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High-throughput reporter assays such as self-transcribing active regulatory region sequencing (STARR-seq) have made it

possible to measure regulatory element activity across the entire human genome at once. The resulting data, however, pre-

sent substantial analytical challenges. Here, we identify technical biases that explain most of the variance in STARR-seq data.

We then develop a statistical model to correct those biases and to improve detection of regulatory elements. This approach

substantially improves precision and recall over current methods, improves detection of both activating and repressive reg-

ulatory elements, and controls for false discoveries despite strong local correlations in signal.

[Supplemental material is available for this article.]

Gene regulation is of foundational importance to nearly all biolog-
ical processes, and variation in gene regulatory activity plays a ma-
jor role in human disease risk (Lee and Young 2013; Parker et al.
2013; Finucane et al. 2015). A major step toward measuring regu-
latory activity across the human genome has been the develop-
ment of high-throughput reporter assays such as STARR-seq
(Arnold et al. 2013) that allow regulatory element activity to be
quantified with high-throughput sequencing rather than with op-
tical detection of a fluorescent or luminescent signal.

High-throughput reporter assays create substantial analytical
challenges that are distinct from other sequencing-based genomic
assays. There is significant local variation in high-throughput re-
porter assay signal.We showhere that, across data from several lab-
oratories,most of that variation can be explained by features of the
underlying genomic sequence and experimental procedures rather
than by regulatory element activity. For example, nucleotide com-
position can alter PCR efficiency leading to under- and overrepre-
sentation of some sequences. Meanwhile, highly repetitive
sequences often do not align uniquely to the human reference ge-
nome, also biasing signal estimates. Additional analytical chal-
lenges include that STARR-seq signals can be both positive and
negative, reflecting activation and repression, and the boundaries
of regulatory elements are typically unknown and must therefore
be estimated from the data. Those challenges together impact sig-
nal representations, hinder estimation of regulatory element activ-
ity, and cause false positives and false negatives when left
unaddressed.

Taken together, key requirements of statisticalmethods to an-
alyze STARR-seq data are the ability to identify and estimate the ef-
fect of both activating and repressing regulatory elements while

also correcting for underlying sequence biases in high-throughput
reporter assays. A statistical model was recently introduced that
corrects technical biases and detects regulatory elements in
STARR-seq, but the model is limited to detecting only activating
regulatory elements (Lee et al. 2020). Considering repression is a
crucial gene regulation mechanism (Courey and Jia 2001), over-
looking repressive elements may limit understanding of gene reg-
ulation with STARR-seq. To overcome that challenge, our
correcting reads and analysis of differentially active elements
(CRADLE) model takes a two-step approach. First, CRADLE uses a
generalized linear regression model to estimate and correct major
biases that we have identified in STARR-seq data. Next, CRADLE
detects regions with statistically significant regulatory activity
from the bias-corrected signals while rigorously controlling FDR.
In doing so, CRADLE substantially improves the use of STARR-
seq by providing a robust estimation of regulatory activity and im-
proved visualization of raw signals.

Results

DNA sequence biases STARR-seq signals

To identify sources of signal variance in STARR-seq, we analyzed
data from two whole-genome STARR-seq studies completed in dif-
ferent laboratories and in different human cell models: A549
(Johnson et al. 2018) and HeLa-S3 cells (Muerdter et al. 2018).
Each study followed a similar protocol in which an input STARR-
seq library was generated by cloning randomly fragmented geno-
mic DNA into the 3′ untranslated region (UTR) of a reporter
gene. The input librarywas then assayed by transfecting it into cul-
tured human cells where the cloned DNA fragments regulate their
own transcription into mRNA. The expression of each random
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fragment as mRNA was then measured with high-throughput se-
quencing. Finally, regulatory activity was estimated by comparing
the expression of each fragment in the output library relative to its
abundance in the input library.

The STARR-seq input libraries showed substantially more
signal variance than is observed in the controls for other genomic
assays such as for ChIP-seq (Fig. 1A,B; The ENCODE Project
Consortium 2012). That variance in STARR-seq input signal was

E

BA

C

D

Figure 1. Technical biases affect STARR-seq signal. (A) STARR-seq input libraries have higher signal variance than ChIP-seq input control libraries.
Variance in per base signal in individual RPKM-normalized libraries are plotted for Chromosome 1. The error bars indicate variance between replicates.
The number of replicates plotted is as follows: six replicates for STARR-seq A549 data; two replicates for STARR-seq HeLa-S3 data; three replicates for
ChIP-seq A549 data; two replicates for ChIP-seq HeLa-S3 data; three replicates for ChIP-seq LNCaP data. (B) Representative browser signal tracks are shown
for STARR-seq and ChIP-seq input libraries (Chr 1: 11,197,048–11,236,707). Signals are RPKM-normalized. (C) Pearson’s correlations of STARR-seq input
library signals in 1-bp windows along Chromosome 1. (D) DNA sequence biases impact STARR-seq signals. STARR-seq signals are plotted for 500-bp win-
dows with varying degrees of bias for the following physical properties of DNA: fragment-end DNA structures, Gibbs free energy, G-quadruplex structure,
and mappability. Whiskers extend 1.5 times the interquartile range. Center lines in the boxes show the medians. In plots of fragment-end bias, minor
groove width (MGW) and propeller twist (ProT) are plotted and the ideal is log2(Freq in input/Freq in ref)=0. In plots of other biases, the ideal line is
the median signal. (E) PCR amplification introduces bias into STARR-seq libraries. The impact of Gibbs free energy bias is shown for PER1 BAC libraries am-
plified with different numbers of PCR cycles (3, 6, 12, and 18 cycles). Each point represents the sum of signals in a 500-bp window from three technical
replicates. The solid line is a lowess fit line. The dashed ideal line is the median signal across all windows.
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consistent across replicates and between studies (Fig. 1C), more
so than for ChIP-seq input signal (Supplemental Fig. S1). Here,
we analyzed four potential sources of variance in STARR-seq sig-
nal: (1) DNA structure influencing DNA fragmentation, cloning
or other enzymatic reactions, thus affecting which DNA frag-
ments are available in the assay library (Poptsova et al. 2014);
(2) differences in the Gibbs free energy of DNA fragments influ-
encing multiplex PCR efficiency, leading to preferential amplifi-
cation of some fragments (Cheung et al. 2011; Benjamini and
Speed 2012; Hansen et al. 2012; Jiang et al. 2015; Love et al.
2016; Teng and Irizarry 2017); (3) G-quadraplexes in the genome
impairing amplification by DNA polymerase (Chambers et al.
2015; Rhodes and Lipps 2015); and (4) biases resulting from
differences in the mappability of short read sequences to the ref-
erence human genome, for example, owing to repetitive sequenc-
es (Derrien et al. 2012).

We found evidence that each source of bias influences the sig-
nal observed when sequencing STARR-seq libraries. Tomodel bias-
es attributed to DNA secondary structure, we computationally
estimated the minor groove width (MGW) and propeller twist
(ProT) at the 5′ ends of DNA fragments (Zhou et al. 2013). We an-
alyzed 5′ ends of DNA fragments because they are not modified in
the end-repairing process of generating STARR-seq libraries
(Poptsova et al. 2014). We observed distinct biases in 5′ MGW
and ProT (Fig. 1D). Consistent with signal biases caused by prefer-
ential fragmentation, ApG andGpGdinucleotides aremost under-
represented at the 5′ ends of STARR-seq fragments, which were
previously reported to be less prone to shearing (Supplemental
Fig. S2; Poptsova et al. 2014). To estimate biases caused by differ-
ences in the thermodynamic stability of complementary DNA
strands, G-quadruplex structure, and mappability, we binned the
genome into 500-bp windows. We then used data from previous
studies to estimate the Gibbs free energy of the duplexed DNA
strands (Protozanova et al. 2004), stability of G-quadruplex struc-
ture (Chambers et al. 2015), and the fraction of redundantmappa-
ble positions in the reference genome for each window (Fig. 1D;
Derrien et al. 2012). Fragments with the highest Gibbs free energy,
highly stable G-quadruplex structure, and lowmappability all had
substantially depleted STARR-seq signals. Those trends were con-
sistent across both whole-genome STARR-seq studies (Johnson
et al. 2018; Muerdter et al. 2018).

To evaluate whether biases in estimated Gibbs free energy are
caused by differences in PCR amplification efficiency, we generat-
ed DNA fragment libraries from a bacterial artificial chromosome
(BAC) using between three and 18 cycles of PCR. The BAC con-
tained 211 kb surrounding the PER1 gene on human
Chromosome 17. DNA fragments with extreme Gibbs free energy
were depleted from the final library, and particularly so after 12 or
more PCR cycles (Fig. 1E). That observation also indicates that sig-
nal from output STARR-seq libraries will have more severe PCR-re-
lated biases than that from input libraries owing to the additional
15–16 PCR cycles used (Johnson et al. 2018; Muerdter et al. 2018),
and that minimizing PCR can substantially reduce this source of
bias.

Modeling biases in STARR-seq signal guides improved

experimental designs

To model the aforementioned biases in STARR-seq signal, we de-
veloped a generalized linear regression model (GLM) with covari-
ates to model DNA structure (Zhou et al. 2013) in fragment ends,
annealing and denaturing efficiency of DNA fragments related to

their Gibbs free energy (Protozanova et al. 2004), stability of
G-quadruplex structure (Chambers et al. 2015), and mappability
(Derrien et al. 2012) as a reduced set of independent variables
(Fig. 2A).We then fit thatmodel to predict biases in STARR-seq sig-
nals across the genome (Fig. 2A). To improvemodel fit, particularly
at the extremes of STARR-seq signal, we separately modeled re-
gions with high STARR-seq signal that we observed to have signifi-
cantly different coefficients for biases related to the fragment
Gibbs free energy (Fig. 2B). We used a biased structured sampling
approach to better fit the tails of the signal distribution (Fig. 2C;
Methods). The model fit was robust to the specific thresholds
used in the biased structured sampling approach (Supplemental
Fig. S3). Together, these adjustments improve model fit at the ex-
tremes of STARR-seq signal where biases are most strong and thus
most likely to impact analysis.

Overall, the GLM fit the observed signals with R2 up to 0.75
for input STARR-seq libraries (Fig. 2D). The model fit output li-
braries less well than the input libraries, owing in part to regula-
tory activity also contributing to differences in STARR-seq signal.
Still, the GLM showed comparable performance to using input li-
brary in predicting biases of output library, despite the high de-
grees of freedom (Supplemental Fig. S4). The GLM had
significantly better fit than the model that simply binned ge-
nome and used GC content in each bin as a covariate
(Supplemental Fig. S5). We think the improved fit of the GLM
over the simple GC-content model is partially a result of the non-
linear relationship of GC content and signal (Fig. 1D). Residuals
from the model approximately follow a normal distribution (Fig.
2E), supporting model fit. We also estimated the extent to which
each covariate independently explained variation in STARR-seq
signal (Fig. 2F). Overall, the median of the explained variation
across the two studies showed fragment-end sequences, and
Gibbs free energy explained the greatest amount of signal varia-
tion. In the data from Johnson et al. (2018), G-quadruplex bias
in the input STARR-seq library and mappability bias in the out-
put STARR-seq library had a negative marginal contribution to to-
tal predictive power but the effects were minor. Meanwhile, in
the data set of Muerdter et al. (2018), Gibbs free energy was the
major contributor to signal biases, showing relatively large vari-
ance between replicates. This shows distinctive bias effects in
the two input libraries, which aligns with relatively small correla-
tion between two signals compared to Johnson et al. (Fig. 1C).
These findings indicate that most of the variance in STARR-seq
signal can be attributed to technical biases; it is important to
model distinct relative contributions of those biases in different
STARR-seq library preparations.

Most of the parameters we modeled are not readily mitigated
by modifying experimental procedures. As examples, reducing
PCR cycles may not be feasible when template is limited, and
DNA fragmentation is required for STARR-seq. Therefore, we inves-
tigated whether the GLM can instead statistically correct biases in
STARR-seq signal. First, we fit the aforementionedGLM (Fig. 2A) to
fragment sequencing libraries generated with different numbers of
PCR cycles and calculated the amount of variance explained by the
GLM. Consistent with our earlier observation that additional PCR
cycles increased Gibbs free energy bias (Fig. 1E), the model ex-
plained more signal variance when more PCR cycles were used
(Fig. 2G). There was also a monotonic increase in the coefficients
for fragment annealing and denaturing efficiency based on the
Gibbs free energy (Fig. 2H). Those results show that the GLM can
correct different amounts of bias resulting from different experi-
mental designs.
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Figure 2. The CRADLE GLM approach accurately predicts signal bias. (A) Equation of the GLM to predict the impact of technical biases and approach
used by CRADLE to calculate bias covariates. To estimate bias effects for each position (blue), we used a window centered on that position that was twice
the median fragment length, L. We assume L number of fragments (green) in a window and that each fragment is L-bp in length. To calculate each bias
covariate for the position, we combined quantitative measures from L fragments. (pos) Single-bp position; (MGWpos) minor grove width; (ProTpos) pro-
peller twist; (Annealpos) annealing efficiency; (Denaturepos) denaturation efficiency; (Gquadpos) G-quadruplex structure; (Mappos) mappability. (B)–(F) The
results from the GLM fitted with Johnson et al. (2018) STARR-seq data (six input libraries and five 0-h dex-treated output libraries) and Muerdter et al.
(2018) STARR-seq data (two input libraries and two no-inhibitor-treated output libraries). For C–F, the results were visualized for Chromosome
1. (B) Coefficients in input libraries for regions with signals above and below the 90th percentile (“Regions with high input signal” and “The rest of re-
gions,” respectively). (C) Ratio of the sum of squared errors with structured sampling to the sum of squared errors with random sampling are plotted for
regions with extremely high signals (above the 99th percentile). (D) Variance explained by CRADLE are plotted. The R2 values are from GLMs fitted with
input and output STARR-seq libraries. The error bars indicate variance between replicates. (E) Distribution of GLM residuals and the STARR-seq effect sizes
are shown after correction. (F) Squared semipartial correlations are shown for fragment-end, Gibbs free energy, G-quadruplex, and mappability covar-
iates. The error bars indicate variance between replicates. (G) The R2 values of the GLMs are shown for PER1 BAC libraries amplified with different num-
bers of PCR cycles. (H) Coefficients of anneal and denature covariates are shown for the GLM fitted with PER1 BAC libraries. The error bars show a 95%
confidence interval.
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Removing technical biases in STARR-seq improves visualization

Visualizing signals from functional genomic assays is often a crit-
ical step in quality control, experiment interpretation, integrative
analysis, and hypothesis generation. Because substantial signal
variation in STARR-seq is attributed to the underlying DNA se-
quence, however, it is challenging to gain useful information
from visual inspection of uncorrected STARR-seq signals. That vi-
sualization can be substantially improved by instead using the re-
siduals from the GLM. For example, across the two genome-wide
studies analyzed here (Johnson et al. 2018; Muerdter et al. 2018),
the GLM reduced signal variance by between 40% and 80%, result-
ing in approximately zero-centered corrected signals (Fig. 3A,B).
Further demonstrating generality across specific experimental pro-
cedures, the GLM also effectively corrected biases caused by differ-
ent amounts of PCR (Fig. 3C,D). An example of the resulting
correction for a 19-kb region is shown in Figure 3E, where the
GLM residuals allow for clearer visual identification of elements
with activating or repressive regulatory effects. For example, a re-
gion near the PER1 gene that is well known to have activating reg-
ulatory activity in response activation of the glucocorticoid
receptor (NR3C1) (Reddy et al. 2012; Johnson et al. 2018) showed
much clearer indication of activity after correction (Fig. 3F). Simi-
larly, an example of a repressive element that is bound by the REST
repressor (The ENCODE Project Consortium 2012) is also better
represented in corrected signals compared to uncorrected observed
signals (Fig. 3G). To generalize the argument that correcting biases
better reflects regulatory activity, we compared observed and cor-
rected signal forNR3C1-binding regions andREST-binding regions
that had corresponding motifs (Supplemental Fig. S6; The EN-
CODE Project Consortium 2012). Overall, corrected signal pro-
vides more stable background signal and shows clearer regulatory
activity (Supplemental Fig. S6). Together, these results show that
our model accounts for a substantial variation of signals in
STARR-seq data and improves visualization of signals.

Correcting biases improves detection of regulatory signals

embedded in STARR-seq data

To next detect genomic regions with significant STARR-seq activi-
ty,we developed a newmethod that rigorouslymodels two key fea-
tures of the assay. First, STARR-seq measures both activation and
repression of reporter gene expression (Johnson et al. 2018), thus
being able to detect both activation and repression is important.
Second, local STARR-seq signals are highly correlated (e.g., Fig.
3E). That correlation, if not appropriately considered, can lead to
nonconservative control of type I errors if not modeled (Lun and
Smyth 2014).

To overcome those challenges, we developed a two-step stat-
istical approach tomerge locally correlated signals whilemaintain-
ing well-calibrated control of the false discovery rate (FDR) (Fig.
4A). Briefly, our approach first detects signals in broad genomic re-
gions and then identifies more specific sources of signal variation
within those regions. The approach is based on previous work
from Benjamini (Benjamini and Hochberg 1995; Benjamini and
Bogomolov 2014). To increase power of detecting regulatory ele-
ments, we also used independent filtering to remove regions with-
out enough signal variation to reject the null (Fig. 4A,B; Bourgon
et al. 2010).

To show the benefit of correcting technical biases when de-
tecting regulatory elements in STARR-seq data, we simulated
whole-genome STARR-seq signals with embedded activating and
repressive regulatory elements across a range of effect sizes (Fig.

4C,D). We then used the method described above to detect
regulatory elements in corrected or uncorrected signals. When
detecting regulatory elements with uncorrected signals, we used
statistical tests based on a Poisson distribution to avoid unfairly
reducing the performance by violating key assumptions of a
t-test. Specifically, we used two approaches: (1) fitting uncorrected
signals to a Poisson GLM and Wald tests to reject the null
(“Uncorrected 1”), and (2) using a Poisson distribution with the
mean of uncorrected input signals as a null distribution and test-
ing for a significant difference in the means of uncorrected output
signals (“Uncorrected 2”).

Overall, correcting biases with the GLM substantially im-
proved the precision of detecting regulatory signals, especially at
more stringent detection thresholds (Fig. 4C,D). In contrast, the
majority of regulatory elementswith uncorrected signalswere false
positives (Supplemental Fig. S7). Performance improvement was
particularly pronounced when detecting repression (Fig. 4D),
where the area under the precision recall curve (AUPRC) increased
by 0.64 when correcting signals.

Overall, repressive signals are more difficult to detect. In the
repression simulation with corrected signals, recall and precision
were worse than in the activation simulation by as much as 0.43
in AUPRC. The decreased AUPRCwas mainly a result of small sim-
ulated output signals of repressive regulatory elements that were
largely filtered out by the overall variance filter. However, this sim-
ulation result still shows correcting technical biases helps to
decrease false positives in detecting both activation and
repression.

Improved detection of regulatory elements in STARR-seq data

Weused the CRADLEmethod described above to call regulatory el-
ements in data from two published whole-genome STARR-seq
studies (Johnson et al. 2018; Muerdter et al. 2018). Muerdter
et al. (2018) measured differential regulatory activity in response
to inhibitors that blocked interferon response. The study reported
12,010 inhibitor-responsive regulatory elements with 2892 repres-
sive elements, with their analysis pipeline that used binomial dis-
tribution and hypergeometric tests (Arnold et al. 2013; Muerdter
et al. 2018). CRADLE detected a similar number of regulatory ele-
ments at 20% FDR (N=11,997), 815 of which were repressive
(Supplemental Table S1). Although the activating elements detect-
ed by each method had overlap up to 46%, repressive elements
were largely different between the methods (Fig. 4E).

To investigate the biological properties of regulatory elements
detected exclusively by each method, we used motif enrichment
analysis to detect potential biologically important sequence sig-
nals in the nonoverlapping sets of regulatory elements. Motifs
for interferon-responsive transcription factors (TFs) were most
strongly enriched in the CRADLE-exclusive repressive elements
(Fig. 4F; Supplemental Table S2). In contrast, activator-protein 1
(AP-1) TF motifs were most significantly enriched in the repressive
elements unique to the Muerdter et al. (2018) analysis, with inter-
feron responsemotifs ranked lower by enrichment (Fig. 4F; Supple-
mental Table S3). The motifs enriched in shared repressive
regulatory elements of CRADLE and Muerdter et al. (2018) overall
corresponded with the motifs enriched in CRADLE-exclusive re-
pressive regulatory elements (Supplemental Tables S2, S4). In addi-
tion, the CRADLE-exclusive repressive elements showed higher
enrichment for IRF3 ChIP-seq signal (Fig. 4G).We noted that CRA-
DLE estimated positive effects for 1704 repressive elements
uniquely detected by Muerdter et al. (Supplemental Fig. S8;
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Figure 3. The CRADLE GLM approach corrects technical bias. (A) STARR-seq signals are plotted for 500-bp windows along Chromosome 1 after remov-
ing technical bias with CRADLE. Signal is balanced despite varying degrees of technical biases. The ideal line is themedian corrected signal. Whiskers extend
1.5 times the interquartile range. Center lines in the boxes show the medians. (B) Variance in observed signals and CRADLE-corrected signals in 1-bp win-
dows are shown along Chromosome 1. The error bars indicate variance between replicates; six input libraries and five 0-h dex-treated output libraries in
Johnson et al. (2018) are plotted; two input libraries and two no-inhibitor-treated output libraries in Muerdter et al. (2018) are plotted. (C ) STARR-seq
signals are shown for PER1 BAC libraries amplified with different numbers of PCR after removing technical bias with CRADLE. Each point represents the
sum of corrected signals in a 500-bp window from three technical replicates. The solid line is a lowess fit line. The dashed ideal line is the median signal
across all windows. (D) Variance in observed signals and CRADLE-corrected signals in 1-bp windows are shown after correcting the PER1 BAC libraries.
(E) Representative signal tracks are shown for STARR-seq input libraries before and after CRADLE correction (Chr 2: 29,772,197–29,791,543). (F )
STARR-seq and ChIP-seq signal tracks are shown in the dex-responsive PER1 locus. Observed and corrected signal of Johnson et al. (2018) are presented
for 0-h dex-treated (untreated) and 12-h dex-treated output libraries. ChIP-seq signal tracks are not corrected. The highlighted region (Chr 17: 8,151,204–
8,152,809) is a known dex-responsive activating regulatory element. (G) STARR-seq signal tracks are shown for the TMEM63C locus. Observed and cor-
rected signal of Johnson et al. (2018) are presented for input and 0-h dex-treated output libraries. The highlighted region (Chr 14: 77,207,895–
77,210,261) contains a REST motif and is occupied by REST in multiple cell types.
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Muerdter et al. 2018), suggesting they are false positives attributed
to the biases in STARR-seq signal. Indeed, subsequent motif analy-
sis of those repressive elements with positive effects revealed en-
riched NF-kB motifs, not corresponding to the experimental
design.

The Johnson et al. (2018) study used STARR-seq to measure
changes in regulatory activity in response to the dexamethasone
(dex) across time. The study used MACS2 (Zhang et al. 2008) and

edgeR (Robinson et al. 2010) together to identify 4835 dex-re-
sponsive regulatory elements at 0.05 FDR with 3311 activating el-
ements. With the data from Johnson et al. (2018), we used
CRADLE to detect regulatory elements both in untreated A549
cells and in response to dex at the same 0.05 FDR (Supplemental
Tables S5, S6). That analysis identified 10% more dex-responsive
regulatory elements (N=5368) than the methods used by John-
son et al. (2018), with 4683 activating and 685 repressive dex-
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Figure 4. Detection of regulatory elements with CRADLE. (A) CRADLE regulatory element pipeline is shown in diagram. Effect sizes are calculated in win-
dows of uniform length. Contiguous windows with similar effect sizes are merged into regions before filtering regions with small variance. Regions are
binned and a statistical test is performed on each bin to compare corrected input and output signals. Bin-level P-values are merged to generate a re-
gion-level P-value before performing a region-level Benjamini–Hochberg (BH) procedure. Regions selected by the first BH procedure were used to perform
a bin-level BH procedure to identify regulatory elements. (B) The number of detected regulatory elements is dependent on the variance filter. (C,D) Precision
recall curves, using corrected and uncorrected signals in the simulation study. To detect regulatory elements with uncorrected signals, two statistical ap-
proaches were used: (1) fitting uncorrected signals to Poisson GLM and performing Wald test (“Uncorrected 1”) and (2) using a Poisson distribution with
the mean of uncorrected input signals as a null distribution and testing the significance of the mean of uncorrected output signals (“Uncorrected 2”). (C)
Precision recall curve when signals are simulated with mixed fold change (2, 3, 4) and amix of activating and repressive elements. (D) Precision recall curve
when signals are simulated with a fixed fold change (FC) andwith a fixed regulatory activity (either activating or repressive). (E–G) Comparison of inhibitor-
responsive regulatory elements detected by CRADLE and Muerdter et al. (2018). (E) The Venn diagram shows the overlap of regulatory elements detected
by both studies. (F) Transcription factor motif enrichment is shown for inhibitor-responsive repressive regulatory elements exclusively detected by each
study. Rank∗ is the rank of motif in the other study. (G) The mean of IRE3 ChIP-seq effect size is plotted for inhibitor-responsive repressive regulatory ele-
ments exclusively detected by each study. (H) The Venn diagram shows the overlap of dex-responsive activating and repressive regulatory elements de-
tected by CRADLE and Johnson et al. (2018). (I) Transcription factor motif enrichment in A549 steady-state repressive regulatory elements detected by
CRADLE.
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responsive regulatory elements (Supplemental Table S6). As with
the comparison to the Muerdter et al. (2018) analysis, we ob-
served little overlap in repressive elements whereas activating el-
ements showed up to 70% overlap (Fig. 4H). Overall, those
repressive regulatory elements identified by CRADLE in each
study had higher control library signals than activating regulato-
ry elements, demonstrating CRADLE requires a region to have
enough coverage to be reliably detected as repressive (Supple-
mental Fig. S9).

To validate the newly identified repressive elements, we
again used motif enrichment analysis to identify potential se-
quence signals consistent with repressive elements. The motif
for the RE1-silencing transcription factor (REST), a well-character-
ized repressive factor (Chong et al. 1995), was most enriched in re-
pressive regulatory elements in untreated A549 cells (Fig. 4I;
Supplemental Table S7). Meanwhile, the motif enrichment in
dex-responsive regulatory elements exclusively detected from
CRADLE corresponded to previous findings about NR3C1 biology.
Namely, for the dex-responsive activating regulatory elements,
the NR3C1 DNA bindingmotif was most enriched followed by co-
factor AP-1 transcription family (Supplemental Table S8), corre-
sponding to the motifs enriched in the shared dex-responsive
activating regulatory elements (Supplemental Table S9). For the
dex-responsive repressive regulatory elements, the AP-1 motif
was most enriched, consistent with the role of AP-1 in NR3C1-me-
diated activation and repression (Supplemental Table S10; Gupte
et al. 2013; Johnson et al. 2018; McDowell et al. 2018).

We also validated some of the 240 A549 steady-state REST-
binding repressive regulatory elements using two independent
studies (Supplemental Fig. S10; van Arensbergen et al. 2019;
Doni Jayavelu et al. 2020). Although neither of these studies
used A549 cells, we assumed the repressive activity of the REST-
binding repressive regulatory elements could be validated in other
cell models because REST is a common repressor in diverse cell
lines. We intersected the REST-binding repressive regulatory ele-
ments with the regions tested by Doni Jayavelu et al. (2020) that
used massively parallel reporter assay (MPRA) test repressive activ-
ity and observed 30 elements in common (Supplemental Fig. S10).
Of those, 27 elements (90%) had repressive activity in Doni
Jayavelu et al. (2020), whereas two elements did not have coverage
and one element did not show repressive activity. The one nonrep-
ressive element is likely a result of the small overlap with their test-
ed region (27 bp) that did not cover the REST motif. We also
compared our repressive element calls with the data from a ge-
nome-wide survey of regulatory elements (SuRE) signal (van
Arensbergen et al. 2019). The SuRE signal in the REST-binding re-
pressive regulatory elements showed repression in that study that
was significantly different from both random and activator-bind-
ing elements (Supplemental Fig. S10).

Discussion

We showed that a substantial fraction of the variation in STARR-
seq signal can be explained by DNA sequence features that are re-
lated to experimental artifacts rather than regulatory element ac-
tivity. Overall, biases in PCR amplification had some of the
strongest impacts on sequence biases in STARR-seq, and we show
here that minimizing the amount of PCR can reduce variation in
signals. DNA structure bias at the ends of fragments is possibly
caused by preferential fragmentation, cloning, or efficiency as an
enzymatic substrate. The efficiency of adding adaptors in cloning
or in reverse transcription could be also affected byDNA sequences

or structures at fragment ends (Zheng et al. 2011). Potential oppor-
tunities to mitigate those biases could include using multiple en-
zymes from different species that have different sequence biases
or further refinement of reaction conditions. Similarly, increasing
read length could mitigate mappability-induced biases by decreas-
ing the mappable space in the genome; G-quadruplex structure
bias might be alleviated by optimizing experimental conditions
to destabilize those structures. However, mitigating technical bias-
es using a statistical model is much faster and easier. We showed
the GLM had significant predictive power that led to substantially
stabilized STARR-seq signals. Indeed, corrected signals showed no-
ticeably reduced variance and improved visualization of regulatory
activity.

With corrected signals from the GLM, we detected regulatory
elements with substantially improved accuracy compared to previ-
ous models. CRADLE especially improved the identification of re-
pressive regulatory elements that were challenging to detect
previously, as we showed via simulations, comparisons to other
studies, and through investigation of DNA binding motifs for re-
pressive factors. That improvement will allow for a more complete
understanding of the diversity of regulatory element activity across
the human genome.

Lee et al. (2020) also recently addressed the need to model bi-
ases in STARR-seq to improve detection of regulatory elements.
Conceptually, both approaches model physical characteristics of
genomic sequence that substantially influence STARR-seq signal
and develop novel peak calling approaches. In terms of implemen-
tation, there are differences in model parameters (e.g., how
CRADLE models PCR biases), model fitting (e.g., weighted sam-
pling of the tails of the coverage distribution), and peak calling
methods. In terms of performance evaluation, we evaluated
CRADLE over a broader range of simulations, and in doing so we
showed that the reported False Discovery Rates are well-calibrated.
We also showed that CRADLE is especially able to detect repressed
regulatory elements.

Our work on CRADLE also opens up the possibility of devel-
oping analogous statistical models for other high-throughput se-
quencing technologies. Many high-throughput sequencing
technologies share common experimental steps that cause techni-
cal biases in STARR-seq. In that regard, CRADLE exemplifies how
those biases can be statisticallymodeled and corrected, thus allow-
ing effect estimation and peak calling from data with a mean of
zero. Of course, each sequencing technology may have assump-
tions that are distinct from STARR-seq and have other major bias
effects that were not modeled in CRADLE. For example, antibody
specificity might be one of the major bias sources in ChIP-seq.
More studies need to be done to determine the scope of the appli-
cability of CRADLE.

Methods

Downloaded data

For STARR-seq data, we downloaded FASTQ files of whole-genome
STARR-seq that used A549 and HeLa-S3 cells from Johnson et al.
(2018) and Muerdter et al. (2018), respectively. Those files
were downloaded from NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) repository (Barrett et al.
2013) with accession codes available in those studies (GSE11
4063, GSE100432).

For ChIP-seq data (The ENCODE Project Consortium 2012;
Davis et al. 2018), we downloaded ChIP-seq FASTQ files with
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following GEO accession codes: GSE91296 for A549 control ChIP-
seq; GSE91275 for A549 0-h dex-treated NR3C1 ChIP-seq; GSE91
235 for A549 12-h dex-treated NR3C1 ChIP-seq; GSE92032 for
HeLa-S3 control ChIP-seq; GSE101280 for A549 REST control
ChIP-seq; GSE101362 for A549 REST ChIP-seq; GSM935570 for
HeLa-S3 IRF3 ChIP-seq; GSM935339 for HeLa-S3 IRF3 control
ChIP-seq.

Processing of high-throughput sequence data

FASTQs files were aligned to the human genome reference assem-
bly hg38 with Bowtie 2 (version 2.3.4.3) (Langmead and Salzberg
2012), using the ‐‐sensitive option and requiring aMAPQof at least
30. Fragments were discarded if they are aligned to gap, centro-
mere, and telomere that are available in UCSC Gap and Centro-
mere Table Browser (Hinrichs et al. 2006) and ENCODE blacklist
regions (Amemiya et al. 2019). Alignment of paired-end data sets
were further restricted to require properly paired alignments.
Unnormalized and RPKM-normalized (‐‐binSize 1) bigWig files
were generated by bamCoverage subcommand in deepTools (ver-
sion 3.0.1) (Ramírez et al. 2016) using ‐‐extendReads. The reported
average fragment lengthwas used to extend readswhen generating
single-end bigWigs. Unnormalized and normalized bigWig files
were used for CRADLE inputs files and for visualizing signals in ge-
nome browser tracks, respectively. A549 ATAC-seq FASTQs were
processed as above but were aligned to hg19 and required a less
stringent MAPQ score (≥5). Peaks were called for ChIP-seq data
sets using MACS2 (Zhang et al. 2008) with an FDR threshold of
0.05. For NR3C1-binding sites, we first called peaks using MACS2
(Zhang et al. 2008), independently for 0-h dex-treated NR3C1
ChIP-seq samples and 12-h dex-treated NR3C1 ChIP-seq samples
with respective control ChIP-seq samples. Then we merged those
peaks and used edgeR (Robinson et al. 2010) to performdifferential
testing at FDR 0.05 and selected peaks with positive effect size to
detect NR3C1-binding regions. The coordinates of autosomal in-
hibitor-responsive regulatory elements previously reported in
hg19 (Muerdter et al. 2018) were converted to hg38 with liftOver
(Hinrichs et al. 2006).

PER1 BAC library preparation and sequencing

Purified PER1 bacterial artificial chromosomes (BACs) (CH17-
212C17; Chr 17: 7,981,103–8,192,310) were harvested from
Escherichia coli using standard protocols. Following DNA shearing
using the Covaris S2 instrument, the BAC DNAs were size-selected
using solid phase reversible immobilization (SPRI) beads. STARR-
seq insert libraries were prepared using the NEBNext DNA
Library Prep Master Mix kit and 50 ng of template DNA. Adapted
DNAs were enriched in triplicate reactions via 3, 6, 12, or 18 cycles
of PCR using the NEBQ5 PCR kit. The resulting libraries were char-
acterized on theAgilent Tape Station before 50 cycles of paired-end
sequencing on the Illumina MiSeq platform. FASTQs were aligned
as above. We checked duplicated rate for each cycle using Picard
(MarkDuplicates, version 2.14.0). The mean duplicate rate for
each cycle is as follows: 0.3% in Cycle 3; 0.5% in Cycle 6; 1.3%
in Cycle 12; 1.9% in Cycle 18.

Data processing for bias covariates

To obtain DNA structure parameters for fragment-end bias, we es-
timated minor groove width (MGW) and propeller twist (ProT)
for all 5-mers (total 1024 sequences) using DNAshape (Zhou
et al. 2013). For Gibbs free energy parameters, we used the esti-
mated Gibbs free energy for all dimers (Protozanova et al.
2004). For G-quadruplex structure parameters, we used bigWig

files that reported stability of G-quadruplex structure in the
whole genome with accession code GSE63874 in GEO (Chambers
et al. 2015). For mappability scores, we downloaded the human
mappability score bigWig files for 36-mer and 50-mer (Derrien
et al. 2012), using accession codes (ENCSR821KQV, ENCS
R093EEM) in ENCODE (The ENCODE Project Consortium
2012; Davis et al. 2018). For those G-quadruplex structure bigWig
and mappability bigWig files, the genomic coordinates were in
hg19 assembly, so we used the liftOver tool (Hinrichs et al.
2006) to convert them to hg38.

Measuring technical biases in STARR-seq libraries

To investigate fragment-end bias, we counted the frequency of 5-
mers starting 2 bp upstreamof the 5′ end of positive strands of frag-
ments in STARR-seq input libraries (Johnson et al. 2018; Muerdter
et al. 2018). To identify enriched fragmentation sites, we compared
that observed 5-mer frequency distribution to that observed in the
reference genome (hg38) excluding gaps, centromeres, telomeres
that are available in UCSC Gap and Centromere Table Browser
(Hinrichs et al. 2006), and ENCODE blacklist regions (Amemiya
et al. 2019). To examine Gibbs free energy, G-quadruplex struc-
ture, and mappability bias, we binned human Chromosome 1
into 500-bp windows using a 250-bp stride. We estimated the
amount of potential technical bias in a window by calculating
the mean of per base measure of those biases using previously re-
ported values: Gibbs free energy value (Protozanova et al. 2004);
the percent of mismatch for G-quadruplex structure bias
(Chambers et al. 2015); and mappability score (Derrien et al.
2012). This analysis was limited to the PER1 BAC when estimating
Gibbs free energy bias in the PER1 BAC library.

Correcting technical biases in STARR-seq

We used the technical bias covariates in a general linearizedmodel
(GLM) with a Poisson distribution and log link to correct STARR-
seq signals. An estimate of the 90th percentile of observed cover-
age in input libraries (IsigP90) was calculated using 1-kb bookended
regions. To ensure the GLM models effects across the range of ob-
served signals, we trained the model using a structured sampling
strategy to select bookended regions without replacement such
that the final training set is approximately 106 bases in length.
We evenly partitioned the training set to fit regions with input sig-
nal above and below IsigP90. The set of regions below IsigP90 were
further evenly partitioned into the following percentile bins of ob-
served coverage: [0, 20); [20, 40); [40, 60); [60, 80); [80, 90). To en-
sure representation across the upper tail of the STARR-seq signal
distribution, regions above IsigP90 were asymmetrically partitioned
as follows: 62.5% of regions were evenly divided into the follow-
ing percentile bins of observed coverage, [90, 92); [92, 94); [94,
96); [96, 98); [98, 99), whereas the remaining 37.5% of regions
were binned into the 99th percentile of coverage. With
Muerdter et al. (2018) data, we empirically found preferentially
sampling Chromosome X in the last two bins improved
performance.

Single base positions with observed input signal (Isigpos)
above and below IsigP90 were independently fit to theGLM. To pre-
dict the total bias effects at each single base position, we used win-
dows twice the length of the median fragment length (L) centered
on the position of interest (Fig. 2A).We assumed each positionwas
covered by L number of hypothetical fragments of L bp length
with each overlapping by a single base. We then multiplied the
same bias covariates for all fragments in that window with each
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covariate to the power of a unique beta as follows:

Observedsignalpos�
∏L

i=pos−L+1
MGWb1 ·I(Isigpos,IsigP90)+b

′
1 ·(1−I(Isigpos,IsigP90))

i

·ProTb2 ·I(Isigpos,IsigP90)+b
′
2 ·(1−I(Isigpos,IsigP90))

i

·Annealb3 ·I(Isigpos,IsigP90)+b
′
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i

(1)

Each beta coefficient represents the relative effect of each bias predic-
tor. Here, we assumed the set of betas is the same for all overlapping
fragments. Then in log space, observed signal can be estimatedwith us-
ing the sums of bias covariates in the GLM as follows:

log (E(Observed signalpos)) =
(b1 · I(Isigpos , IsigP90)+ b

′
1 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (MGWi)

+(b2 · I(Isigpos , IsigP90)+ b
′
2 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (ProTi)

+(b3 · I(Isigpos , IsigP90)+ b
′
3 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (Anneali)

+(b4 · I(Isigpos , IsigP90)+ b
′
4 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (Denaturei)

+(b5 · I(Isigpos , IsigP90)+ b
′
5 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (Gquadi)

+(b6 · I(Isigpos , IsigP90)+ b
′
6 · (1− I(Isigpos , IsigP90)))

∑L
i=pos−L+1 log (Mapi)

(2)

MGW and ProT values were calculated using DNAshape
(Zhou et al. 2013) for the two 5-mers starting from 2 bp external
to both 5′ ends of each hypothetical fragment. MGWi and ProTi

was obtained by multiplying those two MGW and ProT values,
respectively.

We used the nearest-neighbor model (SantaLucia 1998;
Protozanova et al. 2004) to estimate the Gibbs free energy of
each hypothetical fragment. To estimate the relative melting tem-
perature (Tm) of each fragment, we divided Gibbs free energy of a
hypothetical fragment by the number of dimers in that hypothet-
ical fragment and by the fixed entropy value (Protozanova et al.
2004). Tm values were normalized to range of [0, 1]. To model
the nonlinear dependency of annealing and denaturing efficien-
cies to Tm, normalized Tm values in the ith fragment (Tm,i) were
mapped to two exponential functions as follows:

Anneali = eTm,i − 106 − e

106 − 1

( )
/

106 − 1
1− e

( )

Denaturei = e−Tm,i − 106 − e

106 − 1

( )
/

106 − 1
1− e

( ) (3)

Those mapped values were used for Anneali and Denaturei in the
GLM Model.

To obtainGquadi for each hypothetical fragment, we used the
maximum of G-quadruplex structure stability value in that se-
quence (Chambers et al. 2015). To obtainMapi for each hypothet-
ical fragment, we used a k-mermappability score file (Derrien et al.
2012), where k-mer is a sequencing length, and multiplied the
mappability scores of both ends of a fragment.

After fitting the GLM, the bias predicted by themodel at each
base position was removed by subtracting the estimated bias effect
from the observed signal. To avoid false positives, positions with
fewer than 10 observed overlapping fragments and with no signal
in output libraries are not reported in the corrected signal file. The
minimumnumber of observed overlapping fragments required for
a position to be reported is parameterized (-mi) in the correctBias
subcommand in CRADLE.

Modeling technical biases in STARR-seq libraries with only GC

content

To show our sophisticated approach ofmodeling bias has better fit
than simply modeling GC content, we took the following ap-
proach. We binned the genome with nonoverlapping sliding win-
dows with six different window sizes ranging from 10 to 1000 bp.
We randomly selected approximately 106 bases in length for a
training set. Then with the training set, we calculated GC content
in each bin for which the size corresponded to the chosenwindow
size and used the GC content as a covariate in fitting GLM with
Poisson distribution and log link. We independently fitted each
replicate in the GLM. Then we used the resulting coefficients (in-
tercept and the coefficient of GC content) to estimate the bias im-
pact for the regions that were not in the training set.

Normalizing signals in STARR-seq

To make the corrected signals from the GLM comparable between
replicates, for example, by correcting for overall differences in se-
quencing, we normalized STARR-seq signals between replicates us-
ing linear regression. We used the training set sampled as
mentioned above and regressed per-nucleotide signal from each li-
brary against a common replicate of the input library. We estimat-
ed the slope in the linear regression and divided observed signals in
each library by that slope estimate.

Evaluating model fit

To determine how well the CRADLE GLM explained variance in
observed signal, we calculated R2 with observed and predicted
signals across Chromosome 1 for each STARR-seq library. To cal-
culate R2, we fitted the GLM in CRADLE and calculated the sum
of squares (SSQ) by adding up squared residuals. Then, we calcu-
lated total SSQ, the sum of the squared difference of observed sig-
nals and the mean signal. By using the SSQ and total SSQ, we
calculated R2 with the following equation:

R2 = 1− (SSQ/total SSQ).

Evaluating the contribution of each covariate to model fit

To estimate the contribution of each bias type, we calculated semi-
partial correlations for Chromosome 1 using the GLM. To assess
each technical bias type, we excluded bias covariates that model
corresponding bias type in fitting the GLM. For example, we ex-
cluded “anneal” and “denature” covariates when assessing Gibbs
free energy bias impact. The R2 of these models were calculated
as above and subtracted from the R2 of the full model.

Calling regulatory elements with CRADLE

Genomic regions possessing regulatory activity were identified us-
ing a modified Benjamini method (Benjamini and Bogomolov
2014). We first binned the genome into windows (1.5 ×L) and de-
termined the effect size of each window by subtracting the mean
corrected signal in input libraries from the mean corrected signal
in output libraries. Each window was classified to one of the three
types, using the following standard:

Type(windowx) = 1 if (effect size > 0 and |effect size| > 99th percen-
tile of absolute effect sizes),

Type(windowx) =−1 if (effect size < 0 and |effect size| > 99th per-
centile of absolute effect sizes),

Type(windowx) = 0 otherwise.

The threshold of the 99th percentile of absolute effect sizes
was chosen to classify windows because the majority of windows
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are not expected to encode regulatory activity. Contiguous win-
dows of the same type, including Type 0, were merged to form re-
gions for statistical testing. These regions were then binned with
nonoverlapping bins of which the length is 1/6 ×L. In each bin,
the input and output STARR-seq signals were compared using
Welch’s t-test (Welch 1947) to account for potential differences
in variance. Individual bin-level P-values from the same region
were merged to a region-level P-value via the method of Simes
(1986). To increase our power to detect potential regulatory re-
gions for final testing, regions with small overall variance were re-
moved from further analysis independently of the statistical test
used (Bourgon et al. 2010). Specifically, we ranked regions accord-
ing to their overall variance and then applied the overall variance
filter that removed 0%–90% of regions with low variance using
10% intervals. P-values for regions passing each threshold were
subjected to the first BH procedure (Benjamini and Hochberg
1995) using a parameterized FDR value (-fdr). Then, we chose
the threshold of the overall variance filter that returned the great-
est number of selected regions from the first BH procedure.
To identify bins that have regulatory activity, bin-level P-values
from the Welch’s t-test in the selected regions were then
subjected to the second BH procedure with new FDR adjusted by
the following:

NewFDR=(predeterminedFDR)× thenumberof selectedregions
totalnumberof regions

( )
.

Contiguous bins that encode regulatory activity with the
same sign of effect sizes were merged in the final output and the
minimum P-value was reported.

Simulation of STARR-seq signals

To evaluate the performance of CRADLE, we simulated STARR-seq
signals that maintained the observed sequence biases and expect-
ed variance across replicates. STARR-seq signals were simulated us-
ing a negative binomial distribution and mean-variance
relationships estimated independently for input and output librar-
ies from previously published STARR-seq data (Johnson et al.
2018). Simulated input and output signalmatrices generated using
300-bp bookendedwindows alongChromosome1were used to es-
timate mean-dispersion relationship in DESeq2 (Love et al. 2014)
before interpolation with the Scipy.interpolate.interp1d com-
mand in Python. To generate a set of predefined regulatory ele-
ments (N=50,504), we randomly sampled ∼0.5% of total
windows requiring that the selected windows be in at least the
70th percentile of coverage in the published input libraries. For
each predefined regulatory element, we randomly assigned an ab-
solute fold change [2, 3, or 4] and regulatory activity type [activat-
ing or repressing]. Predefined sets of regulatory elements with a
specific fold change and regulatory activity type were generated
as above using the specified fold change and regulatory activity
types as described in text.

Five simulated STARR-seq input and output signals were gen-
erated using a negative binomial distribution. The mean parame-
ters used to generate the simulated input and output signals
were determined by calculating the mean window counts using
the published input libraries (Johnson et al. 2018). The variance
parameters were determined using either the input or output inter-
polation analyses described above. The mean parameters used to
generate the simulated output signals were adjusted for predefined
regulatory elements windows bymultiplying or dividing themean
signal by the predetermined fold change and determining the cor-
responding variance parameter.

Detecting regulatory elements in simulated data

To evaluate the effect of correcting STARR-seq signals on identify-
ing regulatory elements, we used CRADLE to call regulatory ele-
ments before and after correcting biases in the simulated data
sets. Owing to the normality assumption in Welch’s t-test, we
modified the CRADLE approach described above to call regulatory
activity in uncorrected simulated signals. In place of the Welch’s
t-test, we used two alternative statistical approaches to compare
uncorrected simulated input and output signals. First, we used a
Poisson GLM as follows:

log(E(signali))= b0 +b1 × (data typei) data type= 0 if signali is from input libray
1 if signali is fromoutput libray

{ }

(4)

We then performed the Wald test for β1 with f distribution.
Second, we followed a similar approach as used by MACS2
(Zhang et al. 2008). We used the mean input bin signal as the
mean parameter in a Poisson distribution to calculate a P-value
for the mean output bin signal. We called regulatory activity in
corrected simulated signals as described above.

Motif enrichment analysis

Motif enrichment analysis was performed using the
findMotifsGenome subcommand in the HOMER (Heinz et al.
2010) 4.10.1 software suite using the following parameters: -size
given -mis 3 -mset vertebrates.

Plotting heatmaps

Heatmaps were plotted using deepTools command
“computeMatrix” using a reference-point and “plotHeatmap”
(Ramírez et al. 2016). In both cases, we specified single-nucleotide
resolution using the option ‐‐binSize 1.

TF occupancy in CRADLE regulatory elements

To determine whether regulatory elements called by CRADLE are
bound by TFs, we used the CRADLE pipeline to detect A549
steady-state activating and repressive regulatory elements from a
previously published study (Johnson et al. 2018). We used the
findMotifsGenome subcommand in the HOMER suite (version
4.10.1) (Heinz et al. 2010) with the parameters, -size given -mis 0
-mset vertebrates -find, to detect REST motifs in each repressive el-
ement and FOSL2, JUNB, and GABPA motifs in activating ele-
ments. For each element that encoded a specified motif, we
intersected those elements with ENCODE ChIP-seq peaks for the
corresponding TF in A549 cells (The ENCODE Project
Consortium 2012; Davis et al. 2018).

Validation of REST-occupied repressive regulatory elements

Regions tested by Doni Jayavelu et al. (2020) in K562 cells (N=
7440) were intersected with repressive regulatory elements identi-
fied by CRADLE in A549 cells that also contained a RESTmotif and
were bound by REST in the same cell line (N= 240) (The ENCODE
Project Consortium 2012). Reported fold change values in K562
cells were compared for the intersection set except the two ele-
ments without coverage (N=28), regions predicted by Doni
Jayavelu et al. (2020) to be repressive elements (N=3001), and con-
trol regions (N=40).

Signals from a genome-wide Survey of Regulatory Elements
(SuRE) in HepG2 and K562 cells (van Arensbergen et al. 2019)
were compared in specific sets of regulatory elements identified
by CRADLE in A549 cells. These regulatory elements included ac-
tivating regulatory elements that contained either a FOSL2,
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GABPA, or JUNBmotif andwere bound by the corresponding TF in
A549 (The ENCODE Project Consortium 2012) or repressive ele-
ments that likewise contained a REST motif and were bound by
REST (N=240) (The ENCODE Project Consortium2012). A549 reg-
ulatory elements that contained a SNP in the genomes assayed in
the SuRE study were excluded on a per genome basis. The
minimum and maximum number of SNP-filtered elements
compared for each TF are as follows: FOSL2 N=650-651; GABPA
N=401-402; JUNB N=723; REST N=102.

We randomly generated a set of regions (N=240) of fixed
length (430 bp) controlling for accessibility (The ENCODE
Project Consortium 2012) and dinucleotide composition. The
fixed length was set to the median length of the compared repres-
sive elements. In generating random regions, we excluded regions
that overlapped gaps, centromeres, and telomeres that are avail-
able in UCSC Gap and Centromere Table Browser (Hinrichs et al.
2006) and ENCODE blacklist regions (Amemiya et al. 2019), or
the following features defined by ChromHMM (Ernst and Kellis
2017) in K562 and HepG2 cells: promoters, promoter flanking re-
gions, enhancers, CTCF enriched sites, and repressed regions. After
applying the SNP-filter described above, we obtained 94 random
regions.

Data access

The PER1 BAC data sets generated in this study have been submit-
ted to NCBI Gene Expression Omnibus (GEO; https://www.ncbi
.nlm.nih.gov/geo/) under accession number GSE149914.

CRADLE is implemented in Python, and the source code is
available in the Supplemental Code. CRADLE can be freely down-
loaded either from GitHub (https://github.com/ReddyLab/
CRADLE) or pip (pip install cradle; https://pypi.org/project/
CRADLE/). Instructions for installing and running CRADLE are
available on the CRADLE GitHub page.
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