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Accurate and automatic classification of the speech imagery electroencephalography

(EEG) signals from a Brain-Computer Interface (BCI) system is highly demanded in clinical

diagnosis. The key factor in designing an automatic classification system is to extract

essential features from the original input; though many methods have achieved great

success in this domain, they may fail to process the multi-scale representations from

different receptive fields and thus hinder the model from achieving a higher performance.

To address this challenge, in this paper, we propose a novel dynamic multi-scale

network to achieve the EEG signal classification. The whole classification network is

based on ResNet, and the input signal first encodes the features by the Short-time

Fourier Transform (STFT); then, to further improve the multi-scale feature extraction

ability, we incorporate a dynamic multi-scale (DMS) layer, which allows the network

to learn multi-scale features from different receptive fields at a more granular level. To

validate the effectiveness of our designed network, we conduct extensive experiments

on public dataset III of BCI competition II, and the experimental results demonstrate

that our proposed dynamic multi-scale network could achieve promising classification

performance in this task.

Keywords: brain-computer interface, electroencephalography, multi-scale, Fourier transform, dynamic learning

1. INTRODUCTION

The brain sends brainwaves (Shahid et al., 2010) that enable human beings to think and act. During
this process, people’s motion intention can be captured by collecting EEG signals [called motor
imagery (MI) EEG] from the cerebral cortex (Schlögl et al., 2005). To make MI possible, the BCI
system creates a pathway between the brain and external devices (Zich et al., 2015) and converts
the EEG signals into electrical signals to control peripheral devices, such as an electrically propelled
wheelchair. For people suffering from physical inconveniences caused by paralysis or stroke, BCI
system can help them act autonomously; this can not only help patients achieve self-care but also
be a means of rehabilitation therapy (Schlögl et al., 2005; Padfield et al., 2019).

The EEG-based BCI system is divided into BCI based on steady-state visual evoked potential
(SSVEP) and that based on sensorimotor rhythm (SMR) according to the type of EEG signals,
and the latter is related to MI (Schlögl et al., 2005; Zich et al., 2015). The imagination of body
movements affects the rhythmic activity recorded in the sensorimotor cortex. For example, when
subjects are imagining movement to the left, the amplitude of mu and beta rhythm decreases
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on the right side of the sensorimotor areas of the brain (Shahid
et al., 2010). These increases and decreases in sensorimotor
rhythms are called event-related synchronization (ERS) and
event-related desynchronization (ERD) respectively (Shahid
et al., 2010; Padfield et al., 2019). By analyzing the characteristics
of these signals and rhythms, these features can be converted into
output instructions for the control of BCI system.

Focusing on the state-of-the-art MI-based EEG systems,
most of them consist of two parts: feature extraction and
classification (Dose et al., 2018; Padfield et al., 2019). Some
systems divide the first part into feature extraction and feature
selection (Bashivan et al., 2015; Schirrmeister et al., 2017; Tang
et al., 2017). In the feature extraction part, informative and non-
redundant features are extracted from the original EEG data.
Useful features are then sent to the feature selection step to obtain
less computation complexity and higher classification accuracy.
Finally, the classification step matches the characteristics of the
EEG signals to different categories.

For the feature extraction part, the most basic techniques
are divided into time-domain, frequency-domain, and spatial
domain analysis (Padfield et al., 2019). As a typical time-domain
approach, autoregressive (AR) modeling used the AR coefficients
or spectrum as signal features (Krusienski et al., 2006). Though it
has been improved into vector autoregressive (VAR) modeling,
this method was not always effective when encountering an
unstable sequence (Haboub et al., 2020). As for the frequency-
domain analysis, the Fast Fourier transform (FFT) and Welch’s
method were both widely used in this field (Oikonomou et al.,
2017; Li et al., 2020). Compared to FFT, Welch’s method reduced
the noise information of the original data but offered lower
frequency resolution. Besides, time-frequency analysis methods
such as the Short-time Fourier Transform (STFT), the discrete
wavelet transform (DWT), and the flexible analytic wavelet
transform (FAWT) were more powerful because they related
the spectral information to the temporal domain and derived
dynamic features, but they also required manual screening at
the same time (Kumar et al., 2014; Tabar and Halici, 2016;
You et al., 2020). In terms of spatial domain analysis, common
spatial pattern (CSP) was the most common method thar uses
spatial filters to transform EEG signals into a new space to
precisely extract useful information from different frequency
bands. However, CSP was time consuming since the optimal
frequency bandwas subject specific and had to process redundant
data to find the final solution (Lotte and Guan, 2010; Yang et al.,
2015; Wankar et al., 2017).

Classification methods such as support vector machine
(SVM), linear discriminant analysis (LDA), Bayesian classifiers,
k-nearest neighbors (k-NN), and regression trees were widely
used in recent literature (Kumar et al., 2017; Oikonomou
et al., 2017). Among these techniques, the LDA and the SVM
approaches both had the problem of overfitting, and k-NN was
memory consuming since it had to process all the datasets
at once. Beyond that, logistic regression outperformed SVM,
k-NN, and artificial neural network (ANNs) approaches in
classification accuracy.

In addition to the classification techniques mentioned above,
computational intelligence methods, including the recurrent

neural network (RNN) and convolutional neural network
(CNN), were also widely used (Cheng et al., 2018; Zhou et al.,
2018; Tang et al., 2020). The performance of deep learning
methods was compared to traditional SVM and LDA classifiers,
and it was proven that neural networks can improve the
classification accuracy because they can automatically select
informative features and constantly adjust parameters through
backpropagation (Yang et al., 2015). For example, Cheng et al.
performed an experiment to improve the classification accuracy
of stroke patients using deep neural networks (DNN). They
found that the features selected from sub-bands by DNN
outperformed traditional feature extraction methods, and the
DNN classifier also performed better than SVM (Cheng et al.,
2018). Except for basic CNN, a modified one-dimensional multi-
scaled CNN (1DMSCNN) was proposed by Tang to classify
the preprocessed EEG signals, and it proved to have a better
performance compared with algorithms, including CSP and long
short-term memory with Discrete Wavelet Transform (DWT-
LSTM) (Tang et al., 2020). To sum up, supervised learning
methods are much preferred compared to methods based on
unsupervised learning, and the latter ones are mainly used for
the feature selection part.

In recent years, networks like the CNN, RNN, stacked
autoencoders (SAE), deep belief networks (DBN), and VGGNet
(Visual Geometry Group) were widely used in MI EEG systems
(Schirrmeister et al., 2017; Tang et al., 2017; Li et al., 2020). These
neural networks can complete all the above-mentioned steps
because the network layers can extract feature maps from original
data and learn to classify according to training labels. As one of
the most popular networks in MI EEG systems, the CNN was
often combined with other techniques such as the WT and STFT
in practical experiments. For instance, (Li et al., 2020) segmented
the EEG data by time windows then employed FFT to transform
each time window to spectrum. By using the modified VGG
called mVGG, a complicated image containing time-frequency
features was generated, and its accuracy reached 88.62, 92.28, and
96.86% on three datasets-higher than that of the state-of-the-art
imaging methods (Li et al., 2020). In addition, Chaudhary et al.
introduced STFT and continuous wavelet transform (CWT) into
CNN and drew the conclusion that the CWT approach yields
better results than the other existing methods with accuracy score
of 99.35% (Chaudhary et al., 2019).

While those previous works have achieved satisfying
performance on the EEG classification task, they may be limited
to the ignorance of extracting the multi-scale features from
different receptive fields and resolutions, and those could be an
important factor in learning the contextual characteristic of the
EEG signal. To handle this problem, in this paper, we propose a
dynamic multi-scale network for the EEG signal classification.
The proposed method is mainly based on ResNet; before we
input the EEG signal to the network, we first encoded it by
STFT to obtain the feature representations and decrease the
influence of the noise. Moreover, to extract the multi-scale and
contextual characteristic from the input signal, a novel dynamic
multi-scale (DMS) layer was designed as one part of the network.
Finally, we conducted extensive experiments on public dataset
III of BCI competition II to validate the effectiveness of our
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FIGURE 1 | The experimental paradigm for each trial.

proposed method, and the experimental results demonstrate
that our method could achieve promising results compared with
other ones.

The rest of this paper is organized as follows. Section 2
describes the experimental data, the preprocessing procedure,
as well as the proposed network architecture. Section 3 then
introduces the evaluation metrics and presents the experiment
results of different channels and network architectures.
Finally, the overall conclusion of this paper is summarized in
section 4.

2. METHODOLOGY

2.1. Data Description
Public dataset III of BCI competition II is adopted to train the
MI BCI model. This dataset was collected from a 25-year-old
female subjects during a feedback session. This experiment is
constitutive of 280 trials in total, and each trial has a length of
9 s. As shown in Figure 1, the first 2 s of the experiment was
quiet. An acoustic stimulus and a cross “+,” which indicates the
beginning of the trial, was then displayed in the following 1s.
After that, at t = 3 s, an arrow (left or right, randomly) was shown
on the screen as a cue. At the same time, the subject was asked
to finish the motor imagery task according to the cue. The trial
data were collected by three EEG channels C3, Cz, and C4, which
were sampled with 128 Hz and filtered between 0.5 and 30 Hz.
The diagram of source EEG data is shown in Figure 2.

2.2. Network Architecture
The main backbone of our proposed network is based on ResNet,
which has proven its effectiveness inmany computer-vision tasks.

Given an input signal, we first used the STFT to gain the feature
representations of the input signal and achieving the goal of
noise reduction simultaneously. Furthermore, to better improve
the ability of learning multi-scale features of the network, we
incorporated a DMS layer after each residual block stage, which
enables the network to learn the multi-scale features from the
granular level. The overall structure of our designed network is
shown in Figure 3, and it is sequentially composed of a series
of convolution layers, max-pooling layers, residual blocks, and
DMS layers. Note that for learning more non-linear information
from input signals, the network uses the ReLU activation function
after each convolution layer, and we omit this unit in Figure 3 for
simplicity.We replace the original ResNet, which adopts average-
pooling as the next to last layer, with the max-pooling layer,
which can provide more salient representation and thus further
improve the classification performance of the network. Finally,
the extracted representations from the network pass through
a fully connected layer with the softmax activation function
to output the prediction probabilities of the two classes (left
or right). In the following subsections, we will give a detailed
description of the residual block, the data prepossessed by the
STFT, and the designed DMS layer.

2.2.1. Residual Block

Since the whole network architecture is based on ResNet and
the core unit of it is the residual block, we will in this
section first give a brief retrospect of the residual block. As
shown in Figure 4A, the input feature of the residual block
is denoted as x. The residual block uses skip connection to
reduce the influence of vanishing gradient problem of the
network. During the process, the residual function F(x) is
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FIGURE 2 | The original EEG signal data diagram. (A) C3. (B) Cz. (C) C4.

FIGURE 3 | The overview of our proposed dynamic multi-scale network.

learned by using the labeled data to train the weight layer as
shown below:

F(x) = F′(x)− x (1)

where the F
′
(x) is the desired underlying mapping and

the weight layer can be composed of any type of neural
network layer, including convolutional layers or fully
connected layers. Through setting the residual function
F(x) to zero, the help from residual blocks to skip certain
parts of the network can enable the network compose
of many different feature extracting layers that capture
different possible features of the data. The bottleneck
architecture, as shown in Figure 4B, aims to achieve the
function of controlling the dimension of feature map by
adding up two 1 × 1 convolution layers before and after the
weight layer.

2.3. Feature Encoding by STFT
Fourier Transform is a form of transforming the signal from the
time domain to the frequency domain. It is an important analysis
tool in the fields of acoustics, speech, telecommunications,
and signal processing. In our approach, before inputting the
signal into the network, we first encoded the signal by STFT.
We first give a detailed description of the Discrete Fourier
Transform (DFT), FFT, and STFT. DFT is a representation of
continuous Fourier Transform in discrete systems, and FFT is a
fast algorithm for efficiently realizing DFT. Supposing t(n) is a

finite length sequence of length N, then the N-point DFT of T(k)
is the following:

T(k) =

N−1∑

n=0

t(n)Wnk
N , k = 0, 1, . . .N − 1 (2)

Among which the rotation factorWN is defined as follows:

WN = e−j2π/N (3)

When t(n) is a complex sequence, directly calculating T(k)
according to the above formula based on a certain value of k
requires N complex multiplications and N − 1 complex numbers
addition. For all k values, a total of N2 complex multiplications
and N(N − 1) complex additions are thus required, which
requires a huge workload. However the rotation factor
WN = e−j2π/N has its symmetrical and periodic characteristics
as follows:

Wk
N = −W

k+N/2
N (4)

Wk
N = −W

k+N
N (5)

By applying these properties, FFT decomposes the long-sequence
DFT into smaller DFTs and uses these small DFT calculations
to replace large DFT calculations to achieve the purpose
of improving efficiency. Nevertheless, since DFT has higher
requirements for sampling the entire period of the signal where
non-integer sampling will cause analysis errors including spectral
leakage and fence effects, the STFT is applied to solve these
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FIGURE 4 | The structure of the residual block (A) and residual bottleneck (B).

problems. STFT defines a time and frequency distribution
class, which specifies the complex amplitude of any signal
changing with time and frequency to get more accurate spectrum
information. It uses a sliding window mechanism as well to set
the window size and step size, allowing the window slide on
the time domain signal and calculating the Fourier Transform
of each window separately to form the frequency domain signal
corresponding to different time windows, which is expressed as
follows:

sN(n) = s(n)g(n−mR) (6)

SSTFT(n,F) =

N−1∑

n=0

sN(n)e
−jFn =

N−1∑

n=0

s(n)g(n−mR)e−jFn (7)

amongwhich, the signal sequence at time n is defined as s(n). And
the g(n−mR) represents the selected window of size n−mR, along
with the time axis m and the hop size of R. The frequency axis is
defined as F . After applying STFT to the input signal, the feature
representation of the data is shown as Figure 5.

2.4. Dynamic Multi-Scale Layer
The multi-scale features describe the contextual characteristics of
the input from different scales, which are of great importance to
the vision classification tasks. However, due to the fixed sizes of
filters, the classical ResNet fails to learn the multi-scale features
from different receptive fields, which hinders the model from
achieving a better classification performance. To address this
challenge, in this section, we designed a novel dynamic multi-
scale (DMS) layer that could extract the multi-scale features
more efficiently, and the structure of the DMS layer is shown
in Figure 6. Given an input feature F, a channel split function
f (·) is utilized to divide the feature map to four equal numbers
of sub-maps, and each of them could be denoted as si where
i ∈ {1, 2, 3, 4}. Then, to learn multi-scale features from the

granular level, a dynamic multi-scale learning module Mi is
designed as shown in the right part of Figure 6, which uses
three dynamic sizes of 2D convolutions to extract the multi-
scale features from different receptive fields. To balance the
computational complexities and the final model performance,
three sizes of Mi are adopted, d × d, d

2 ×
d
2 , and

d
4 ×

d
4 ,

respectively, and here d represents the dimension of feature
map si. After passing through those three convolution layers,
the output features are then concatenated as one. Furthermore,
to reduce the numbers of the feature maps, a convolution layer
with the size of 1 × 1 is utilized to output the final feature map
zi. Specifically, inspired by the previous work (Gao et al., 2019),
we add {z1, z2, z3} to {s2, s3, s4} for combining more information
from different scales. After the processing from each Mi, the
learned multi-scale feature map zi is gained, and the final output
feature map of the DMS layer is obtained by fusing those
four sub-maps z1, z2, z3, and z4 with channel shuffling. Since
different feature map resolutions can contain discriminative
information, and the DMS layer aims to make the network more
conducive for learning multi-scale and contextual features, we
located the DMS layer after each stage’s last residual block for
obtaining the multi-scale features more efficiently. The algorithm
of dynamic multi-scale feature learning process is illustrated
in Algorithm 1.

2.5. Implementation Details
The experiment runs on Nvidia GTX1080 GPU and is
implemented by Keras 2.2.5. The categorical cross-entropy loss
function is adopted to train the CNN model, which assesses
the difference between the real label and the predicted label. As
for the network optimizer, the Adam optimizer was chosen to
adaptively optimize the learning rate based on the initial setting
of 0.0003. Except for that, we also use the callback function
ReduceLROnPlateau to monitor the decline in learning rate
according to validation accuracy, and the lower boundary of
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FIGURE 5 | Data diagram after STFT processing.

learning rate was then set to 0.0001 and the patience set to
10 epochs. The training set and the validation set were divided
according to the scale of 0.3, and the former was trained with
a batch size of 8 for each epoch. By using softmax as our
classifier, the checkpoint with the best accuracy was selected as
the final model.

3. EXPERIMENTAL RESULTS

3.1. Evaluation Metrics
For evaluation of experimental results, the commonly used
accuracy metric was adopted. In this experiment, accuracy was
evaluated by judging the classification results of two classes of the
model, and the metric is defined as below:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP (True Positives) refers to the number of the EEG
records that indicate left and identified as left; TN (True

Negatives) denotes the number of the EEG records that are
left and identified as right; FP (False Positives) is the number
of the EEG records that are right but are predicted as left;
and FN (False Negatives) refers to the number of the EEG
records that are right but are predicted as right. By using
this metric, the performance of the proposed model could be
evaluated quantitatively.

3.2. Performance of Different Channels and
Window Functions
In this section, an experiment of different channel combinations
and STFTwindows was conducted to compare the corresponding
performance. The selected channel combinations included 2-
channel (C3 and C4) and 3-channel (C3, Cz, and C4). STFT
windows are adopted to reduce the leakage of the spectrum
during signal interception. There are some widely used STFT
window functions from which we adopted boxcar, triang,
hamming, hann, and bartlett in this experiment.
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FIGURE 6 | The architecture of the DMS layer. The F is the input feature map from the previous layer, and s1, s2, s3, ands4 are the split feature maps from F, Mi

denotes the dynamic multi-scale module, which consists of three 2D convolutions with different sizes (d× d, d
2 ×

d
2 ,

d
4 ×

d
4 ), where d is the dimension of feature si,

and zi is the fused output features of Mi, and FC represents the final output of the DMS layer.

The comparison result is shown in Table 1. It demonstrates
that the best performance is achieved on the combination
of 2-channel and hann window function with the accuracy
of 90.47%, and the hardest classification is 3-channel boxcar
function with the accuracy of 65.48%. We also notice that the
overall performance of 2-channel input data is relatively better,
which means that the EEG signals under the Cz region contain
less informative characteristics but more noise. Meanwhile, the
hann window achieves higher accuracy than other STFT window
functions, which means this default Fourier function indeed
has the best performance. Overall, the accuracy performance of
different window combinations of 2-channel is above 77%, which
indicates that the proposed network architecture is relatively
effective in this classification scenario.

3.3. Comparison With Different Sampling
Intervals
As the experimental paradigm shown in Figure 1, the cue of the
arrow appears after 3 s, and the motor imagery begins directly
after. The informative EEG signals from 3 to 9 s are therefore
adopted as input data in this paper. However, the signals of
the whole period of 6 s contains unrelated noise. Meanwhile,
considering the delay between the time when the subject receives
the cue and when she starts to imagine, the sliding window
of the time duration is introduced to bring as little irrelevant
noise as possible into this experiment. As shown in Table 2, the
durations of each 3 s after the first 3 s are selected as input data,
and the comparison results show that the classification accuracy

between the period of 3–6 s is the best. Correspondingly, the
accuracy based on the 5–8 s section performs the worst, which
suggests that there is indeed a short delay before the subject
conduct the motor imagery after receiving the cue. Comparing
the overall results of different time durations, the accuracy
decreases together with time interval is all above 78%, and it can
thus be considered that motion imagination mainly occurs in a
short period after receiving the cue. According to this part of
the experiment, we find that the classification accuracy is indeed
related to the time interval sliding window. However, due to the
differences of delay time in each subject, specific experiments and
analyses need to be conducted.

3.4. Comparison With Different
Combinations of Convolutions
Different combinations of convolutions in the DMS layer could
give various representations from different receptive fields. Thus,
in this section, we conduct the experiments to explore the
effectiveness of different combinations of convolutions. Since we
have adopted three sizes of convolutions in DMS layer, here we
denote Conv1, Conv2, and Conv3 as the convolution with the
sizes d×d, d2×

d
2 , and

d
4×

d
4 , respectively, where d is the dimension

of the input feature map from the previous layer. The detailed
comparison result is shown in Table 3, from the result we can see
that the best performance is gained by the combination of Conv1,
Conv2, and Conv3, simultaneously, which with the accuracy of
90.47%. Meanwhile, for single size of the convolution, the best
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Algorithm 1: The algorithm of dynamic multi-scale feature
learning

Input: F: Input Feature
Output: Fc: Final output feature map of DMS layer

1 functionMS(P):
2 Fd ← Conv2D(d, d)(P)

3 F d
2
← Conv2D( d2 ,

d
2 )(P)

4 F d
4
← Conv2D( d4 ,

d
4 )(P)

5 PF ← Concatenate(Fd, F d
2
, F d

4
)

6 PF ← Conv2D(1, 1)(PF)
7 return PF
8 end function

9 S = {s1, s2, s3, s4} ← f (F)
10 for each si ∈ S do
11 if si == s1 or s4 then
12 zi = MS(si)

13 else

14 zi = MS(add[zi−1, si])

15 endif

16 endfor

17 FC ← concatenate(z1, z2, z3, z4)
18 FC ← channel shuffle(FC);

TABLE 1 | The overall performance of different channel and

window combinations.

Method Accuracy (%)

boxcar + C3/C4 83.33

triang + C3/C4 89.28

hamming + C3/C4 86.90

hann + C3/C4 90.47

bartlett + C3/C4 77.38

boxcar + C3/Cz/C4 65.48

triang + C3/Cz/C4 70.24

hamming + C3/Cz/C4 67.86

hann + C3/Cz/C4 66.67

bartlett + C3/Cz/C4 77.35

TABLE 2 | The overall performance of different sampling intervals.

Duration (s) Accuracy (%)

3–6 90.47

3.5–6.5 86.90

4–7 84.52

4.5–7.5 79.76

5–8 78.57

result is achieved by Conv2, which indicates that the medium size
of the convolution can be crucial in this classification task.

TABLE 3 | The overall performance of different combinations of convolutions.

Method Accuracy (%)

Conv1 86.97

Conv2 88.21

Conv3 87.32

Conv1 + Conv2 89.73

Conv1 + Conv3 89.22

Conv2 + Conv3 89.65

Conv1 + Conv2 + Conv3 90.47

TABLE 4 | The overall performance of different methods.

Method Accuracy (%)

PSD+LDA 65.60

Discriminative area selection+FHNN 83.10

STFT based features+ResNet 85.09

STFT based features+Res2Net 89.73

DWT and AR model+LDA 90.00

Wavelet based features+FSVM 87.86

Wavelet based features+SVM 89.83

Wavelet based features+CNN 84.09

Multiple auto correlation+LVQ 90.00

Morlet wavelet+Bayes quadratic 89.29

Higher order features+LDA 89.29

Higher order features+Neural network 90.00

STFT based features+CNN 80.95

Our Proposed Method 90.47

3.5. The Effectiveness of Different Split
Channel Numbers
In our proposed method, different split numbers of the
feature channels could provide various influences on the final
result. Therefore, in this section, we implement 1 to 6 split-
channel numbers to explore its effects on the final classification
performance. As illustrated in Table 5, with the split-channel
number increasing, the performance of the classification model
is improved. Specifically, when the split-channel number is
more than 4, the boosted performance is not as comparative
as the previous ones. Thus, considering to balance the model
performance and complexities, we adopt the split channel
number of 4 as our final experimental setting.

3.6. Compare With Other Methods
To further evaluate the effectiveness of our proposed network,
we compared our method with other previous works,
including STFT based features+ResNet (He et al., 2016),
STFT based features+CNN (Li et al., 2014), STFT based
features+Res2Net (Gao et al., 2019), PSD+LDA (Solhjoo
and Moradi, 2004), Discriminative area selection+FHN
(Hsu, 2015), DWT and AR model+LDA (Xu et al., 2009),
Wavelet based features+FSVM/SVM/CMM (Xu et al., 2019),
Multiple auto correlation+LVQ (Wang et al., 2014), Morlet
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TABLE 5 | The overall performance of different split channel numbers.

Split Channel Numbers Accuracy (%)

Ch-1 87.61

Ch-2 88.53

Ch-3 89.79

Ch-4 90.47

Ch-5 90.50

Ch-6 90.51

wavelet+Bayes quadratic (Lemm et al., 2004), Higher order
features+LDA/Neural network (Zhou et al., 2008). Table 4

shows the comparison results of networks above. According to
the classification accuracy demonstrated in Table 4, it can be
observed that the proposed network performs better in this EEG
classification task than the other two ones. The best performance
of our method can achieve the accuracy of 90.47% since we
adopt STFT for preprocessing and incorporate the DMS layer to
our network. In conclusion, it is proved that with the adoption
of DMS layer, our proposed method can achieve a promising
performance compared to other common networks.

4. CONCLUSION

In this paper, we propose a dynamic multi-scale network
for the motor imagery EEG signals classification, which

could help patients achieve self-care and rehabilitation therapy
potentially. The main backbone of the proposed network is
based on ResNet, and, given input from the network, we
first encoded the feature representations by STFT; to further
learn the multi-scale features from a more granular level, the
proposed network incorporates a dynamic multi-scale layer
that enables us to learn more contextual information from
different receptive fields. To evaluate the performance of our
proposed method, we conducted extensive experiments on
public dataset III of BCI competition II. The experimental
results demonstrate that our proposed method could achieve
a competitive result, which further proves the effectiveness
of the designed network. In future work, we will focus on
exploring the combination of pre-defined features with the deep
convolution features.
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