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Abstract: Investigations into the mechanisms regulating obesity are frantic and novel translational
approaches are needed. The raccoon dog (Nyctereutes procyonoides) is a canid species representing a
promising model to study metabolic regulation in a species undergoing cycles of seasonal obesity
and fasting. To understand the molecular mechanisms of metabolic regulation in seasonal adap-
tation, we analyzed key central nervous system and peripheral signals regulating food intake and
metabolism from raccoon dogs after autumnal fattening and winter fasting. Expressions of neuropep-
tide Y (NPY), orexin-2 receptor (OX2R), pro-opiomelanocortin (POMC) and leptin receptor (ObRb)
were analyzed as examples of orexigenic and anorexigenic signals using qRT-PCR from raccoon
dog hypothalamus samples. Plasma metabolic profiles were measured with 1H NMR-spectroscopy
and LC-MS. Circulating hormones and cytokines were determined with canine specific antibody
assays. Surprisingly, NPY and POMC were not affected by the winter fasting nor autumn fattening
and the metabolic profiles showed a remarkable equilibrium, indicating conserved homeostasis.
However, OX2R and ObRb expression changes suggested seasonal regulation. Circulating cytokine
levels were not increased, demonstrating that the autumn fattening did not induce subacute in-
flammation. Thus, the raccoon dog developed seasonal regulatory mechanisms to accommodate
the autumnal fattening and prolonged fasting making the species unique in coping with the extreme
environmental challenges.

Keywords: winter sleep; orexigenic neuropeptides; anorexigenic neuropeptides; food intake;
metabolome; fasting

1. Introduction

A lack of food sources is a common challenge for wild animals and surviving in such
conditions requires resilience to fasting periods, saving energy by the hypometabolism
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and storing energy as food caches or as adipose tissue in the body. Today mankind is
facing the opposite problem as high energy food sources are easily available, lifestyles have
changed to be less strenuous and the physical activity intensity is reduced. The result of
high input via food and low output by less physical activity culminates in the increasing
prevalence of obesity worldwide with its significant health risks, such as insulin resistance,
dyslipidemia, high blood pressure, cancer and dementia. In obesity, adipose tissue is accu-
mulated in an excessive manner, causing these adverse health effects [1–5]. Intriguingly,
in nature some animal species repeatedly undergo non-pathological large-scale fluctua-
tions in their body fat storages and energy metabolism as a part of their natural seasonal
cycles without major adverse effects to their health. It is therefore prudent to investigate
the molecular mechanisms regulating these opposite metabolic states.

The raccoon dog (Nyctereutes procyonoides) is a Eurasian middle-sized canid species,
which even thrives in various challenging environmental conditions [6,7]. It is omnivo-
rous and has thick fur that offers protection from the cold weather. During winter time
the raccoon dog undergoes a relatively shallow form of hibernation with only a slight body
temperature reduction of 0.5–1.5 ◦C [8–10] as compared to other animal species that can
undergo a more complete metabolic depression. Raccoon dogs maintain a certain level
of activity throughout winter rest and the winter lethargy can be discontinued by longer
periods of alertness when the animals can venture out of the dens to defecate and even
forage for food if the snow cover allows it [8,11]. The winter season is often preceded by
a period of autumnal fattening, during which the animals feed mostly on berries, grains
and small mammals, gaining up to 30–40% weight in white adipose tissue (WAT) [12].
The abundant WAT deposits enable the raccoon dogs to maintain long fasting periods of
up to 11 weeks [13], while they effectively maintain their bone and muscle mass through
unknown mechanisms [14,15].

Food intake and body weight are mainly regulated by the hypothalamus that acts as a
homeostatic switch for various autonomic functions such as thermoregulation, reproduc-
tion, hormone secretion, sleep and circadian rhythms [16–18]. Food intake is regulated by
the activation and inhibition of special neurons located in the hypothalamic nuclei with
their orexigenic and anorexigenic peptides. The arcuate nucleus of the hypothalamus con-
tains the orexigenic NPY and agouti-related protein (Agrp), and the anorexigenic POMC
and cocaine and amphetamine-regulated transcript (CART) expressing neurons [19,20]. An-
other important hypothalamic area participating in the control of food intake is the lateral
hypothalamus, containing orexigenic neurons. Orexins are considered potential regulators
of the winter lethargy and body weight cycles since they are involved in the regulation of
wakefulness and arousal [21–24]. Thus, orexins are intriguing candidates for the regulating
mechanism for food intake in an animal species with seasonally regulated physiology. Cir-
culating leptin secreted by WAT is an important satiety signal to the central nervous system
(CNS), indicating a positive energy balance and accumulation of energy storages [25,26].
Leptin is transported via blood to CNS where it passes through the blood brain barrier
to the hypothalamus by saturated transport mechanisms, inhibiting food intake. Also,
the interplay of the gut-brain axis plays an important role in regulating satiety, food intake
and metabolism. The hypothalamus receives signals of digesting and processing food from
the gastrointestinal tract (e.g., peptide YY, ghrelin, cholecystokinin, glucose-dependent in-
sulinotropic peptide) [27–29], which are likely modulated during the seasonal hyperphagia
and fasting in the raccoon dog. In addition, signals from processed food directly affect
food intake and the fluctuations in energy levels can be captured at the metabolic level.
The metabolome includes all the small-molecule metabolites resulting from the ongoing
cellular processes [30] and thus reflects the actively used metabolic pathways and the whole
organism energy status at a certain time point.

It has been suggested that the satiety promoting signals are down-regulated after
the autumnal fattening to accommodate the winter hibernation and up-regulated as the an-
imals emerge from the hibernation to initiate food intake [31–33]. The obligate hibernating
thirteen-lined ground squirrel (Ictidomys tridecemlineatus) undergoes daily torpor bouts
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during the hibernation period and begins to down-regulate the hypothalamic orexigenic
and energy storing stimulating peptides such as NPY after the autumnal hyperphagic
phase [34–36]. Orexigenic hypothalamic peptides NPY, Agrp and orexins are upregulated
after the hibernation period to initiate food intake [36]. Thus, our hypothesis is that food
intake regulating hypothalamic peptides follow a pattern resembling non-hibernating
euthermic species in which the hypothalamic orexigenic peptides are upregulated during
fasting conditions and downregulated when there is a positive energy balance, whereas
the anorexigenic signals would be affected in an opposite manner.

In order to test the hypothesis, we investigated the role of key central nervous system
food intake regulators and the impact on the metabolome during autumnal fattening and
prolonged winter fasting in the raccoon dog.

2. Results
2.1. Body Mass

The winter fasted and winter fed group raccoon dogs weighed 13.3 ± 1.1 kg and
14.0 ± 1.2 kg, respectively, at the beginning of the experiment. At the end of the experiment,
the body mass of the winter fasted was 9.0 ± 0.9 kg, winter fed 11.2 ± 0.9 kg and autumn
fed 12.3 ± 1.2 kg. Winter fasted raccoon dogs lost 32.2% and winter fed 20% of their body
weight during the experiment. The winter fasted weighted significantly less than the winter
fed (p = 0.009 **) and autumn fed (p = 0.000 ***) animals at the end of the experiment
(Table 1). The prolonged food deprivation during the 10 weeks of fasting was well tolerated
without other adverse health effects. There was no significant difference in the body mass
between the winter fed and autumn fed raccoon dogs.

Table 1. Body weight of the raccoon dogs at the beginning and end of the experiment. Statistically
significant differences are indicated with ** p ≤ 0.01 and *** p ≤ 0.001. Beginning weights of
the autumn fed raccoon dogs were not available (NA).

Weight (kg) Winter Fasted
(n = 5)

Winter Fed
(n = 6)

Autumn Fed
(n = 9)

Beginning of experiment 13.3 ± 1.1 14.0 ± 1.2 NA

End of experiment 9.0 ± 0.9 ** 11.2 ± 0.9 12.3 ± 1.2 ***

2.2. Hypothalamic Peptides and Receptors

Expression of OX2R in the hypothalamus was significantly reduced in autumn fed
animals compared with winter fed by 38.2% (p = 0.002 **) and in winter fasted by 30.7%
(p = 0.029 *) compared with winter fed (Figure 1). The autumn fed had also a significantly
smaller relative expression of ObRb in the hypothalamus compared to winter fed by 35.1%
(p = 0.005 **) (Figure 2). To our surprise, the relative expression of hypothalamic NPY and
POMC did not significantly differ between the groups.
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p < 0.05, and ** p ≤ 0.01. 
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derived neurotrophic factor (BDNF), thyroid-stimulating hormone (TSH), interferon 
gamma (IFN-γ), interleukin 4 (IL-4), interleukin 10 (IL-10), interleukin 6 (IL-6) and tumor 
necrosis factor (TNFα) were under assay detection limits. Minimum detectable concentra-
tions of the assays were 7.7 pg/mL for GLP-1, 8.19 pg/mL for BDNF, 0.79 ng/mL for TSH, 
4.4 pg/mL for IFN-γ, 28.8 pg/mL for IL-4, 1.6 pg/mL for IL-10, 12.1 pg/mL for IL-6 and 0.4 
pg/mL for TNFα. 

  

Figure 1. Relative mRNA level expression of orexigenic NPY and OX2R normalized to the expression
of GAPDH in raccoon dog hypothalamus. Statistically significant differences are indicated with
* p < 0.05, and ** p ≤ 0.01.
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Figure 2. Relative mRNA level expression of anorexigenic POMC and ObRb normalized to the ex-
pression of GAPDH in raccoon dog hypothalamus. Statistically significant difference is indicated
with ** p ≤ 0.01.

2.3. Plasma Hormones and Inflammatory Markers

The ten-week winter fasting period did not significantly affect plasma metabolites
and cytokine/chemokine profiles as compared with the winter fed group. Furthermore,
in the autumn fed group, plasma metabolites and chemokines/cytokines were similar to
in the winter fasted and winter fed groups (Table 2). Glucagon-like peptide 1 (GLP-1),
brain-derived neurotrophic factor (BDNF), thyroid-stimulating hormone (TSH), interferon
gamma (IFN-γ), interleukin 4 (IL-4), interleukin 10 (IL-10), interleukin 6 (IL-6) and tumor
necrosis factor (TNFα) were under assay detection limits. Minimum detectable concentra-
tions of the assays were 7.7 pg/mL for GLP-1, 8.19 pg/mL for BDNF, 0.79 ng/mL for TSH,
4.4 pg/mL for IFN-γ, 28.8 pg/mL for IL-4, 1.6 pg/mL for IL-10, 12.1 pg/mL for IL-6 and
0.4 pg/mL for TNFα.
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Table 2. Measured plasma metabolites. Symbol # indicates values under assay detection limit and
could not be measured.

Winter Fasted
(n = 5)

Winter Fed
(n = 6)

Autumn Fed
(n = 9)

Gut Hormones GIP (pg/mL)

PYY (pg/mL)

4.02 ± 1.02 7.16 ± 1.22 12.63 ± 4.13

48.85 ± 4.07 65.41 ± 16.36 43.24 ± 6.70

Cytokines/
Chemokines

GM-CSF (pg/mL)

IP-10 (pg/mL)

IL-8 (ng/mL)

IL-18 (pg/mL)

MCP-1 (pg/mL)

169.13 ± 40.04 102.48 ± 12.23 173.34 ± 72.44

# # 37.27 ± 16.77

27.95 ± 7.11 16.96 ± 4.55 15.61 ± 2.12

100.19 ± 29.39 54.89 ± 9.38 365.02 ±
108.50

388.50 ± 72.11 187.37 ± 32.92 302.22 ± 95.58

Adipokines Resistin (ng/mL) 56.75 ± 8.72 38.77 ± 3.98 42.48 ± 6.21

Pituitary Gland
Peptides

ACTH (pg/mL)

GH (ng/mL)

FSH (ng/mL)

LH (ng/mL)

209.86 ± 34.34 159.68 ± 43.70 159.50 ± 32.29

0.46 ± 0.28 0.37 ± 0.16 0.14 ± 0.07

91.90 ± 31.71 41.59 ± 17.96 76.66 ± 18.84

1.03 ± 0.25 0.52 ± 0.15 1.12 ± 0.18

Histopathology of Adipose Tissue Vascularization and Inflammatory Structures

The amount of white adipose tissue nuclei did not significantly change between
the raccoon dog groups or abdominal (WA) and subcutaneous (WS) deposit locations,
indicating that there was no adipocyte hyperplasia (Figure 3a). The size measurement of
adipocytes could unfortunately not be done from the frozen samples. Vascularization of
WS showed a higher trend in the winter fasted raccoon dogs, but this was not statistically
significant (Figure 3b). There were also no significant differences in the adipocyte shape
profiles, although WAT from the abdominal cavity seems to be more abundant with
the angular-shaped adipocytes than the subcutaneous WAT (Figure 3c,d). Angular cells
were more prominent in the WA and WS in the autumn fed and in WA in the winter fed,
compared to the winter fasted. Similarly, the round shape was more frequently seen in
the winter fasted animals and in general in subcutaneous fat. The shape of the adipocytes
suggests a more tightly organized pattern with angular-shaped cells, whereas the round
shape indicates a more loose structure. No inflammatory cells or crown-like structures
were detected in any of the adipose tissue histopathological samples.
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Figure 3. Histopathological analysis of raccoon dog WAT samples. (a) Amount of nuclei per area,
(b) vascularization as amount of blood vessels per area and (c,d) shape profile of the adipocytes.

2.4. 1H NMR Analysis

According to the 1H NMR spectroscopy analysis of the raccoon dog plasma, the plasma
of winter fed contained higher concentrations of lactate and pyruvate with a good corre-
lation within the group compared with winter fasted. Winter fasted group plasma had
more unsaturated lipoprotein, saturated mobile lipids and choline compared to winter fed
(Figure 4). Autumn fed raccoon dog plasma exhibited more lactate and pyruvate with a
good correlation compared to winter fed, whereas the winter fed groups plasma contained
more choline, unsaturated lipoproteins and saturated lipids (Figure 5). When comparing
autumn fed raccoon dog plasma to winter fasted plasma, the spectrum profiles showed
more variability, but mostly with a low correlation within the groups. The winter fasted ex-
hibited more unsaturated lipoproteins compared with the autumn fed whereas the autumn
fed had more albumin lysyl (Figure 6). Lactate, pyruvate, glucose and branched-chain
aminoacids (BCAA) valine, isoleucine and leucine were more prominent in the autumn fed
compared with the winter fasted, but with a weaker correlation coefficient. The greatest
differences between the groups arose from unsaturated lipoproteins.
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2.5. UPLC-MS Analysis

In the positive ionization mode UPLC-MS analyses of a total of 510 aligned ion features,
multigroup comparisons resulted in six significantly differentially expressed features (p ≤
0.05) between at least two of the compared groups. Three of the significantly different ion
features were isotopes and three were annotated as actual host/parent molecules. The six
variably expressed features are presented in a cloudplot with the metabolomics data visual-
ization package (Figure 7) and the three variably expressed parent molecules are presented
in box-and-whiskers plots along with the post hoc comparisons and putative database
identifications based on accurate m/z in the supplementary attachments. Metabolite in the
sphingolipids class was significantly higher in winter fed compared with the autumn fed
raccoon dogs (Figure S1: Box- and whisker-plot 1). In addition, a metabolide in the glyc-
erophospholipids class was significantly higher in the winter fasted compared with autumn
fed (Figure S2: Box- and whisker-plot 2) and in the winter fed compared with the winter
fasted (Figure S3: Box- and whisker-plot 3). The 1H NMR spectroscopy analysis results
suggest that choline residues (glycerophosphocholine, diacylglycerophosphocholine (Excel
S1)) were more abundant in the fasted raccoon dogs than in the fed groups (Figures 4–6).
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Figure 7. Cloudplot of the multigroup comparisons of the total ion chromatograms of winter fasted,
winter fed and autumn fed with metabolic data visualization in the positive ionization mode. The six
blue spheres represent the variably expressed features between the groups. The color of the sphere
indicates the p-value of the feature (the lower the p-value the darker the color) and the larger diameter
indicates the fold change, including the abundance and intensity of the feature (the larger the diameter,
the larger intensity of the feature). Hyphenations in the Figure: PC, phosphatidylcholines; PG,
phosphatidylglycerols; PE, phosphatidylethaloamines; SM, sphingomyelins DG, diacylglycerols; CE,
cholesterol esters and TG, triacylglycerols are denoting the common retention times in the system for
the different metabolites, which were added in the Figure for visualization.

The datasets of the winter fasted, winter fed and autumn fed group raccoon dogs con-
tained in total 78 negatively charged ion features. In multigroup comparisons, two features
were found to be significantly (p ≤ 0.05) differentially expressed between at least two of
the compared groups. One of the two differentially expressed features was an isotope and
the second was a parent molecule. The two variably expressed features are presented in a
cloudplot (Figure 8). The differentially expressed parent molecule is presented in a box-
and-whiskers plot with post hoc comparisons between the compared groups and putative
database annotations. The feature with m/z 541.3 was identified as penta amino acid with
the databases and it was more abundant in the two winter groups (winter fasted and winter
fed) compared with the autumn fed (Figure S4: Box- and whisker-plot 4). A more extensive
list on metabolite identification on the basis of m/z from several metabolite databases can
be found in the Supplementary Information (Excel S1).
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3. Discussion

In this study, we determined central and peripheral signals that regulate food intake
and metabolism in raccoon dogs under seasonal fattening and fasting conditions. The two
winter groups exhibited differences in hypothalamic OX2R and ObRb compared with
the autumn group, indicating seasonal regulation, whereas the effects of the prolonged
ten-week fasting period showed a weaker response despite the significantly lower body
weight of the animals. Orexigenic OX2R expression was significantly higher in winter
fed and fasted groups compared with the autumn fed group, which could participate in
the promotion of wakefulness and food intake. The higher OX2R expression in the two
winter groups, sampled in the beginning of March with already significant lengthening
of daylight as compared to its shortening in the autumn group, may reflect a seasonal
transition to initiate food intake after winter. Similar changes have been reported in the hi-
bernating thirteen-lined ground squirrel (Ictidomus tricemlineatus) which exhibited low
levels of the orexigenic NPY, orexins and Agrp in the hypothalamus during hibernation,
but started to increase the levels in early spring after emerging from hibernation to restart
food intake behavior [36]. Our results show no statistical difference in the relative hy-
pothalamic expression of the orexigenic NPY between the different raccoon dog groups,
suggesting that the NPY levels were maintained at quite stable level despite the prolonged
ten-week fasting period and the autumnal fattening phase. A previous study on Siberian
hamsters (Phodopus sungorus) showed that 48 h of fasting increased hypothalamic NPY
concentrations similar to those of the non-seasonal mammals [34], but induced no changes
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in hypothalamic orexin or POMC after the fasting both in long and short day length [35].
Mercer et al. [37] found that 18 weeks into short day exposure, Siberian hamster decreased
the hypothalamic POMC and increased Agrp, but no effect on NPY could be detected.
A further superimposed 24 h fasting increased NPY and Agrp expression without any
further effect on POMC expression.

The raccoon dogs in the autumn fed group exhibited significantly less hypothalamic
ObRb in comparison to the winter fed group, suggesting a seasonal effect in the regulation.
The downregulation of leptin receptors at the end of the autumnal fattening period might
be an adaptation to maintain and enlarge the leptin secreting WAT storages. In accordance
with the significantly larger body weight, circulating plasma leptin levels were signifi-
cantly higher in the autumn fed raccoon dogs compared to the winter fed and winter
fasted [38]. In addition, the reduced expression of the ObRb in the hypothalamus could
contribute to the energy intake to induce autumn fattening before the winter [39]. Leptin
inhibits the orexigenic NPY/Agrp expressing neurons and stimulates the anorexigenic
POMC/CART neurons in the arcuate nucleus of the hypothalamus in a dual action to
reduce food intake [40]. These neuron systems have projections to second order neurons
in the medial and lateral hypothalamus, which include orexin producing neurons. Thus,
the high circulating leptin levels in the autumn fed raccoon dogs could contribute to
the lower OX2R expression in the autumn fed group as compared to the winter fed and
winter fasted and to the lower hypothalamic NPY expression in the autumn fed compared
to the winter fasted dogs.

In the raccoon dogs, food deprivation did not significantly affect hypothalamic orexi-
genic signals NPY and OX2R as seen in rodents, several hibernating and euthermic species
and humans [41–43]. In addition, anorexigenic POMC or ObRb expression were not
changed by the prolonged fasting period, indicating that hunger feeling might be sup-
pressed during food scarcity. The seasonal fluctuation in adipose tissue storages enables
them to survive long fasting periods without altering the hypothalamic orexigenic and
anorexigenic peptide expressions. The lower expression of hypothalamic ObRb in autumn
fed raccoon dogs compared with the winter fed group and the lower hypothalamic OX2R
expression compared with both winter fasted and fed groups suggest that the seasonal
effects were more potent than the availability of food during the winter.

The levels of plasma hormones suggest that the raccoon dogs are well adapted to
the ten-week fasting period as well as to the autumnal fattening. The pituitary derived
peptides (ACTH, GH, FSH, LH, TSH), adipose tissue derived resistin, and gut peptides
GIP and PYY showed no differences between the groups. Plasma cytokine and chemokine
levels of GM-CSF, IP-10, IL-6, IL-8, IL-18 and MCP-1 remained the same despite the ten-
week fasting period in the winter fasted group and autumnal fattening in the autumn fed
group. The adipose tissue histopathology showed no accumulation of macrophages or
the formation of crown-like structures in the analyzed samples. The hypoxia theory implies
that abundance of white adipose tissue causes hypoxia in the adipose tissue of obese human
subjects with subsequent infiltration of macrophages and activation of mast cells [44,45].
The absence of inflammatory structures in the subcutaneous and abdominal white adipose
tissue and the lack of differences in circulating cytokines/chemokines between the groups
indicate that the prolonged fasting as well as autumnal fattening did not produce any
inflammatory response seen for example in humans [46,47]. This is further supported by
the fact that the signal for N-acetylated glycoproteins, which generally reflects a change in
inflammatory status, did not change in the plasma NMR profile [48].

Investigating key central food intake and metabolism regulating factors and
the metabolic profiles, we found that the metabolite profile in plasma was different between
the winter fed, winter fasted and autumn fed raccoon dog groups. The main variation
between the groups was related to unsaturated lipoproteins and mobile saturated lipids
which were more abundant in the fasted raccoon dog plasma samples compared to the fed
groups, indicating that the animals were mobilizing and utilizing fat storages as energy
source [49–51]. The fasted raccoon dogs exhibited also more glycerophosphocholines
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(diacylglycerophosphocholine) compared with the fed groups. The increased lactate and
pyruvate concentration in the fed raccoon dogs compared with the fasted or less fed sug-
gest the utilization of the Cori cycle/Warburg and Crabtree effect [52]. This is observed
in metabolically challenging/stressful conditions such as obesity, cancer, inflammation,
pregnancy and lactation, but also in relation to non-pathological growth. The increased
lactate and pyruvate in the fed raccoon dogs suggests the continued maintenance of the adi-
pose tissue storages. The various increased energy substrates including ketogenic body
3-hydroxybutyrate and ketogenic proteins albumin lysyl and creatinine, glycolytic pathway
lactate, pyruvate, glucose, formate and the essential amino acid threonine and BCAAs (va-
line, isoleucine, leucine) are most likely due to the more active metabolism in the autumn
fed raccoon dogs compared with the winter fasted raccoon dogs.

The untargeted UPLC-MS analysis revealed surprisingly few differentially expressed
metabolites between the groups in single metabolite comparisons. From the 510 aligned
positively ionized features, three metabolites were found with significantly different ex-
pressions. The metabolome database identifications suggest that two of these variedly
expressed lipids belong to the larger lipid class of glycerophospholipids which includes
e.g., glycerophosphocholines, glycerophosphoethanolamines and glycerophosphates. One
of these glycerophospholipids (m/z 756.6) was significantly more expressed in the win-
ter fasted compared with autumn fed and the database identification combined with
the 1H NMR spectroscopy results suggest it as being glycerophosphocholine (diacylglyc-
erophosphocholine). The second differentially expressed glycerophospholipids (m/z 858.6)
was more abundant in the winter fed compared with the winter fasted. A feature (m/z
815.7) identified as sphingolipid was significantly more expressed in the winter fasted
compared with autumn fed. Both glycerophospholipids and sphingolipids are main
components in plasma membranes and other plasma lipoproteins [53]. Out of 78 nega-
tively ionized features, penta amino acid (m/z 541.3) was significantly different between
the groups, as it was increased in the two winter groups compared with the autumn fed,
which may indicate a seasonal reduction in energy intake and increased protein catabolism
in the winter groups compared with the autumn fed group.

In summary, the raccoon dog has developed regulatory mechanisms for autumnal fat-
tening and prolonged fasting periods, enabling the species’ unique qualities in coping with
the extreme environmental challenges. Further investigation of the molecular mechanisms
might lead to novel molecular targets for food intake.

4. Materials and Methods
4.1. Animals

Three groups of farm-bred female raccoon dogs were reared at the Kannus Re-
search Farm Luova Ltd. in northern Finland (elevation: 43.01 m, latitude: 63◦54′30” N,
and longitude: 23◦56′26”E) and were euthanized according to the Finnish legislation for
the fur harvest at the end of the experiment. Blood and tissues samples were collected
within 3 min after euthanasia. All animals used in the study were housed in roofed cages
(150 × 107 × 70 cm) under natural temperature and photoperiod and had ad libitum access
to water. In the study, we had three groups: winter fed, winter fasted and autumn fed.
The winter fed group raccoon dogs (n = 6, female, age 8 months) had ad libitum access
to commercial animal diet throughout the test period. Winter fasted group raccoon dogs
(n = 5, age 8 months, female) were subjected to a ten-week fasting period during winter
time between 22nd of December (5 h light, 18 h dark, 1 h dim light) and 1st of March (10 h
light, 13 h dark, 1 h dim light). Autumn fed group raccoon dogs (n = 9, age > 10 months,
female) also had ad libitum access to commercial animal diet and the animals were sampled
on 1st of December (5 h light, 18 h dark, 1 h dim light) after the autumnal fattening period
(Figure 9). The animals were fed a diet with high-energy content (5120 kcal/kg dry matter)
to optimize body mass and fur size. The body weights of the winter fasted and winter
fed raccoon dogs were recorded in the beginning (7th of December), three times during
and at the end of the experiment (1st and 2nd of March). The autumn fed raccoon dogs
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were weighted only at the end of the experiment (1st of December) to avoid disturbing
the hyperphagic phase. Both fed groups of raccoon dogs were fasted overnight before
the blood and tissue sampling. EDTA blood was collected by cardiac puncture and plasma
separated by centrifugation at 3000× g in +4 ◦C for 15 min and stored at −70 ◦C for further
analyses. Tissue samples were excised and snap frozen with liquid nitrogen and stored at
−70 ◦C prior to further analyses.
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The experiment was approved by the National Committee for Animal Experimenta-
tion (licence no. ESLH-2008-06316/Ym-23) according to Finnish animal experimentation
legislation (Act 62/2006).

4.2. Hypothalamic Gene Expression Determination

The expressions of NPY, OX2R, POMC and ObRb were determined in raccoon dog
hypothalamus samples by quantitative real-time PCR. Total RNA was extracted from
the frozen and homogenized hypothalamus samples with RNeasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Germany) according to the manufacturer’s protocol. iScriptTM cDNA
Synthesis Kit (Bio-Rad Laboratories, Inc., Hercules, California, USA) was used to synthesize
cDNA from 1 µg of RNA. The SYBR Green real-time PCR reactions were performed with
ABI-PRISM 7300 sequence detection system (Applied Biosystems, ThermoFisher Scientific,
Waltham, Massachusetts, USA) in a total volume of 30 µL. All samples were run as du-
plicates for each gene along with the internal control gene glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) in a 96-well plate. Sterile water was used as a negative control.
Results were analyzed and calculated according to the manufacturer instructions. Since
the raccoon dog genome has not been published to date, primers and antibodies were
designed and tested on the basis of the publicly available dog genome (Canis lupus famil-
iaris) [54]. Primers were designed with Primer Basic Local Alignment Search Tool (PRIMER
BLAST). The dog sequences were acquired from the National Center for Biotechnology
Information (NCBI) GenBank and the accession numbers for the sequences and primer
sequences are listed in a supplementary table (Table S1: Primer sequences of NPY, POMC,
ObRb, OX2R, GAPDH and the product sizes).

4.3. Metabolic Profiling

Raccoon dog plasma glucose-dependent insulinotropic peptide (GIP), GLP-1 and
peptide YY (PYY) levels were determined using the Milliplex MAP Canine Gut Hor-
mone Magnetic Bead Panel Assay (CAT# CGTMAG-98K, Millipore Corporation, Billerica,
MA, USA) (intra-assay variation ≤ 5% CV, inter-assay variation ≤ 13% CV). Plasma
granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma-induced
protein, (IP-10), IL-4, IL-6, interleukin 8 (IL-8), interleukin 18 (IL-18), monocyte chemo-
attractant protein-1 (MCP-1) and TNFα were analyzed with the Milliplex MAP Canine
Cytokine/Chemokine Assay (CAT# CCYTO-90K, Millipore Corporation, Billerica, MA,
USA)(intra-assay variation ≤ 15.6% CV, inter-assay variation ≤ 20,0% CV). Plasma resistin
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levels were determined by the Milliplex MAP Canine Adipokine Assay (CAT# CADPK-91K,
Millipore Corporation, Billerica, MA, USA) (intra-assay variation ≤ 9.2% CV, inter-assay
variation ≤ 16.6% CV). Plasma levels of pituitary derived peptides adrenocorticotropic
hormone (ACTH), growth hormone (GH), BDNF, TSH, follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) were measured from plasma with Milliplex MAP Canine Pi-
tuitary Magnetic Bead Panel Assay (CAT# CPTMAG-96K, Millipore Corporation, Billerica,
MA, USA) (intra-assay variation ≤ 3.26% CV, inter-assay variation ≤ 13.42% CV). Plasma
samples were centrifuged at 10,000× g in +4 ◦C temperature for 10 min before analysis.
All assays were performed utilizing a Bio-Plex 200 instrument based on Luminex xMAP
technology (Bio-Rad Laboratories Inc., California, USA) [55]. The results were calculated
with Bio-Plex Manager Software 6.0 with a five parameter logistical equation.

4.4. Metabolomics

The metabolic profile of the raccoon dog was assessed by utilizing two different
metabolomics techniques: Proton nuclear magnetic resonance (1H NMR) spectrometry and
ultra-performance liquid chromatography mass spectrometry (UPLC-MS). The protocol
for the 1H NMR analysis of the plasma small metabolites is described in the supplemen-
tary (S1). Raccoon dog plasma samples were analyzed with 1H NMR and a multivariate
analysis was conducted to a set of raccoon dog plasma samples representing different con-
ditions. The three groups of winter fasted, winter fed and autumn fed indicated a separate
clustering and were chosen for further analysis and reported on because they contain infor-
mation about the conditions of interest (seasonal fattening and fasting). The corresponding
PCA is presented in Figure S5 Loadings obtained by an OPLS-DA multivariate analysis
on the NMR spectra comparing the three groups pairwise include metabolite identifica-
tions according to specific chemical shift and spectral peak profiles (Figures 4–6) [56–60].
The height of the peak represents the abundance of the metabolite and the warmer coloring
scheme (yellow, orange, red) indicate higher correlation value up to 1 within the group.
The metabolite assignments were added in the figures for visualization.

Plasma lipid profiles were analyzed with untargeted UPLC-MS according to methodol-
ogy described in the supplementary attachment (Supplement 1). The multivariate analysis
of the UPLC-MS positive ionization mode results includes raccoon dog plasma samples
from different conditions and the three groups of interest (winter fasted, winter fed and
autumn fed) were analyzed further (Figure S6). Of the three groups, winter fasted in
particular indicate a separate clustering in the PCA. The obtained data were processed
using XCMS Online, a web-based platform for analyzing complex and extensive untargeted
metabolomics data [61,62]. The datasets of the winter fasted, winter fed and autumn fed
group raccoon dogs contained in total 510 aligned ion features, e.g., ions of certain m/z
and rt, in positive mode and 78 ion features in the negative mode. The aligned ion features
were compared individually between the groups by parametric multigroup comparisons
(ANOVA, post hoc comparisons) with the XCMS Online platform. Cloud plots, total ion
chromatograms and principal component analysis were generated with the XCMS online
software were used to visualize the significantly differing features between groups and
their expression intensities.

4.5. Histopathology of Adipose Tissue Vascularization and Inflammatory Structures

The histological structure on the adipose tissue was determined from 5 µm sections
sliced from subcutaneous and abdominal adipose tissue samples with a cryostat microtome
at −20 ◦C. The sections were stained with hematoxylin and eosin. The reagents used for
tissue staining were Dako Hematoxylin (Agilent Technologies, Santa Clara, California,
USA), Dako Eosin (Agilent technologies, Santa Clara, CA, USA) and Dako Bluing Buffer
(Agilent Technologies, Santa Clara, CA, USA). The amount of nuclei was calculated from
a 0.5 mm2 area and was used for an estimation of the amount and thus also the size and
organization of the adipocytes. The shape of the adipocytes and inflammatory crown-like
structures were determined visually by microscope. Vascularization of the adipose tissues
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was determined by counting the number of cross-sections or blood vessels from a 1 mm2

area. All the histological analyses were performed blinded by one examiner.

4.6. Statistical Analyses

Statistical analyses for the multiple comparisons was conducted with the one-way
analysis of variance (ANOVA) followed by Tukey’s post hoc test using the IBM SPSS
Statistics 21 Data Editor software (IBM, Armonk, NY, USA) for the hypothalamic peptide
expression and plasma metabolite analyses. In the result analyses a p-value less than 0.05
was considered statistically significant. The results of the hypothalamic relative peptide
expressions, plasma metabolites and adipose tissue histopathology results are presented as
mean ± SEM. Statistically significant differences are indicated with * p < 0.05, ** p ≤ 0.01
and *** p ≤ 0.001. The statistical analyses used in the 1H NMR and UPLC-MS analyses are
depicted in the more detailed methods in the supplementary attachment.

5. Conclusions

In raccoon dogs, orexigenic and anorexigenic signals were differentially expressed,
allowing seasonal variation in the bodily fat stores. Plasma metabolic profiles remained
remarkably stable between the seasons, despite the long fasting period. The voluntary
reduction in the food intake in the winter suggest a lower set-point for body weight in
the winter season which the animals try to maintain despite the access to food. Understand-
ing the underlying mechanisms of how the lower body weight set-point is obtained and
maintained despite access to food and the strong evolutionary drive to defend the body
weight could reveal novel molecular targets for body weight control. Furthermore, in-
vestigation of the adipose tissue expandability without inflammation might reveal new
mechanisms to counteract subacute inflammation in cases such as for human adiposity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094965/s1, Supplementary methods information: Figure S1: Box- and whisker-plot 1,
Figure S2: Box- and whisker-plot 2, Figure S3: Box- and whisker-plot 3, Figure S4: Box- and whisker-
plot 4, Figure S5: PCA of the raccoon dog plasma NMR, Figure S6: PCA of the raccoon dog plasma
UPLC-MS in positive ionization mode, Table S1: Primer sequences of NPY, POMC, ObRb, OX2R,
GAPDH and the product sizes, Excel S1: Metabolite database annotations.
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