes with regulatory
functions in the 30 part of their genome. In the case of
HIV-1, there are 6 accessory genes besides gag, pol and
env (Figure 1). Production of the mRNAs for the Tat, Rev,
Vif, Vpr and Nef proteins involves alternative splicing at four
50ss (50ss # 1–4) and at least seven 30ss (30ss #1–7; Figure 1).
More than 30 different mRNAs have been observed in HIV-1
infected cells (8,9) and have been grouped into three different
classes. The unspliced primary transcript (�9 kb), a class of
singly spliced RNAs (�4 kb) lacking the gag–pol coding
region and a class of completely spliced RNAs (�2 kb)
lacking the env coding region in addition are shown in
Figure 1 (8). The singly spliced mRNAs encode the Env pro-
teins and the viral regulatory proteins Vif, Vpr and Vpu, while
Tat, Rev and Nef are produced from RNAs spliced at multiple
sites. In the early phase of HIV-1 gene expression, only com-
pletely spliced mRNAs are exported to the cytoplasm, giving
rise to the Tat, Rev and Nef proteins. Subsequently, Rev binds
to its target sequence on incompletely spliced HIV-1 RNAs
[termed Rev response element, RRE, (10)] and mediates their
nuclear export by delivering them into the Crm1-dependent
export pathway (11,12). HIV-1 RNAs can thus be divided into
Rev-independent RNAs lacking an intron (Figure 1, right) and
Rev-dependent RNAs containing at least one functional intron
and requiring an active nuclear export pathway (Figure 1, left).

The requirement for cytoplasmic accumulation of
unspliced, partially spliced and completely spliced RNAs
indicates that splicing of the primary HIV-1 transcript must
be inefficient, allowing Rev to access the RRE-containing
RNAs and promote their nuclear export prior to splicing
(13–15). This is in contrast to cellular gene expression,
where pre-mRNAs are immediately spliced to completion
and only intronless RNAs are exported (16). Most 50ss in
the HIV-1 genome match the consensus sequence (17) and
the delayed and inefficient splice reaction has mostly been
attributed to non-consensus 30ss with short polypyrimidine
tracts interrupted by purines and non-canonical branchpoint
sequences (8,15,18–21). The recognition of splice signals and
removal of introns is further modulated by intronic and exonic
splice enhancers surrounding the 30ss sites, which are recog-
nized by splice-enhancing factors of the SR-protein family
(e.g. SF2/ASF, 22–24). Splice silencers have also been obser-
ved, which recruit members of the heterogeneous ribonucleo-
protein family (hnRNPs) to suppress the splice site recognition
(e.g. hnRNP A/B, 25–27).

In general, splice signals are recognized co-transcriptionally
in the order of their appearance, suggesting a sequential
removal of introns from the 50 end [28; reviewed in (29)].
However, the order of splicing can vary significantly and
there are many cases where a downstream intron is removed
before the upstream intron (30). Examples are the adenine

Figure 1. Splicing pattern of HIV-1. The genomic organization of HIV-1 is depicted on top with open boxes representing ORFs and 50 and 30 LTRs, respectively.
Classes of Rev-dependent RNAs are shown below on the left side, Rev-independent RNAs on the right side. A circle represents the 50 cap, translated reading frames
are depicted as open boxes, the RRE as a black box, and 50 and 30ss as arrows and vertical lines, respectively. The nomenclature of splice sites was adapted from Purcell
and Martin, (8). Below each RNA, the splice sites used for its generation and the translation product are identified.
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phospho-ribosyltransferase (aprt) gene, where the third of the
four introns is removed first (31) and the thymidine kinase
mRNA (32). In case of the insulin pre-mRNA, even the meta-
bolic status of the cells seems to influence the order of splicing
(33). It should also be noted that the removal of an intron can
have different effects, depending on its relative position with
respect to the ORF. Splicing of an intron in the 50 UTR pro-
motes nuclear export and expression by splice-dependent
recruitment of factors to the mRNA (34–36). In contrast, splic-
ing of introns in the 30 UTR can be detrimental due to the
induction of nonsense-mediated mRNA decay (NMD) and,
accordingly, most cellular mRNAs lack introns in the 30

untranslated region (37,38; reviewed in 39,40). Interestingly,
the splicing of retroviral RNAs appears to have a very tight
directionality from the 50 to the 30 end (Figure 1). In this report,
we show that the 50 to 30 directionality of splicing is preserved
even when efficient heterologous introns are inserted into dif-
ferent positions of the HIV-1 genome. Splicing of a 30 intron is
tightly inhibited unless the 50 intron is removed. Accordingly,
mutating a single splice site in the HIV-1 genome (50ss #1)
blocks all downstream splice events and leads to the accumu-
lation of the unspliced primary transcript. This tight control of
the order of splicing may have important implications for viral
gene expression.

MATERIALS AND METHODS

Plasmids

To construct the subgenomic Env expression vector pNLenv,
the sequence between the 50ss #1 [nucleotide 743, numbering
according to Adachi et al. (41)] and the 30ss #5 (nucleotide
5976) was deleted from the infectious HIV-1 proviral plasmid
pNL4-3. To this end, the 50 half of the env gene was PCR-
amplified using primers 50MSD env (GAA GCG CGC ACG
GCA AGA GGC GAG GGG CGG CGA CTG GAA GAA
GCG GAG ACA GCG ACG AAG AGC; introducing a BssHII
site shown underlined) and 30BstEII env (AGA CGG TGA
CCC ACA ATT TTT CTG TAG C; introducing a BstEII site
shown underlined). The PCR product was cut with BssHII and
BstEII and cloned into the molecular clone pNL4-3 BstEII
(42), which had been cleaved with BssHII (nucleotide 743)
and BstEII (nucleotide 6331). The second intron from the
rabbit b-globin gene (BGI) was amplified using primers
50BGintron (GGC ATC GAT TG AGA ACT TCA GGG
TGA GTT TGG GG) and 30BGintron (GGC TAG CTA
TCT TTG CCA AAA TGA TGA GAC AGC) introducing
ClaI sites (underlined) at both ends. The BGI sequence was
inserted in sense and antisense orientation between the env and
nef coding regions of a pNLenv derivative, carrying a ClaI site
(underlined) between the stop codon of the env (bold) and the
initiation codon of the nef (bold) ORF [TAATCGATAGCAC-
CATG; (43)] to give pNLenvBGIs and pNLenvBGIas. To
generate pNLenvBGB, the BGI sequence was amplified
with primers introducing a BssHII site at each end and cloned
into the BssHII site of pNLenv. Plasmid pNLenvM3 was gen-
erated by overlap PCR and contains three point mutations in
the 50ss #4 (Figure 5; details of the cloning procedure available
upon request). The proviral plasmid pNLC4-3 has been
described previously (44). The BGI sequence was cloned into
the 30region of a tat/rev negative derivative of pNLC4-3 by

exchanging the BamHI with XhoI fragment (nucleotide
8465–8887) for that from pNLenvBGIs and pNLenvBGIas,
respectively. To insert the BGI sequence into the 50UTR of the
proviral plasmid, a PCR fragment with flanking BssHII sites
was cloned into a tat/rev negative derivative of pNL4-3
(derived from a subgenomic plasmid kindly provided by
H. Schaal, D€uusseldorf). Mutations in the major 50ss were
also introduced into a tat/rev-negative derivative of pNL4-3
containing a newly introduced NgoM I site immediately
adjacent to the major 50ss. Introducing the NgoM I site into
wild-type pNL4-3 did not influence the titer and replication
kinetics of the resulting virus (data not shown). The sequence
of the major 50ss was changed by PCR-mutagenesis using a
primer, including the newly introduced NgoM I site to
give pNL4-3tr�M3. The plasmids pTat and pRev (gifts of
P. Krammer, Heidelberg (45) and S. Modrow, Regensburg,
respectively) are pcDNA3 (Invitrogen) based expression
vectors containing the respective ORFs under control of the
CMV promoter.

Cells, transfection and protein detection

HeLa P4 cells were maintained in DMEM growth medium with
10% heat inactivated fetal calf serum and antibiotics. For trans-
fection, 8 · 105 cells were seeded and transfected with 10 mg of
the respective plasmid, 5mg of Tat and Rev expression plasmids
as indicated and 1 mg of a reporter construct encoding green
fluorescent protein (eGFP) using the modified calcium phos-
phate coprecipitation technique (46). For immunoblot analysis,
cells were harvested 48 h post transfection (60 h post transfec-
tion in the experiment shown in Figure 8). Cell lysates were
normalized for transfection efficiency, according to the number
of GFP positive cells and analysed by SDS–PAGE and
immunoblotting using antisera against HIV-1 capsid (CA)
(1:10 000), Env (1:5000, provided by V. Bosch, Heidelberg)
or Nef proteins (1:5000) and peroxidase conjugated second
antibody (Dianova, Hamburg). Enhanced chemiluminescence
(Amersham) was used for detection, according to the manufac-
turer’s protocol. Indirect immunofluorescence was performed
on cells fixed with 4% paraformaldehyde, using monoclonal
antibody 902 directed against HIV-1 Env (obtained through the
NIH AIDS Research and Reference reagent programme) or a
polyclonal rabbit anti-Nef serum and phycoerythrin-conjugated
secondary antibody (Dianova, Hamburg).

RNA and DNA preparation and analysis

Preparation of total RNA, gel electrophoresis, blotting and
detection with a radiolabeled probe were performed as described
(47). Nuclear RNA was prepared according to Weil et al. using
a mild lysis step in the cold (48). In order to detect HIV-1 specific
RNAs, pNLenv was cleaved with BamHI and HindIII, thereby
generating a specific probe for the 30 LTR that is present on all
mRNAs. The BGI-sequence was detected with a probe corres-
ponding to an NcoI restriction fragment from pNLenvBGI. The
GAPDH sequence was detected with a probe corresponding to a
1.2 kb EcoRI fragment from the GAPDH expression plasmid
(gift of K. Harbers, Hamburg). Blots were washed, sealed and
exposed to X-ray films (Kodak X-omat-AR). For RT–PCR, 5mg
of total RNA were digested with 5 U of DNase (Promega) for 1 h
at 37�C and purified using RNeasy columns (Qiagen) to remove
plasmid contaminations. Subsequently, 1 mg of RNA was used
for reverse transcription using 100 pmol of the reverse primer
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(GAA TTC CGC CAG GCA CAA GCG CAT TGT TAG
CTG C; Figure 3A) and Superscript II (GIBCO) reverse tran-
scriptase. The reaction product was used in a standard PCR
reaction using Taq polymerase (Qiagen), the described reverse
primer and forward primer (GGA ATT CCG GCG ACT GGA
AGA AGC GGA GAG ACA GCG; Figure 3A).

RESULTS

A subgenomic HIV-1 expression system for the
analysis of splicing

As outlined in Figure 1, splicing of the genomic RNA of
HIV-1 leads to at least 30 differentially spliced RNAs, making

the analysis of splicing regulation very complicated. We there-
fore developed a subgenomic expression system closely
matching the situation in virus infected cells and not contain-
ing heterologous splice sites. Most previous reports analysed
HIV-1 splicing using heterologous expression systems
(e.g. 25,49,50), which did not produce authentic HIV-1
RNAs. We selected the 30 part of the HIV-1 genome for
our expression system, which should give rise to an unspliced
Rev-dependent RNA for Vpu and Env and a singly spliced
Rev-independent mRNA for Nef (Figure 2A). Plasmid pN-
Lenv was based on the proviral HIV-1 plasmid pNL4-3 (41)
and contains the viral 50 and 30 LTRs. The sequence between
the major 50 splice site (50ss #1) and the 30ss upstream of the
vpu/env coding region [30ss #5; nomenclature according to

Figure 2. The subgenomic pNLenv expression system. (A) Schematic depiction of pNLenv (top). The vpu, env and nef ORFs as well as the 50 and 30 LTRs and the
localization of the probe used for northern blot analysis are shown. The middle and bottom drawings depict the unspliced (middle) and spliced RNA produced from
pNLenv. (B) Indirect immunofluorescence analysis of HeLa P4 cells transfected with pNLenv with (top) or without (bottom) a Rev expression plasmid. A Tat
expression plasmid was cotransfected to induce LTR-dependent transcription. Cells were stained with antiserum against Env (top) or Nef (bottom). (C) Western blot
analysis of transfected HeLa P4 cells. Cells were mock-transfected (lane 3) or transfected with pNLenv and a Tat expression plasmid either with (lane 2) or without
(lane 1) a Rev expression plasmid. Blots were stained with antiserum against Env (top) or Nef (bottom). The viral glycoprotein precursor gp160 and the surface
glycoprotein gp120 (which contains the epitope for the antibody) as well as the Nef protein are identified on the right. (D) Northern blot analysis of RNA from cell
extracts from the same transfection as in panel C. Tenmg of RNA was separated on a denaturing gel. The blot was hybridized with a 30 LTR-specific probe as indicated
in panel A. Re-hybridization with a GAPDH-specific probe served as the loading control (bottom panel). The unspliced and spliced RNAs are identified on the right
and molecular mass standards are shown on the left.
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Purcell and Martin, (8)] was removed. Transcription from the
50 LTR of pNLenv is dependent on the viral Tat protein and
yields a primary transcript with a sequence identical to that of
the authentic env mRNA produced in HIV-1 infected cells
(Figure 1, bottom left). This RNA can undergo a single splice
event from 50ss #4 to 30ss #7, which leads to RNA identical in
sequence to that of the genuine nef mRNA, in HIV-1 infected
cells (Figure 1, bottom right).

Cotransfection of HeLa P4 cells with pNLenv and expression
vectors for the HIV-1 Tat and Rev proteins led to the efficient
production of viral Env protein as detected by indirect
immunofluorescence (Figure 2B) and immunoblot analysis
(Figure 2C). Nef protein, which is synthesized from a spliced
RNA was also observed (Figure 2B and C). Surface expression
of functional HIV-1 Env proteins was confirmed by syncytia
formation of transfected cells with neighbouring HeLaP4 cells,
which express the HIV receptor CD4 and the co-receptor
CXCR4 [Figure 2B; (51)]. Env production was dependent on
the HIV-1 Tat (data not shown) and Rev proteins. No Env
proteins were detected in the absence of Rev and no syncytia
were observed, while Nef expression was increased (Figure 2B
and C). Thus, pNLenv reproduces the Rev dependence of the
authentic viral RNAs as expected. Northern blot analysis was
performed to analyse splicing. RNA was extracted from trans-
fected cells and detected with a 30 UTR-specific probe that
recognizes all HIV-1 specific RNAs (indicated in Figure 2A).
The unspliced transcript encoding Env (� 4 kb) and the spliced
nef mRNA (�1.6 kb) were detected both in the presence and
absence of Rev (Figure 2D), but there was a much stronger
signal for the unspliced RNA in the presence of Rev as expected
(Figure 2D, lanes 2 and 3). No other HIV-1 specific RNAs
were observed.

Splicing of a heterologous intron in the 30 region
of pNLenv requires removal of the upstream intron

To analyse whether the order of splicing is dependent on
the specific splice signals or on the position of the intron,
heterologous introns were inserted into pNLenv. Intron 2
from the rabbit BGI was selected as an efficient heterologous
intron, which had been used in previous studies (52,53). The
BGI sequence was cloned into the 30 region of pNLenv
between the termination codon of env and the initiation
codon of nef (pNLenvBGIs; Figure 3A). The same sequence
was inserted in antisense orientation as a control (pNLenvB-
GIas). HeLaP4 cells were transfected with pNLenv,
pNLenvBGIs and pNLenvBGIas, respectively, and cell
extracts were analysed by immunoblotting using antisera
against Env and Nef and by northern blot. Efficient Rev-
dependent Env expression was observed in all cases and
was not altered by the presence of the BGI intron
(Figure 3B, upper panel). In contrast, Nef expression was
reduced in the case of pNLenvBGIs and completely lost for
pNLenvBGIas (Figure 3B, lower panel). The latter result is
probably due to the 700 nt long BGI sequence in the 50

untranslated region [50 UTR, (54)] of the nef mRNA, which
should not be spliced in the antisense orientation.

To analyse the splicing pattern, RNA from the same trans-
fection was subjected to northern blot hybridization. The un-
spliced 4 kb RNA and the spliced 1.6 kb RNA was again
observed in pNLenv-transfected cells (Figure 3C, lanes 2

and 3), while a longer unspliced RNA, containing the BGI
sequence, was detected in cells transfected with pNLenvBGIs
and pNLenvBGIas, respectively (Figure 3C, lanes 4–7). In the
case of pNLenvBGIas, there was only one more specific RNA
product, which lacks the env intron and contains the BGI
sequence in antisense orientation (Figure 3C, lanes 6 and 7).
Transfection of pNLenvBGIs, on the other hand, yielded a
doubly spliced RNA co-migrating with genuine nef mRNA
and a shorter product (Figure 3C, lanes 4 and 5). There was no
detectable signal corresponding to singly spliced RNAs, where
either the BGI sequence (Figure 3A; RNA 2) or the HIV-1
intron (Figure 3A; RNA 3) had been removed. The shorter
product was characterized by RT–PCR and sequence analysis
and shown to correspond to an RNA that was spliced from the
HIV-1 derived 50ss #4 to the 30ss in the BGI sequence (termed
SABGI). Thus, it appears that the transcript from pNLenvBGIs
is either not spliced at all or both introns are removed effi-
ciently. Accordingly, the very efficient BGI sequence is
retained unless the relatively inefficient HIV-1 intron is also
removed. To further characterize the order of intron removal,
nuclear RNA was isolated from cells transfected as above and
hybridized with HIV-1 LTR- and BGI-specific probes. Ana-
lysis with the BGI-probe confirmed the identity of the
unspliced RNA in cells transfected with pNLenvBGIs and
pNLenvBGIas and the singly spliced product in cells trans-
fected with pNLenvBGIas (data not shown). Importantly, a
BGI-reactive product corresponding to the singly spliced RNA
lacking the HIV-1 intron was also detected in cells transfected
with pNLenvBGIs, while no product for the singly spliced
RNA lacking the BGI intron was observed (data not
shown). Taken together, these results indicate that BGI spli-
cing is dependent on splicing of the upstream HIV-1 intron,
both in the presence and absence of Rev.

Inefficient splicing of the heterologous intron in the 30

region was also observed when the cryptic splice sites for the
Tev protein (55) in pNLenv were removed together with most
of the intronic sequence between 50ss # 4 and the RRE (data
not shown). To analyse whether this inefficient splicing is
specific for the BGI sequence, the very efficient MINX intron
(56) was cloned into the same position of pNLenv to give
pNLenvMINX. The MINX intron is a short synthetic intron
containing adenoviral splice sites with perfect consensus
sequences and a very strong polypyrimidine tract. Western
blot analysis of HeLaP4 cells transfected with pNLenvMINX
and controls is shown in Figure 4A. Again, Rev-dependent
Env expression and Rev-independent Nef expression was
observed as in the case of pNLenv and pNLenvBGIs, respect-
ively. However, higher levels of Nef were found in
pNLenvMINX transfected cells in the presence of Rev
(Figure 4A, lower panel, lane 7). To determine whether
there is a retention of the MINX intron, similar to what had
been observed for the BGI sequence, RNA from transfected
cells was analysed by RT–PCR using primers that recognize
HIV-1 sequences upstream of the 30ss #7 and in the 30 LTR.
These primers recognize only unspliced and singly spliced
RNA containing the env sequences (Figure 3A; RNAs 1
and 2), but not RNAs lacking the HIV-1 intron. Analysis of
RNA from pNLenv-transfected cells showed a single product
corresponding to the unspliced env mRNA (Figure 4B, lanes 2
and 3). Products with the expected sizes of the respective
unspliced RNA were also observed in pNLenvBGIs
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(Figure 4B, lanes 4 and 5) and pNLenvMINX transfected cells
(Figure 4B, lanes 6 and 7). However, only a very weak signal
was detected for the spliced mRNA lacking the BGI sequence
(Figure 4B, asterisk). This result indicates that retention of the
30 intron is tight with virtually no partially spliced RNA lack-
ing this intron, despite the presence of very efficient splice
sites and a short intronic sequence in case of the MINX intron.
Thus, inefficient splicing of an intron in the 30 region of pN-
Lenv is not restricted to the BGI sequence.

We next analysed whether the heterologous intron in the
30 region of pNLenv can be spliced if the 50ss of the upstream
HIV-1 intron is destroyed and the BGI sequence is the only
functional intron. To this end, three nucleotides in the 50ss #4
were mutated, thereby preventing recognition by U1snRNP
(Figure 5A). This should completely block the splicing of
the HIV-1 intron. The resulting plasmids were termed
pNLenvM3, pNLenvM3BGIs and pNLenvM3BGIas, respec-
tively (Figure 5A). Figures 5B and C show western and

northern blot analyses of transfected HeLa P4 cells. Mutation
of the 50ss led to a slight reduction of Env expression and to an
almost complete loss of Nef expression compared with
pNLenv (Figure 5B, lanes 3 and 5; it is noted that the Nef
blot was overexposed to visualize residual Nef expression).
Northern blot analysis of pNLenvM3-transfected cells
revealed an almost complete loss of the spliced RNA in the
presence and absence of Rev (Figure 5C, upper panel, lanes 4
and 5), indicating that the M3 mutation efficiently blocked
splicing. The residual Nef expression may be explained by a
cryptic 50ss immediately downstream of 50ss #4. No significant
difference in the expression pattern was observed for
pNLenvM3BGIs compared with pNLenvM3 (Figure 5B,
lanes 5 and 7), while the BGI sequence in antisense orientation
abolished HIV-1 protein expression almost completely
(Figure 5B, lanes 8 and 9). The latter result was unexpected
because the BGI sequence in antisense orientation had not
affected Env expression in the case of pNLenvBGIa. The

Figure 3. Splicing of a heterologous intron in the 30 region of HIV-1. (A) Schematic depiction of the construct (top) and the RNA products. The second intron of the
rabbit BGI was cloned in sense or antisense orientation between the reading frames of env and nef of pNLenv. Drawings (1–4) show the potential RNA species plus the
shorter product (X). Identification of ORFs, cap and splice signals is as shown in Figure 4; the BGI sequence and the remaining heterologous sequence after splicing of
this intron are shown as thick lines. Primers for RT–PCR analysis (see Figure 5) are also indicated in the top panel. (B) Western blot analysis of HeLa P4 cells
transfected with the plasmids identified above each lane. A Tat expression plasmid was cotransfected in all cases. The blot was stained and labeled as described in
Figure 2B. (C) Northern blot analysis of cell extracts from the same transfection as in panel B. RNA separation and hybridization was performed as described in
Figure 2C. The respective RNA species and their numbering in panel A is shown on the right. The shortest RNA species labeled nefSABGI (X) corresponds to the
product of splicing from the HIV-1 50ss #4 to the 30ss of the BGI sequence and therefore, yields an RNA shorter than authentic nef mRNA. The blot was re-hybridized
with a GAPDH-specific probe (bottom).
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reason for this difference is currently not clear. Importantly,
however, northern blot analysis of both, pNLenvM3BGIs
and pNLenvM3BGIas transfected cells, revealed a strong
signal for the unspliced primary transcript containing the
BGI sequence (Figure 5C, upper panel, lanes 6–8). This
was confirmed by hybridization of the blot with a BGI-
specific probe (Figure 5C, middle panel). In addition, weak
signals corresponding to nef mRNA and the previously
described shorter product were seen in pNLenvM3BGIs trans-
fected cells (especially in the absence of Rev, Figure 5C,
middle panel, lane 6) and are probably due to the cryptic
50ss mentioned above. The signal for the unspliced RNA
was strongly decreased in the absence of Rev in all cases
(Figure 5C, upper panel), indicating degradation if this
RNA is not exported. The results show that there was no
splicing of the efficient heterologous intron in the 30 region
of pNLenv when splicing of the upstream HIV-1 intron was
prevented by a 50ss mutation. Thus, splicing of an intron in this
position appears to be inhibited until the upstream splicing
event has occurred and this inhibition does not seem to depend
on the quality of the splice signals.

Figure 4. Analysis of the MINX intron in the 30 region of pNLenv. The
synthetic MINX intron was cloned into the 30 region of pNLenv in the
same position as described for the BGI sequence (pNLenvMINX).
(A) Western blot analysis of HeLaP4 cells transfected with the constructs
indicated above each lane. A Tat expression plasmid was cotransfected in
all cases. HIV-1 specific proteins were identified as described in Figure 2B.
(B) RT–PCR analysis of RNA isolated from the same transfection as in panel
A. RNA was reverse transcribed and PCR amplified with primers hybridizing
to the 30 end of the env ORF and to the 30 LTR (indicated in Figure 3A), and
PCR products were separated on an agarose gel and stained with ethidium
bromide. Specific products are identified on the right, an asterisk marks the
position of the spliced product where the BGI sequence had been removed and
the env intron had been retained. Molecular mass standards are given on the
left. A parallel RT–PCR reaction with actin-specific primers (bottom panel)
served as the RNA control. Control reactions without RT enzyme were
negative (data not shown).

Figure 5. Mutation of the HIV-1 50ss in pNLenv does not relieve the 30 splice
inhibition. (A) Schematic depiction of plasmids pNLenvM3 and pNLenvM3B-
GI. The sequence at the HIV-1 50ss #4 (wt) and the complementary sequence
of the U1 RNA is expanded on top. The three mutations introduced into the
50ss are depicted below in bold and underlined (M3). (B) Western blot analysis
of HeLa P4 cells transfected with the constructs indicated above each lane. A
Tat expression plasmid was cotransfected in all cases. HIV-1 proteins are
identified on the right as in Figure 2B. (C) Northern blot analysis of 10 mg
of RNA obtained from the same transfection as in panel B. The upper panel
was probed with an LTR-specific probe, the middle panel with a BGI-specific
probe, and the bottom panel with a GAPDH-specific probe. The observed
RNA species are identified as in Figure 3C; numbering is according to the
drawing in Figure 3A.
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The BGI is efficiently spliced when placed into the
50 UTR of pNLenv

To analyse whether the retention of the BGI sequence is
dependent on the position of the intron, the same sequence was
inserted in sense or antisense orientation upstream of 50ss #4
into the 50 UTR of pNLenv (Figure 6A). The resulting plas-
mids were named pNLenvBGBs and pNLenvBGBas, respect-
ively. Western blot and northern blot analysis of HeLaP4 cells
transfected with these constructs is shown in Figure 6. Effi-
cient Rev-dependent expression of Env and Rev-independent
expression of Nef was observed in the case of pNLenvBGBs
(Figure 6B, lanes 1 and 2), which was indistinguishable from
pNLenv-transfected cells. In contrast, there was very little
HIV-1 specific protein expression in pNLenvBGBas trans-
fected cells (Figure 6B, lanes 3 and 4). This is most probably
due to the presence of the long heterologous sequence in the 50

UTR, which cannot be spliced, and may prevent translation of
the mRNA (54). Accordingly, the normal production of Env
and Nef proteins in pNLenvBGBs transfected cells indicated
that the BGI sequence was efficiently removed in this case.
This was confirmed by northern blot hybridization of nuclear
RNA from transfected cells with HIV-1 (Figure 6C) and BGI-
specific (Figure 6D) probes. The HIV-1 specific RNA pattern
in pNLenvBGBs transfected cells in the presence or absence of
Rev (Figure 6C, lanes 1 and 2) was identical to that observed
for pNLenv (Figure 2C, lanes 2 and 3). Importantly, no signal
was detected with the BGI-specific probe (Figure 6D, lanes
1 and 2), indicating that the 4 kb RNA in this case lacks the
BGI sequence. Thus, insertion of the efficient heterologous
intron into the 50 UTR of pNLenv led to its rapid splicing and
degradation of the heterologous intron, while the (inefficient)
HIV-1 intron was only partially spliced. In the case of
pNLenvBGBas transfected cells (Figure 6C and D, lanes 3

Figure 6. Splicing of a heterologous intron in the 50 region of HIV-1. (A) Schematic depiction of pNLenvBGB (top). The BGI sequence was cloned into the BssHII
site located upstream of 50ss #1. ORFs, splice signals and cap are identified as described in Figure 1. The possible RNA products are shown below. The thick line
identifies the BGI sequence or the residual sequence after splicing of this intron. (B) Western blot analysis of HeLa P4 cells transfected with the plasmids indicated
above each lane. A Tat expression vector was cotransfected in all cases. HIV-1 specific proteins were detected and labelled as described in Figure 2B. (C) Northern
blot analysis of 10mg of nuclear RNA derived from the same transfection as in panel B. Cells were fractionated and nuclear RNA was separated and hybridized with a
probe specific for the HIV-1 LTR as described in Figure 2C. The respective RNA species and their numbering in panel A is shown on the right. (D) Re-hybridization
of the same blot as in panel B with a BGI-specific probe (upper panel) and with a GAPDH-specific probe (lower panel).
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and 4), signals were observed for the primary transcript con-
taining the BGI sequence in antisense orientation [Figure 6A,
RNA (1)] and the spliced RNA lacking the HIV-1 intron but
containing the BGI sequence (Figure 6A, RNA 3). The weak
signal for nef mRNA may be due to cryptic splicing from a
50ss within the BGI sequence in antisense orientation to
30ss #7 and may thus explain the weak Nef expression
observed (Figure 6B, lane 3).

Insertion of the BGI into different positions of an
infectious HIV-1 plasmid recapitulates the results
obtained with pNLenv

To analyse whether the position-dependent retention of a het-
erologous intron also occurs in the context of the complete
HIV-1 genome, we inserted the BGI sequence into an infec-
tious proviral plasmid. The heterologous intron was placed
into the same positions in the 50 UTR and upstream of the
nef gene as described for pNLenv. A variant of pNL4-3 con-
taining mutations in the tat and rev genes (pNL4-3tr�) was
used for insertion of the BGI sequence into the 50 UTR
(Figure 7A), and Tat and Rev expression vectors were cotrans-
fected as indicated. For insertion into the 30 region, a pNL4-3
derivative containing a CMV promoter driving HIV-1 tran-
scription [pNLC4-3; (44)] and with mutations in the tat and rev
genes was used (Figure 7A). Transfection of pNLC4-3 was
previously shown to cause production of infectious virus with
a similar efficiency as pNL4-3 (44). Figure 7B indicates that
similar amounts of Gag-derived products were observed when
transfection of pNLC4-3 was compared with transfection of
pNLC4-3 tr� and pNL4-3BGBtr� in the presence of Tat and
Rev (Figure 7B, upper panel, compare lane 2 with lanes 4
and 6). No Gag-specific proteins were observed in the absence
of Rev (Figure 7B, upper panel, lanes 3 and 5). This result
suggested that the BGI sequence in the 50 UTR of the HIV-1
genomic RNA was efficiently removed; similar to what had
been observed for pNLenvBGB. Immunoblot analysis with
antisera against HIV-1 Env (Figure 7B, middle panel) and
Nef (Figure 7B, lower panel) confirmed that protein expres-
sion from singly spliced RNAs and RNAs that were spliced at
multiple sites was unaffected by insertion of the BGI
sequence. Northern blot analysis of transfected cells
revealed the expected pattern of three classes of RNA, corre-
sponding to the genomic RNA, singly spliced RNAs and
RNAs that were spliced at multiple sites in the case of
pNLC4-3 (Figure 7C, lane 2). A similar pattern was observed
for pNLC4-3tr� and for pNL4-3BGBtr� in the presence of Tat
and Rev (Figure 7C, lanes 4 and 6). The genomic RNA in the
case of pNL4-3BGBtr� was observed in the same position as
for pNLC4-3tr� and hybridization of the blot with a BGI-
specific probe detected no signal for a BGI-containing RNA
in this case (Figure 7D, lane 6). The background signal in lanes
2, 4 and 6 is derived from the HIV-specific probe used in the
first hybridization. This result shows that the BGI-sequence in
the 50UTR was rapidly and completely spliced as had been
observed for pNLenvBGB.

The insertion of the BGI sequence into the 30 region of the
HIV-1 genome also did not lead to altered Gag expression
(Figure 7B, upper panel, lane 8), but led to reduced levels of
Env and Nef compared with wild type and pNLC4-3tr�

(Figure 7B, middle and lower panels, lanes 2, 4, 7 and 8).

Northern blot analysis with a HIV-1 specific probe revealed a
similar pattern as observed for pNLC4-3tr� but hybridization
of the blot with a BGI-specific probe showed that the hetero-
logous intron in the 30 region of the HIV-1 genome was
retained (Figure 7D, lane 8). The BGI sequence was detected
in the unspliced genomic, as well as in the singly spliced RNA,
while no signal was observed for the completely spliced
RNAs. The presence of the BGI in the 30 region also leads
to reduced levels of singly and completely spliced RNAs
(Figure 7C, lane 8) and consequently to lower expression
levels for Env and Nef (Figure 7B, middle and lower panels,
lanes 8). The reason for this difference, which was not
observed for the construct with intact tat and rev genes
(data not shown), is currently not clear. Retention of the 30

intron was further supported by analysing proviral DNA after
infection of a T cell line with an infectious virus carrying the
BGI sequence. PCR analysis of cells infected for 6 days
revealed a strong signal for genomes that retained the BGI
sequence in the 30 region and a very weak signal for genomes
that had lost this sequence by splicing (supplementary Figure
S1). Taken together, these data indicate that splicing of the
heterologous intron in the 30 region of HIV-1 genomic RNA
depends on removal of all upstream introns as had been
observed for pNLenv.

Mutation of 50ss #1 in an infectious proviral HIV-1
plasmid abolishes downstream splicing

If the observation that the splicing of a downstream intron is
dependent on removal of upstream introns holds true for the
HIV-1 splice signals, it can be predicted that mutation of the
first 50ss should completely abolish HIV-1 splicing. To test
this hypothesis, three point mutations were introduced into the
50ss #1 in the HIV-1 proviral clone pNL4-3 (M3; Figure 8A).
As before, a derivative of pNL4-3 with mutations in the tat
and rev genes was used for these experiments and Tat and Rev
expression vectors were cotransfected as indicated. The M3
mutation introduces three alterations into the binding site for
U1snRNP (Figure 8A) and should thus abolish U1 binding and
splicing. A cryptic 50ss 4 nt downstream of the actual splice
site was mutated in addition [Figure 8A, (8)]. Figure 8B shows
northern blot analysis of HeLaP4 cells transfected with the
indicated plasmids. Transfection of pNL4-3 yielded the des-
cribed pattern of genomic RNA (�9 kb), singly spliced RNA
(�4 kb) and completely spliced RNA (�2 kb) (Figure 8B,
lane 2). A very similar pattern was observed for pNL4-3tr� in
the presence of Rev (Figure 8B, lane 4), while completely
spliced RNA was the main product in the absence of Rev
(Figure 8B, lane 3) as previously reported (14). In contrast,
only the unspliced genomic RNA was detected in the case of
pNL4-3 M3tr� (Figure 8B, lanes 5 and 6). There was a strong
signal for the genomic RNA in the presence of Rev (Figure 8B,
lane 6), which was significantly reduced if Rev was lacking
(Figure 8B, lane 5), consistent with Rev stabilizing this RNA
by facilitating its nuclear export (14,57). No signals
corresponding to singly spliced RNAs or RNAs that were
spliced at multiple sites, were observed for pNL4-3M3tr� in
the presence or absence of Rev, indicating that all downstream
splice events of HIV-1 are dependent on the removal of
upstream introns as predicted from the results with heterolo-
gous introns.
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DISCUSSION

In this report, we provide evidence that splicing of HIV-1
involves the ordered removal of introns from the 50 end of
the genomic RNA, and that this process is mediated by 30

splice inhibition. This inhibition was also seen for hetero-
logous introns independent of the quality of their splice
signals. We observed the removal of native and heterologous
introns from HIV-1 RNAs only when the respective intron was
located in the 50 proximal position on this RNA. Splicing of 30

Figure 7. Analysis of the splicing of a heterologous intron in the complete HIV-1 genome. (A) Schematic depiction of the proviral constructs containing the BGI
sequence in the 50 region (pNL4–3BGBtr�; top) or in the 30 LTR (pNLC4–3BGItr�, bottom). The BGI sequence was inserted into the same positions as described for
pNLenv. It is noted that the proviral clones with mutations in the tat and rev genes were used and Tat and Rev expression plasmids were cotransfected as indicated. In
the case of pNLC4–3BGItr�, a derivative of pNL4-3 containing a cytomegalovirus promoter instead of the U3 region of the 50 LTR was used (pNLC4-3). This
construct had been shown to produce an infectious RNA with a titer comparable to pNL4-3 (44). (B) Hela P4 cells were transfected with the plasmids indicated above
each lane. Cell extracts were analysed by western blot using an antiserum against the HIV-1 Gag derived capsid protein (CA). This antiserum detects the Gag
precursor Pr55, several cleavage intermediates and the completely cleaved CA protein. Antisera against Env and Nef were used in the middle and lower panels,
respectively. Viral proteins are marked on the right as in Figure 2B. (C) Northern blot analysis of RNA isolated from the same transfections as in panel B. The blot was
hybridized with a LTR-specific probe as indicated in panel A. (D) Re-hybridization of the same blot as in panel C with a BGI (upper panel) and a GAPDH-specific
(lower panel) probe. The positions of unspliced, singly spliced and completely spliced RNAs are shown on the right.
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located introns was completely dependent on the removal of
all upstream introns. Accordingly, mutation of the 50ss #1 in
the 50 UTR of the HIV-1 genome completely abolished spli-
cing despite the presence of three additional 50ss and seven 30ss
on this RNA, which are normally used in HIV-1 splicing.

Given that splicing is a co-transcriptional event and splice
sites are recognized as they are transcribed (58,59), it may not
appear surprising that intron removal proceeds in a 50 to 30

direction. Several reports indicated, however, that splicing of
cellular pre-mRNAs does not follow a strict 50 to 30 order and
30 introns may be removed before the 50 proximal introns.
Thus, splice site recognition and intron-removal do not
necessarily occur in the same order (30–33). This also
holds true for intron 2 of the b-globin gene, which was
used as a heterologous intron in the current study. This intron
has been shown to be spliced prior to the upstream intron 1 in
its native context (60), while splicing was inhibited when it
was placed into the 30 region, but not the 50 region of the HIV-1
genome. It should also be considered that splicing of cellular

pre-mRNAs is normally a very rapid event and very little, if
any, intron containing RNAs are observed under steady-state
conditions (16). In contrast, HIV-1 splicing is necessarily
inefficient although the same machinery is used (3). This
leads to the nuclear accumulation of unspliced and singly
spliced RNAs, which can either be further spliced, exported
via the Rev/Crm1-dependent pathway or degraded. Thus, in
the case of HIV-1, there is a sustained nuclear pool of intron-
containing RNAs, which could undergo further splicing. This
would make it more likely that splicing deviates from a strict
50 to 30 order than in the case of rapidly spliced cellular
mRNAs, while the opposite is in fact observed. This may
be important for viral gene expression (see below).

Splicing of the heterologous BGI sequence in the 30 region
of HIV-1 was dependent on the removal of all upstream
introns, both in a subgenomic expression vector and in the
HIV-1 genome. This required a single splice event in the case
of pNLenv, while removal of two introns—the gag–pol and
the env intron—was required in case of the complete genome.
Northern blot analysis revealed that the BGI sequence was
retained on the unspliced genomic and on the singly spliced
RNA, while it was completely removed from all RNAs that
were spliced at multiple sites. Thus, splicing of the efficient
heterologous intron was apparently suppressed on the sus-
tained pool of nuclear incompletely spliced RNAs, while it
appeared to be activated upon removal of all upstream introns.
This inhibition could not be relieved by mutation of the
upstream splice signals, and splicing of the BGI in the 30

region was still suppressed when the 50 ss of the single
upstream intron was mutated. Thus, activation of downstream
splicing in the case of HIV-1 appears to require prior splicing
of all upstream introns. Accordingly, the BGI-sequence was
efficiently and completely spliced when placed into the
50 UTR of the subgenomic vector or the proviral genome
and no trace of BGI-containing sequence was detected.

Inhibition of 30 BGI splicing was not dependent on the
cryptic tev splices sites present in the env-intron (55,61) or
on the length of the intron. Removal of a large part of the env
region, including the cryptic splice signals did not alter the
splicing pattern, confirming previous results from Cochrane
et al. that intronic sequences do not influence the inefficiency
of 30ss #7 (15). Furthermore, placing the very efficient syn-
thetic MINX intron (56) into the same position of the sub-
genomic vector yielded a very similar result. This intron is
short (120 nt) with optimal consensus splice signals and is
normally rapidly and autonomously spliced even in a heterolo-
gous context (62). These results suggest that cis-acting
elements in the HIV-1 genome override efficient splice
signals, thereby suppressing the fast removal of the intron
in a position-dependent manner. This inhibition is not a prop-
erty of the respective intron and can be overcome if the up-
stream intron is spliced. The same effect is also observed in the
case of the authentic HIV-1 introns, where splicing of all
downstream introns requires prior removal of the gag–pol
intron. Based on these results, we reasoned that a mutation
affecting only the major 50ss in the HIV-1 genome should
abolish all splicing. This was indeed the case and was also
observed when the BGI-sequence was placed into the 30 region
of a HIV-1 genome with the M3 mutation in 50ss #1 (data
not shown). Thus, splicing of all downstream HIV-1 (or
heterologous) introns is completely dependent on removal

Figure 8. Mutation of the 50ss #1 of HIV-1 abolishes splicing. (A) Schematic
depiction of the wild-type sequence at the 50ss #1 of pNL4-3 (middle), the
complementary sequence of U1 (top) and the M3 mutations (bold and under-
lined; bottom). Vertical lines indicate hydrogen bonds between the 50ss and U1.
(B) Northern blot analysis of RNA from HeLa P4 cells transfected with the
constructs indicated above each lane and hybridized with a HIV-1 LTR-specific
probe. pNL4-3tr� is a derivative of pNL4-3 with mutations in the tat and rev
genes. A Tat expression vector was cotransfected in the experiments shown in
lanes 3–6. Unspliced, singly spliced and completely spliced RNAs are identi-
fied on the right, molecular mass standards are shown on the left. The bottom
panel shows re-hybridization of the same blot with a GAPDH-specific probe.
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of the 50 gag–pol intron and functional downstream splice sites
are not utilized unless they are placed into the 50 proximal
position.

One indication of how HIV-1 splicing is regulated can be
deduced from the observation of an additional spliced product
when the BGI sequence was placed into the 30 region of HIV-1.
This product is derived from splicing at 50ss #4 and the 30ss of
the globin intron, thus deleting the sequences between 30ss #7
of HIV-1 and the 30ss of the BGI. This corresponds to the
skipping of a newly introduced exon (30ss #7 to BGI 50ss),
which may be due to weak exon definition (63) because of
inefficient recognition of 30ss #7. This 30ss exhibits a weak
polypyrimidine tract (15), contains a U-residue instead of A as
a branchpoint (19) and is further regulated through adjacent
splice enhancers and silencers (22,26,50,64,65). According to
a mechanism proposed by Branlant (65) and Krainer (22),
splice enhancer sequences help to define 30ss #7 through re-
cruitment of splice factors (e.g. ASF/SF2) and subsequent
binding of U2AF to the 30ss. Alternatively, binding of hn-
RNPA1 to splice silencers, prevents the use of 30ss #7 (65)
and possibly of downstream splice signals. In this way, 30ss #7
is only used on the part of the transcripts giving rise to separate
pools of singly spliced and completely spliced RNAs, while
the BGI sequence is only spliced when the exon is defined
through recognition of 30ss #7 or when this exon is skipped.
However, exon definition involving 30ss #7 cannot explain
suppression of all 30 introns in the HIV-1 genome because
mutation of 50ss #1 abolished all splice events despite the
presence of functional downstream introns. It appears likely;
therefore, that additional crosstalk across the introns occurs.

A simple explanation for sequential splicing would be that
the splice signals on the genomic RNA are sorted by their
efficiency, having the most efficient splice sites at the 50 end.
However, this is not the case, since all 50ss on the HIV-1
genome closely match the consensus sequence, while 30ss
are weak (8,17). Furthermore, insertion of introns with optimal
splice signals into the 30 region cannot overcome the inhibi-
tion. Another interesting observation is that all HIV 50 and 30 ss
are arranged in an alternating order where an inefficient 30ss is
paired with an efficient 50ss. If and how this contributes to
regulation of sequential splicing is the subject of ongoing
research.

From the pattern of viral gene expression, it appears likely
that the sequential splicing of HIV-1 genomic RNA is bio-
logically significant. As stated above, viral protein synthesis
and production of infectious particles critically depends on
inefficient splicing, which yields stable pools of unspliced,
singly spliced and completely spliced RNAs. Removal of
the 50 proximal intron(s) is required to produce mRNAs for
the viral proteins Env, Vpr, Vif, Vpu, Tat, Rev and Nef. If the
30 intron would be removed prior to the 50 intron(s) in these
cases, the respective RNAs would likely be subject to NMD
(39). Thus, sequential removal of introns from the 50 end of the
HIV-1 genomic RNA may be critical to maintain a high and
balanced viral gene expression and may be an intrinsic prop-
erty of retroviral RNAs.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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