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A B S T R A C T

Purpose: To report clinical and dosimetric characteristics of 5-fraction stereotactic ablative radiotherapy (SABR)
using intensity modulated proton therapy (IMPT) for localized prostate cancer.
Materials and Methods: All patients receiving IMPT SABR from 2017 to 2021 for localized prostate cancer at our
institution were included. Five fractions were delivered every other day to the prostate +/− seminal vesicles
[clinical target volume (CTV)] with 3 mm/3% robustness. A 4-field arrangement with 2 anterior oblique and 2
opposed lateral beams was used in most patients (97%), and most (99%) had a retroprostatic hydrogel spacer.
Results: A total of 534 patients with low (14%), favorable intermediate (45%), unfavorable intermediate (36%),
high (4.0%), or very high-risk (0.6%) disease are evaluated. Prescription dose of 36.25 Gy (31%), 38 Gy (38%),
or 40 Gy (31%) was prescribed. Median volume percentage of CTV receiving at least 100% of prescription dose
[V100% (%)] was 100% [interquartile range: 99.99–100]. Rectum V50% (%), V80% (%), and V90% (%) were
significantly lower in patients who had spacer, with a mean difference of −9.70%, −6.59%, and −4.42%,
respectively, compared to those who did not have spacer. Femoral head dose was lower with a 4-field ar-
rangement. Mean differences in left and right femoral head V40% (%) were −6.99% and −10.74%, respec-
tively.
Conclusion: We provide a large, novel report of patients treated with IMPT SABR for localized prostate cancer.
Four-field IMPT with hydrogel spacer provides significant sparing of rectum and femoral heads without com-
promising target coverage.

Introduction

Prostate cancer is the most common noncutaneous cancer diagnosed
in American men, with an estimated 268 590 new cases and 34 500
deaths in 2022.1 Approximately one-third of men with localized pros-
tate cancer receive external beam radiotherapy (EBRT).2 Con-
ventionally fractionated EBRT delivers 1.8–2.0 Gy fractions to a total
dose of 68–80 Gy.3 Dose response studies demonstrate that prostate
cancer may be modeled using an α/β ratio of 1.5–3 Gy, which translates
to increased cancer cell killing from high dose per fraction compared to
adjacent organs-at-risk (OARs).4–6 Moderate hypofractionation
(2.4–3.4 Gy per fraction)7–12 and ultra-hypofractionation (≥5 Gy per
fraction)13–18 regimens have comparable tumor control, adverse event

(AE) and quality of life profiles relative to conventional fractionation.
This has led to adoption of hypofractionation, including stereotactic
ablative body radiotherapy (SABR) for localized prostate cancer.19–21

Compared to photon therapy, proton therapy can decrease dose to
OARs with similar target coverage.22–24 This stems from the inherent
physical properties of protons, which deposit most of their dose over
a narrow range with a steep dose falloff beyond the Bragg peak and
essentially no meaningful exit dose beyond the target. The resulting
dose distribution can potentially reduce genitourinary (GU) and
gastrointestinal adverse events AEs25–29 and mitigate secondary
cancer risk.30,31 Prior studies support conventionally fractio-
nated32–34 and hypofractionated35–37 proton therapy for localized
prostate cancer.
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The optimal delivery technique for proton-based prostate SABR re-
quires further definition. Previous reports show that passively-scattered
proton therapy results in lesser conformality compared to photon in-
tensity modulated radiotherapy (IMRT).24,38 Intensity modulated
proton therapy (IMPT) uses a narrow beam scanned across the target
volume. Beam intensity and energy can be adjusted during treatment,
resulting in a more conformal dose distribution relative to photon
IMRT.24 This benefit has been associated with reduced GU AEs.39

Sharp dose falloff beyond the Bragg peak allows normal tissue
sparing but also results in increased sensitivity of protons to tissue
inhomogeneities and day-to-day positional variation. Plan robust-
ness is therefore an important consideration when delivering proton
SABR. Protons also have higher linear energy transfer at the end-of-
range with an estimated relative biological effectiveness (RBE) of
approximately 1.1.40,41 Anteriorly arranged fields may deliver
greater rectal dose compared to lateral fields due to range un-
certainty and biological enhancement beyond the Bragg peak.38 In a
dosimetric study by Tang et al., anterior combined with lateral fields
allowed for reduced AEs with current prescription doses or further
dose escalation.42

Based on Tang et al. and an internal analysis, we routinely use a 4-
field arrangement of 2 anterior oblique and 2 lateral beams to optimize
robustness and reduce dose to the femoral heads. We also routinely
place a retroprostatic hydrogel spacer43 to further limit rectal radiation
exposure. We now provide a dosimetric analysis of a large, single-in-
stitution cohort of patients with localized prostate cancer treated with
IMPT SABR using this technique.

Materials and methods

Patients

Following Institutional Review Board approval, a prospectively
maintained database was queried to identify all patients receiving IMPT
SABR from 2017 through 2021 for histologically confirmed, localized
prostate cancer at our institution. Those with node-positive and/or
metastatic disease were excluded. This database and the electronic
medical record were used to gather clinical characteristics. We risk
stratified patients using National Comprehensive Cancer Network
(NCCN) guidelines.44

Simulation

At least 1 day prior to computed tomography (CT) simulation, all
patients underwent placement of 4 intraprostatic carbon fiducial
markers using transrectal ultrasound guidance and a transperineal
approach. A retroprostatic hydrogel spacer (Figure 1A) was placed in
this same setting in 99% of patients. Reasons for spacer omission in-
cluded significant posterior extraprostatic tumor extension, prior
rectal cancer surgery, prior transurethral resection of the prostate,
inability to hydrodissect between prostate and rectum, and un-
expected delay between spacer placement and start of treatment re-
sulting in spacer biosorption.
Patients underwent a pre-simulation enema and were provided full

bladder instructions. A planning CT scan was performed with the pa-
tient in supine position, and a knee cushion and custom vacuum-lock
bag were used to immobilize the lower extremities. A magnetic re-
sonance imaging (MRI) scan was obtained immediately following CT
simulation using the identical patient immobilization and setup. MRI
T2 and LAVA-Flex sequences were co-registered to the simulation CT
image set in the Eclipse Aria treatment planning system (Varian
Medical Systems, Inc., Palo Alto, California) using the fiducials and
prostate as reference.

Treatment planning and delivery

The clinical target volume (CTV) included the prostate +/−
seminal vesicles. The extent of the seminal vesicles within the CTV was
at the discretion of the treating physician and guided by clinical char-
acteristics. Pelvic OARs were contoured and included bladder, rectum,
penile bulb, femoral heads, and, when near the treatment field, small
and large bowel. The hydrogel spacer was also contoured. MRI images
fused to the planning CT were used to aid in contouring the CTV and
spacer.
The CTV was prescribed a dose of 36.25–40 Gy in 5 fractions.

Prescription dose was guided by physician preference and clinical fea-
tures. IMPT plans were optimized for robustness to ensure CTV cov-
erage with up to ± 3mm isocenter shifts in the x, y, or z coordinate
axes and ±3% range uncertainty. OAR priority 1 constraints included:
bladder volume (V) receiving at least 50% of prescription dose
(V50%) ≤ 40%, V90% ≤10%, V100% ≤5.5 cc, V107% ≤0.3 cc;
rectum V50% ≤50%, V80% ≤20%, V90% ≤10%, V100% ≤
1.5 cc, V107% ≤0.3 cc; penile bulb dose (D) to 3 cc (D3cc) ≤ 20 Gy,
D0.3 cc ≤ 107%; and femoral head V20Gy ≤10cc, V40% ≤5%,
V107% ≤0.3 cc.
All patients were treated with multi-field optimized pencil-beam

scanning IMPT on a Hitachi PROBEAT-V proton therapy system
(Hitachi, Tokyo, Japan). Most (97%) plans employed a 4-field ar-
rangement of 2 anterior oblique and 2 opposed lateral beams. The
anterior oblique beams were delivered from 30° to 50° from the ante-
rior-posterior direction. Weighting factors of 0.15 and 0.35 were used
for the anterior oblique and lateral beams, respectively (Figure 1B, C).
Proton plans were verified in an in-house graphics processing unit-

based Monte Carlo physical dose simulation (relative biological effec-
tiveness [RBE] 1.1). An in-house Monte Carlo “biologic dose” (MCB)
simulation that assumes a linear relationship between linear energy
transfer (LET) and RBE, as described previously,45 was also evaluated
on all plans.
Five fractions of SABR were delivered every other weekday over one

and a half to 2 weeks. Prior to each fraction, patients received an enema
and full bladder instructions to minimize interfraction anatomic var-
iation. Image guidance was performed by online matching of in-
traprostatic fiducials using onboard orthogonal kilovoltage imaging.
Four fields were delivered at each treatment utilizing a gantry with
190° rotational range of motion. The table was rotated 180° between
delivery of contralateral sets of fields. Images were taken at this rota-
tion and prior to delivery of these contralateral fields.

Statistics

Treatment planning data including prescription dose, beam ar-
rangement, spacer use, CTV and OAR dosimetric data extracted from
the Eclipse Aria treatment planning system. CTV V100% (%) robustness
was compared between those receiving a 4- versus non-4-field ar-
rangement. MCB dose to rectum, including V105% and V110%, was
compared between patients with and without hydrogel spacer.
Unpaired t-tests were used for dosimetric comparisons.

Results

Patients

A total of 534 patients were included (Table 1). NCCN risk group
was low (79 patients, 15%), favorable intermediate (238, 45%), un-
favorable intermediate (194, 36%), high (20, 4.0%), and very high (3,
0.6%). Among the 22 patients with high or very high risk disease, 7 had
T3 tumors. Gleason score was 4+ 4, 4+5, and 5+4 in 9, 2, and 1
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patient, respectively. Median age at the start of RT was 69 years [in-
terquartile range (IQR): 64–74].

Radiotherapy

RT details are shown in Table 1. Patients received 5 fractions every
other day over a median of 10 days (IQR: 9–14). Prescription dose was
36.25 Gy (166, 31%), 38 Gy (201, 38%), or 40 Gy (167, 31%). Among
patients treated with a non-4-field arrangement, 13 (77%) received
parallel opposed beams and the remaining 4 (23%) received parallel
opposed beams with a single anterior oblique beam. All 3 patients who
did not have spacer placed had a parallel opposed beam arrangement.

Dosimetric data

Dosimetric data in the overall cohort and dosimetric comparisons
between groups are detailed in Tables 2 and 3, respectively. Median
CTV V100% (%) was 100% (IQR: 99.99–100). There was no difference
in CTV coverage based on spacer use or number of treatment fields.
Rectum dose was significantly lower in patients who underwent

spacer placement compared to those who did not. The mean difference
in rectum V50% (%) was −9.70% [95% confidence interval (CI):
−18.14 to 1.25, P= .02), V80% (%) −6.59% (95% CI: −10.37 to
2.82, P < .001), and V90% (%) −4.42% (95% CI: −6.64 to 2.20,
P < .001).
Femoral head dose was less with a 4-field arrangement. Mean dif-

ferences in left and right femoral head V40% (%) were −6.99% (95%

CI: −7.74 to 6.23, P < .001) and −10.74% (95% CI: −12.04 to 9.43,
P < .001), respectively. Patients with spacer also had less femoral
head dose, although it is noted that all 3 patients without spacer placed
had a 2-field arrangement.
Robustness of CTV V100% (%) was compared between those re-

ceiving a 4- versus non-4-field arrangement (Table 4). Coverage with a
+3mm isocenter shift in the y axis was significantly improved with 4
fields [mean difference: 0.60% (95% CI: 0.02–1.17), P= .04]. MCB
dose to the rectum was not significantly different with spacer, although
it was numerically lower with a spacer for all 4 metrics evaluated
(Table 5).

Discussion

Proton therapy has the potential to reduce toxicity for patients
with localized prostate cancer while achieving equivalent oncologic
outcomes compared to photon therapy.22–24,30–37 Ultra-hypo-
fractionation has shown efficacy in multiple randomized trials13,15,18

and is being increasingly adopted. Proton SABR leverages the benefits
of both approaches, however the optimal delivery method requires
further study. We report on a large cohort of patients with localized
prostate cancer treated with 5 fraction IMPT SABR. We use a 4-field
arrangement of 2 anterior oblique and 2 lateral beams, along with
routine placement of retroprostatic hydrogel spacer. Our dosimetric
analysis demonstrates that this technique enables significant sparing
of the rectum and femoral heads while maintaining excellent CTV
coverage.

Figure 1. Sample treatment plan of prostate intensity modulated proton therapy stereotactic ablative radiotherapy. A) T2-weighted magnetic resonance imaging,
showing placement of hyperintense retroprostatic hydrogel spacer; B) four-field arrangement with color wash range (250 to 3800 cGy) involving two anterior oblique
and two opposed lateral beams, with contours of clinical target volume (red), intraprostatic fiducials (pink), hydrogel spacer (blue), and rectum (brown); C)
coordinate system used in treatment planning (from isocenter, positive x points to patient left, positive y to posterior, and positive z to superior).
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Most studies of proton therapy for prostate cancer used opposed
lateral beams.22–24,32–37 This technique results in femoral head dose
that approaches tolerance and exceeds that of IMRT.22,24,46 By adding
anterior oblique beams, we reduce bilateral femoral head dose by
7%–11%. Sparing the femoral heads and minimizing the associated risk
of hip fracture and osteoarthritis47 is of particular importance in pa-
tients receiving primary EBRT for prostate cancer, a population that
tends to be older.48

Anterior oblique beams can potentially increase rectal dose due to
proton range uncertainty. The range uncertainty with prostate treat-
ment is estimated at approximately 3% of the path length.49 With the
reduced path length afforded by anterior oblique beams, the net range
uncertainty is diminished, resulting in improved treatment robustness.
We found that CTV coverage robustness with a +3mm y axis shift was
improved with use of 4 fields. Biologic enhancement at the end-of-
range can also contribute to higher rectal dose.38,40,41 We routinely
place a spacer to mitigate this risk. In our analysis, use of a spacer was
associated with reduced rectal dose. While MCB dose was not sig-
nificantly different, all 4 metrics assessed were numerically lower in
the spacer cohort. While the use of spacer for rectal sparing during
photon therapy is well established, our data lend support to its use
with proton therapy.
Although considerable research has been published on ultra-hypo-

fractionation and proton therapy, evidence supporting the use of proton
SABR is limited. A prospective trial of proton SABR for localized pros-
tate cancer is ongoing (NCT03159676). This trial is being undertaken at
Mayo Clinic and utilizes the same method described in the current re-
port. Results from this study will help inform the safety, patient-re-
ported outcomes, and oncologic efficacy associated with 4-field proton
SABR.
We acknowledge the study limitations of this retrospective, non-

randomized analysis. The number of patients with omission of spacer
and/or a non-4-field arrangement were small, and our findings require
validation from a larger comparative cohort.
Proton SABR is an accepted standard treatment for localized

prostate cancer,44 and its use continues to evolve. Multiple delivery
approaches have been reported in the literature.22–24,32–37 Our un-
ique 4-field arrangement with hydrogel spacer results in significant
sparing of the rectum and femoral heads without compromising
target coverage. To our knowledge, this represents the largest series
to date of patients with localized prostate cancer treated with IMPT
SABR. These findings will help inform the optimal delivery strategy
for these patients.

Table 1
Clinical and radiotherapy characteristics of 534 patients.

Characteristic Number (%)

T stage
T1a 1 (0.2%)
T1c 372 (69.7%)
T2a 106 (19.9%)
T2b 27 (5.1%)
T2c 21 (3.9%)
T3a 5 (0.9%)
T3b 2 (0.4%)

Gleason score
3+3 76 (14.2%)
3+4 309 (57.9%)
4+3 137 (25.7%)
4+4 9 (1.7%)
4+5 2 (0.4%)
5+4 1 (0.2%)

PSA, ng/mL
<10 435 (81.5%)
10-20 94 (17.6%)
≥20 5 (0.9%)

NCCN risk group
Low 79 (14.8%)
Favorable intermediate 238 (44.6%)
Unfavorable intermediate 194 (36.3%)
High 20 (3.7%)
Very high 3 (0.6%)

Age at RT start (years), median (IQR) 69 (64–74)
Year of RT start
2017 39 (7.3%)
2018 71 (13.3%)
2019 104 (19.5%)
2020 153 (28.7%)
2021 167 (31.3%)

RT duration (days), median (IQR) 10 (9–14)
Prescription dose (Gy)
36.25 166 (31.1%)
38 201 (37.6%)
40 167 (31.3%)

Fields, number
2 13 (2.4%)
3 4 (7.5%)
4 517 (96.8%)

Hydrogel spacer
Yes 531 (99.4%)
No 3 (0.6%)

Hydrogel spacer (cc), median (IQR) 10.1 (8.8–11.5)

Abbreviations: IQR, interquartile range; NCCN, National Comprehensive
Care Network; PSA, prostate specific antigen; RT, radiotherapy.

Table 2
Dosimetric data.

Overall 4-field Non-4-field Spacer No spacer

N (%) 534 517 (96.8%) 17 (3.2%) 531 (99.4%) 3 (0.6%)
Median (IQR)

CTV V100% (%) 100 (99.99–100) 100 (99.99–100) 100 (99.96–100) 100 (99.99–100) 100 (99.89–100)
Bladder V50% (%) 12.90 (7.34–18.78) 13.05 (7.46–18.90) 8.67 (5.47–13.35) 12.77 (7.38–19.06) 9.53 (8.67–15.53)
Bladder V100% (%) 1.21 (0.58–2.12) 1.22 (0.58–2.13) 0.98 (0.60–1.99) 1.24 (0.58–2.17) 1.15 (0.90–1.62)
Rectum V50% (%) 7.46 (3.27–13.22) 7.43 (3.27–13.22) 8.02 (4.04–12.03) 7.77 (3.53–13.37) 22.03 (16.58–23.00)
Rectum V80% (%) 1.71 (0.31–4.37) 1.66 (0.31–4.35) 2.45 (0.55–5.25) 1.83 (0.39–4.46) 9.54 (7.36–11.80)
Rectum V90% (%) 0.57 (0.03–2.27) 0.55 (0.03–2.24) 0.98 (0.04–3.31) 0.66 (0.04–2.27) 4.49 (3.89–2.27)
Penile bulb V50% (%) 0 (0–4.75) 0 (0–4.89) 0 (0–0.32) 0 (0–5.15) 0 (0–0.24)
Fem. head L V40% (%) 0 (0–0.16) 0 (0–0.12) 3.10 (1.44–11.27) 0 (0–0.19) 9.41 (6.11–14.79)
Fem. head R V40% (%) 0 (0–0.23) 0 (0–0.15) 6.41 (2.93–16.09) 0 (0–0.23) 6.46 (4.05–11.43)

Abbreviations: CTV, clinical target volume; IQR, interquartile range; L, left; R, right; V100% (%), % of volume receiving at least 100% of prescription dose.
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V105% (%), % of volume receiving at least 105% of prescription dose.
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