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Abstract

Background: Arsenic is toxic to most living cells. The two soluble inorganic forms of arsenic are arsenite (+3) and
arsenate (+5), with arsenite the more toxic. Prokaryotic metabolism of arsenic has been reported in both thermal
and moderate environments and has been shown to be involved in the redox cycling of arsenic. No arsenic
metabolism (either dissimilatory arsenate reduction or arsenite oxidation) has ever been reported in cold
environments (i.e. < 10°C).

Results: Our study site is located 512 kilometres south of the Arctic Circle in the Northwest Territories, Canada in
an inactive gold mine which contains mine waste water in excess of 50 mM arsenic. Several thousand tonnes of
arsenic trioxide dust are stored in underground chambers and microbial biofilms grow on the chamber walls
below seepage points rich in arsenite-containing solutions. We compared the arsenite oxidisers in two subsamples
(which differed in arsenite concentration) collected from one biofilm. ‘Species’ (sequence) richness did not differ
between subsamples, but the relative importance of the three identifiable clades did. An arsenite-oxidising
bacterium (designated GM1) was isolated, and was shown to oxidise arsenite in the early exponential growth
phase and to grow at a broad range of temperatures (4-25°C). Its arsenite oxidase was constitutively expressed and
functioned over a broad temperature range.

Conclusions: The diversity of arsenite oxidisers does not significantly differ from two subsamples of a microbial
biofilm that vary in arsenite concentrations. GM1 is the first psychrotolerant arsenite oxidiser to be isolated with the
ability to grow below 10°C. This ability to grow at low temperatures could be harnessed for arsenic bioremediation
in moderate to cold climates.

Background
Arsenic’s toxic and medicinal properties have been
appreciated for more than two millennia [1]. Its two
soluble inorganic forms, arsenite (+3) and arsenate (+5),
entering drinking water from natural sources, have
caused poisoning in Taiwan, Chile, Argentina, Bangla-
desh and West Bengal, and most recently arsenicosis
(arsenic poisoning) has been detected in people from
Cambodia, Vietnam, Nepal, China, Inner Mongolia,

Bolivia and Mexico [2,3]. In addition, arsenic contami-
nation due to anthropogenic activity (e.g. mining) is
increasing in importance in parts of the USA, Canada,
Australia, Argentina and Mexico [4]. Although arsenic is
toxic to most organisms, some prokaryotes have evolved
mechanisms to gain energy by either oxidising or redu-
cing it [5,6].
Prokaryotic arsenic metabolism has been detected in

hydrothermal and temperate environments and has been
shown to be involved in the redox cycling of arsenic
[7-10]. The arsenite-oxidising bacteria isolated so far are
phylogenetically diverse. The oxidation of arsenite may
yield useable energy or may merely form part of a
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detoxification process [6]. To date, all aerobic arsenite oxi-
dation involves the arsenite oxidase that contains two het-
erologous subunits: AroA (also known as AoxB) and AroB
(also known as AoxA) [6]. AroA is the large catalytic sub-
unit that contains the molybdenum cofactor and a 3Fe-4S
cluster and AroB contains a Rieske 2Fe-2S cluster [6].
Although arsenic metabolism has been detected in

both moderate and high-temperature environments, and
mesophilic and thermophilic arsenite oxidisers have
been isolated, no arsenic metabolism (either dissimila-
tory arsenate reduction or arsenite oxidation) has ever
been detected in cold environments (i.e. < 10°C). One
such environment with high concentrations of arsenic is
the Giant Mine, one of Canada’s oldest and largest gold
mines. It is located a few kilometres north of Yellow-
knife, Northwest Territories, 62° north of the equator
and 512 kilometres south of the Arctic Circle. Gold was
produced from 1948 to 1999 by roasting arsenopyrite
(FeAsS)-bearing ore. The mine now contains approxi-
mately 300,000 tonnes of arsenic trioxide, stored in
underground chambers [11]. Temperatures in the
underground stopes range from 4°C to 10°C [11].
Here we report the detection, isolation and characteri-

sation of an aerobic psychrotolerant arsenite-oxidising
bacterium from a subterranean biofilm in the Giant
Mine. Unlike other characterised arsenite oxidisers, this
organism is capable of growing below 10°C and is the
first heterotrophic organism to oxidise arsenite in the
early exponential phase of growth. We also compare the
diversity of arsenite oxidisers in two subsamples of the
biofilm that vary in arsenite concentrations.

Results and Discussion
The Giant Mine has a long history of arsenic contamina-
tion and dissolution of stored arsenic trioxide by

infiltrating groundwaters has increased arsenic concen-
trations at this site from a few to 50 mM. Biofilms have
formed at many places where water seeps into the under-
ground excavations [11]. One such biofilm (Figure 1a)
was located growing in an abandoned stope below see-
page from a diamond drill hole approximately 152 m
below the arsenic trioxide chambers (230 m below land
surface) (temperature at each time of sampling was ca. 4°
C). Water taken from the top of the biofilm in 2006 con-
tained 14.01 mM total soluble arsenic and 2.56 mM
arsenite. Samples taken in 2007 from the top and bottom
of the biofilm contained 9.57 mM total soluble arsenic
and 9.22 mM arsenite (top) and 9.16 mM total soluble
arsenic and 6.01 mM arsenite (bottom). The concentra-
tion of arsenite in the 2006 sample was substantially
lower than that of the equivalent top sample from 2007.
The reason for this was probably microbial arsenite oxi-
dation during storage as the liquid was not extracted
from the 2006 sample until 18 days after collection
whereas the liquid was extracted immediately from the
2007 samples. SEM examination of the biofilm revealed
the presence of threadlike extracellular polymeric sub-
stances and distinct microorganisms (Figure 1b).
The arsenite-oxidising bacterium, designated GM1 was

isolated and found to be a Gram-negative, rod-shaped,
motile, heterotroph. Phylogenetic analysis of its full 16S
rRNA gene sequence (Figure 2) showed it to be a mem-
ber of the Betaproteobacteria related to Polaromonas
species. GM1 is closely related (98% sequence identity)
to Polaromonas sp. JS666, a cis-dichloroethene-degrad-
ing bacterium isolated from granular activated carbon
from Dortmund, Germany [12], and Polaromonas
napthalenivorans CJ2 a naphthalene-degrading bacter-
ium isolated from a coal-tar contaminated aquifer in
New York state, USA [13]. Using the CLASSIFIER tool

Figure 1 Microbial biofilm sampled from Giant Mine, Yellowknife, NWT, Canada. (A) Microbial biofilm. The mineral yukonite, a Ca-Fe
arsenate is shown by the reddish-brown colouration. (B) Scanning electron micrograph of biofilm showing extracellular polymeric substance
(EPS) which appear as threads and microbes (m).
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of the Ribosomal Database Project we classed GM1 as a
Polaromonas species [14] and the first capable of oxidis-
ing arsenite. Unlike its phylogenetic relatives GM1 was
unable to grow with either cis-dichloroethene or
naphthalene as sole carbon source (data not shown).
Growth of GM1 was tested at 4°C, 10°C and 20°C in a

minimal salts medium (MSM) with 0.04% (w/v) yeast
extract in the presence and absence of 4 mM arsenite as
described previously [15] (Note: GM1 was unable to
grow chemolithoautotrophically with arsenite). Under all
conditions arsenite was oxidised to arsenate and oxida-
tion occurred in the early exponential phase of growth
(Figure 3). The generation time of GM1 was shorter in
the absence of arsenite, and decreased with increasing
temperature (without arsenite at 4°C, 10°C and 20°C: 19
h, 16.5 h and 7 h, respectively; with arsenite at 4°C, 10°
C and 20°C: 21.5 h, 17.7 h and 8.5 h, respectively). GM1
did not grow above 25°C. To date, only one arsenite oxi-
diser has been demonstrated to grow below 20°C [16].
This organism, a chemolithoautotrophic arsenite oxidi-
ser designated M14, is a member of the Alphaproteo-
bacteria related to Sinorhizobium species. M14’s
temperature range was between 10°C and 37°C with an
optimum of 22°C [16]. GM1 is the first reported arsenite
oxidiser capable of growth below 10°C.
The arsenite-oxidising ability of GM1 was further con-

firmed by testing for arsenite oxidase (Aro) activity in
cells grown in the MSM with 4 mM arsenite and 0.04%
(w/v) yeast extract. Aro activity was measured at room

temperature (i.e. 24°C) in its optimal buffer, 50 mM 2-
(N-Morpholino)ethanesulfonic acid (MES) (pH 5.5)
(data not shown). Aro activity was higher when GM1
was grown at 10°C (0.334 U/mg) compared with growth
at 4°C (0.247 U/mg) and 20°C (0.219 U/mg) which were
comparable. In growth experiments although all the
arsenite is oxidised to arsenate in the early exponential
growth phase the highest Aro activity was observed in
the stationary phase of growth (i.e. 0.334 U/mg com-
pared with 0.236 U/mg at early exponential phase).
In most cases, arsenite is required in the growth med-

ium for arsenite oxidase gene expression [6]. There are
two exceptions, Thiomonas sp. str. 3As and Agrobacter-
ium tumefaciens str. 5A, where the arsenite oxidase is
expressed when the organisms are grown in the absence
of arsenite but in the latter the expression does not
occur until stationary phase [17,18]. In GM1 arsenite
oxidase expression is also constitutive when grown in
the absence of arsenite [i.e. in the MSM with 0.04% (w/
v) yeast extract] with 0.367 U/mg observed in late expo-
nential phase and activity also detected in early expo-
nential phase (0.13 U/mg). Taken together this
information suggests that there are at least two modes
of regulating the expression of the aro genes in GM1,
possibly a two-component signal transduction system
and quorum sensing. Because of the broad temperature
range for growth of GM1, arsenite oxidase activity was
determined at a variety of temperatures (Figure 4).
Activity occurred over a broad temperature range
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Figure 2 16S rRNA phylogenetic tree of arsenite-oxidising strain GM1 and published Polaromonas species. GenBank accession numbers
are in parentheses. Significant bootstrap values (per 100 trials) are shown. The tree is rooted with the 16S rRNA gene sequence of Alcaligenes
faecalis (AY027506) (not shown).
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reaching a maximum at temperatures well above the
optimum for growth (i.e. between 40-50°C).
The partial aroA gene sequence of GM1 was found to

be identical to that of the partial aroA of the putative
arsenite oxidiser Limnobacter sp. 83, another member
of the Betaproteobacteria [8] but in a different family. No
homologues of aroA were found in the genome
sequences of GM1’s closest relatives, Polaromonas
naphthalenivorans CJ2 and Polaromonas sp. JS666; GM1
is thus clearly distinct from the other Polaromonas spp.
To compare the arsenite oxidisers in the top (9.22

mM arsenite) and bottom (6.01 mM arsenite) subsam-
ples from the 2007 biofilm, two aroA gene libraries
were constructed using a recently developed method
[7]. The use of aroA-specific primers has been shown
to be a useful approach for detecting and identifying
arsenite oxidisers in environmental samples [7-10,19].
Phylogenetic analysis of 100 AroA-like sequences (Fig-
ure 5), from 50 top (designated TOP) and 50 bottom
(designated BOT) clones, revealed the diversity of
arsenite-oxidising bacteria in the two subsamples. The
corresponding protein sequences were compared with
known and putative AroA sequences and with the
sequence obtained from GM1. Eighteen different
AroA-like sequences were obtained from the TOP
library and ten from BOT; only four were present in
both. All but one of the sequences clustered within the
Betaproteobacteria; the exception, BOT10, clustered
within the Agrobacterium/Rhizobium branch of the
Alphaproteobacteria. The TOP8 sequence is closely
related (98.7% sequence identity) to the AroA homolo-
gue in Rhodoferax ferrireducens. Apart from BOT10
the AroA-like sequences clustered into three distinct
clades (A, B and C), none of which is close to any
AroA sequences from known arsenite oxidisers. The
BOT7 sequence (clade C) was identical to the AroA
sequence of GM1, so the other sequences in clade C
may also come from Polaromonas species. The affi-
nities of the organisms whose AroA sequences lie in
clades A and B are not known.
Rarefaction curves (Figure 6) of different DNA

sequence profiles suggest that the TOP library has higher
sequence richness (i.e. more distinct sequences) than the
BOT library. Curve saturation was not observed for
either library, suggesting that not all of the aroA-like
genes present had been detected. A separate rarefaction
analysis was performed on the operational taxonomic
units (OTUs), where sequences were clustered with
BLASTclust based on a 99% identity threshold. Both
OTU curves come close to saturation, approaching simi-
lar richness asymptotes; aroA-like OTU richness is
similar in TOP and BOT (BOT appears to be slightly
more diverse, but the 95% confidence intervals showed
that there was no significant difference). While 50
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Figure 3 Growth curves of GM1 grown at 4°C, 10°C and 20°C
in the Minimal Salts Medium (MSM) with 0.04% (w/v) yeast
extract. With 4 mM arsenite, closed circle; without arsenite, open
circle; arsenite concentration, closed square. Error bars are the
standard deviation of multiple experiments.

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80

Temperature (°C)

S
pe

ci
fic

 a
ct

iv
ity

 (
U

/m
g)

Figure 4 Specific activity of GM1 arsenite oxidase as a function
of temperature. Error bars are the standard deviation of multiple
assays.
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clones may not have yielded the full sequence richness
of either library, continued sampling would have been
unlikely to reveal significant numbers of additional
OTUs.
With almost all sequences represented by only a single

clone (Figure 5) sequence diversity (evenness) is inevita-
bly high in both subsamples. Simpson’s index [20] does

not differ between them (TOP: D = 0.78; BOT: D =
0.82). The two subsamples do, however, differ in com-
position. They are dominated by clones from different
clades: TOP by clades B and C; BOT by A and B (Table
1: c2 = 16.17, 2 d.f. P < .001). The difference reflects the
numbers of clones from the three clades, rather than
the distribution of the sequences.
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Conclusions
In this report we provide the first evidence for bacterial
arsenite oxidation below 10°C. The sample site, the Giant
Mine, is an extreme environment with arsenic concentra-
tions in excess of 50 mM in the underground waters [21].
In this study we have compared the diversity of arsenite
oxidisers in two different subsamples and found that
although the composition of arsenite-oxidising commu-
nities differs, the diversity does not. The isolated
arsenite-oxidising bacterium GM1 was able to grow at
low temperatures (< 10°C); its arsenite oxidase was con-
stitutively expressed and displayed broad thermolability.

Methods
Sample collection and analyses
Samples were collected from Giant Mine, north of Yel-
lowknife, Northwest Territories, Canada. The microbial
biofilm was located growing on a wall in an abandoned
stope below the arsenic trioxide storage chambers where
liquid was seeping from a diamond drill hole. The first
sampling of the biofilm was done in July 2006 and
involved collecting some of the biofilm itself, coexisting
seepage water, and mineral precipitates from near the
top of the biofilm. The biofilm was re-sampled in May
2007 using the same sampling method as in 2006 but
this time two samples were collected: one at the top
near the seepage point and another near the bottom. All
samples were kept at 4°C at all times until microbial or
chemical analyses could be performed.

The 2006 biofilm sample was used for mineral charac-
terisation. Mineral precipitates were characterised using
beamline X26A at the National Synchrotron Light
Source. MicroXANES (at the arsenic K edge) and
microXRD followed methods similar to those described
previously [22]. The XANES spectra collected on thin
layers on sample powder provided clear indication of
the presence of both arsenite and arsenate, and a linear
combination fit, using scorodite (AsV) and schneider-
hohnite (AsIII) as model compounds, estimated the rela-
tive proportions at 57% arsenate and 43% arsenite.
Synchotron-based microXRD of the biofilm showed
clear evidence of microcrystalline yukonite, a Ca-Fe
arsenate [Ca7Fe(AsO4)9O10·24.3H2O] [22] (see reddish-
brown colouration in Figure 1a), gypsum and an arsenite
mineral [either claudetite (As2O3) or manganarsite
(Mn3As2O4(OH)4)].

Arsenic analyses
In 2006 the liquid from the biofilm was extracted 18
days after collection whereas in 2007 the liquid was
extracted immediately after collection. The liquid was
extracted using a syringe with a 0.22-μm filter. Concen-
trations of total arsenic and arsenite were determined by
hydride generation atomic-absorption spectrometry
(HG-AAS) using a Perkin Elmer - Analyst 300.
Cultures were analysed for total arsenic and arsenite

using a JY Ultima 2C ICP-OES using the methods
described previously [23-25].

Scanning electron microscopy
Samples from the top and bottom of the 2007 microbial
biofilm were examined using a Jeol JSM-6480LV high-per-
formance, variable pressure analytical scanning electron
microscope (SEM) operating in low-vacuum mode using
7-11 kV accelerating voltage and a spot size of 29 nm.
Prior to examination, samples were mounted on 12.5-mm
pin stubs with sticky carbon discs, freeze-dried in liquid
nitrogen using a MODULO 4 k instrument for 30 min-
utes, and gold coated using a Polaron E5000 instrument.

Enrichment and isolation
In 2006 samples of the microbial biofilm (0.5 g) were
inoculated into the MSM [15] containing 4 mM arsenite
and incubated at 4°C, 10°C and 20°C. The enrichments
were incubated until all the arsenite was oxidised. The
biofilm enrichments took two days to oxidise the 4 mM
arsenite irrespective of temperature (data not shown).
The enrichments were subcultured three times in the
MSM containing 4 mM arsenite before they were seri-
ally diluted and plated onto MSM containing 4 mM
arsenite and 1.5% (w/v) purified agar (Oxoid). Individual
colonies were purified and tested for both chemo-
lithoautotrophic [containing 0.05% (w/v) NaHCO3 as
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Figure 6 Rarerefaction curves for DNA sequences from aroA-
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Table 1 The number of clones from TOP and BOT that
clustered within clades A, B and C

Clade TOP BOT Total

A (%) 4 (19%) 17 (81%) 21

B (%) 30 (53%) 27 (47%) 57

C (%) 15 (83%) 3 (17%) 18
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carbon source] and heterotrophic (containing 0.04%
(w/v) yeast extract) growth with arsenite [15].

Growth of GM1
Growth experiments of GM1 were conducted in MSM
containing 0.04% (w/v) yeast extract in the presence and
absence of 4 mM arsenite at 4°C, 10°C and 20°C with
shaking at 130 rpm in batch cultures. Experiments were
commenced with a 5% (v/v) inoculum of late exponential
phase cells grown in the same medium at the same tem-
perature. At regular time intervals samples were taken to
measure optical density and pH, and for arsenic analyses.
Samples for arsenic analyses were centrifuged in a bench-
top centrifuge and the supernatant stored at -20°C until
required. All growth experiments were performed on at
least two separate occasions with two to three replicates.

Arsenite oxidase assays
GM1 cultures were harvested and crude cell extracts
produced by passing them through a French pressure
cell at 14 kPSI and arsenite oxidase activity determined
by measuring the reduction of the artificial electron
acceptor 2,6-dichlorophenolindophenol [15]. All assays
were performed in the optimum buffer for the enzyme,
50 mM MES buffer (pH 5.5). Reactions were incubated
at the specific temperature with a Cary Dual Cell Peltier
for 5 mins prior to the addition of arsenite.

16S rRNA gene sequence determination and phylogenetic
analyses
Genomic DNA was extracted using the Wizard® Geno-
mic DNA purification kit (Promega). 16S rDNA was
amplified by PCR using the 27f and 1525r primers
described previously [26], with Phusion high fidelity
DNA polymerase (New England Biolabs) under the fol-
lowing conditions: 98°C for 30 s, followed by 40 cycles
of 98°C for 30 s, 55°C for 30 s and 72°C for 90 s with a
final extension at 72°C for 10 min. Both strands of the
PCR product were sequenced at the Wolfson Institute
for Biomedical Research (WIBR) (UCL) using the pri-
mers 27f, 342r, 357f, 518r, 530f, 1100r, 1114f, 1392r,
1406f, 1492r and 1525r [26]. [GM1 16S rRNA gene
sequence GenBank accession number: EU106605].

Amplification of aroA, library construction and
sequencing
Genomic DNA was extracted from GM1 using the
Wizard® Genomic DNA purification kit (Promega) and
from the top and bottom biofilm samples using the
PowerSoil DNA isolation kit (MoBio Laboratories). The
degenerate oligonucleotides used to amplify a portion of
the aroA gene were primer set #2 as described pre-
viously [7] using Phusion high fidelity DNA polymerase
(New England Biolabs). The aroA PCR products from

GM1 and the two biofilm samples were cloned into
pBluescript II KS+ (Stratagene). Both strands of the
cloned GM1 aroA gene and 50 individual aroA clones
from each library were sequenced using the T7 and T3
promoter primers at the WIBR (UCL). Database
searches were performed using BLASTP [27]. [GM1
partial aroA sequence GenBank accession number:
EU106602. The TOP and BOT aroA library sequences
GenBank accession numbers: FJ151018-FJ151051].

Phylogenetic analysis
Sequences were aligned with CLUSTALX 2.0 [28] using
default settings and were manually edited. Phylogenetic
analyses were performed with PHYLIP 3.67 [29] and
trees constructed and edited with TREEVIEW [30].
Nucleotide and protein distance analyses were performed
with the F84 and Jones-Taylor-Thornton computations,
respectively and the trees constructed using the neigh-
bour-joining method using a boostrap value of 100.
Accession numbers of reference sequences used in

AroA phylogenetic analysis are given in parentheses fol-
lowing the organism name: Achromobacter sp. str. SY8
(ABP63660), Aeropynum pernix (NP_148692), Agrobac-
terium tumefaciens str. 5A (ABB51928), ‘Alcaligenes fae-
calis’ (AAQ19838), Burkholderia multivorans
(YP_001585661), Chlorobium limicola (ZP_00512468),
Chlorobium phaeobacteroides (ZP_00530522), Chloro-
flexus aurantiacus (YP_001634827), Herminiimonas
arsenicoxydans (YP_001098817), Nitrobacter hambur-
gensis (YP_571843), NT-26 (AAR05656), Ochrobacterum
tritici (ACK38267), Pseudomonas sp. str. TS44
(ACB05943), Pyrobaculum calidifontis (YP_001056256),
Rhodoferax ferrireducens (YP_524325), Roseovarius sp.
217 (ZP_01034989), Thermus thermophilus str. HB8
(YP_145366), Thiomonas sp. 3As (CAM58792), Sulfolo-
bus tokodaii str. 7 (NP_378391) and Xanthobacter auto-
trophicus Py2 (YP_001418831).

Rarefaction curves and Chi-squared
Rarefaction calculations were performed to compare the
DNA sequence diversity of the TOP and BOT libraries,
and to assess whether full coverage of sequence diversity
was obtained. This was performed with the program
ANALYTICAL RAREFACTION 1.3 http://www.uga.
edu/~strata/software/index.html which uses the rarefac-
tion calculations given by Hulbert [31] and Tipper [32].
Sequences were clustered with BLASTclust http://
toolkit.tuebingen.mpg.de/blastclust# based on a 99%
identity threshold over 100% of the sequence length to
create operating taxonomic units.
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