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BACKGROUND
Machine-learning techniques, widely referred to as artifi-
cial intelligence (AI), are supporting automation in several 
industries including healthcare, and in particular for this 
review article, in radiation therapy (RT). Techniques such 
as deep learning (DL), based on convolutional neural 
networks (CNNs), have found great success in some appli-
cations. This is aided by the relatively large volume of anno-
tated imaging data generated in clinical practice in RT, for 
example organ segmentations on computed tomography 
(CT) or magnetic resonance (MR) images. While much 
remains at the research level, some applications, such as 
automatic segmentation and automatic planning, have 
begun seeing clinical use. Additionally, new developments 
in MR-guided RT (MRgRT) at MR-linacs have increased the 
frequency of online plan adaptation, which brings a greater 
need for automation and speed, as well as some specific 
tasks such as converting MR images into pseudo-CT 
images. Some machine-learning applications in RT have 
even preceded the recent wave of enthusiasm for AI, such as 
decision-making and response assessment using AI applied 
to medical imaging (radiomics), and have contributed to 
a culture of collecting datasets in RT. Such data collection 

brings related challenges of generalizibility of AI methods, 
privacy an ethical concerns. For automated medical image 
analysis, both machine learning (e.g., radiomics) and deep 
learning (e.g., deep radiomics) will be impacted by the 
interobserver variability in the definition of the Regions 
of Interest (ROIs) from which features are extracted from. 
Nevertheless, the published literature strongly supports the 
use of semi-automated methods for the contouring of ROIs. 
Recent applications in deep learning have bypassed the 
problem by avoiding ROIs delinations and using bounding 
boxes around a selected part of the image, or even using 
as input the whole 3D image. However, this approach may 
open issues such as: risk of overfitting, introduction of non-
relevant parts of the image as input (i.e., noise [background] 
vs signal), and higher computational costs. We strongly 
suggest, when possible, to benchmark the stability of the 
results against interobserver variability by collecting data 
with multiple operators or using publicly available datasets.

This review article will cover the current state of AI in clin-
ical practice and provide an overview of potential future 
applications and challenges. Figure  1 summarizes where 
AI may play a role in the RT workflow, whether based on 
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ABSTRACT

This review article visits the current state of artificial intelligence (AI) in radiotherapy clinical practice. We will discuss 
how AI has a place in the modern radiotherapy workflow at the level of automatic segmentation and planning, two 
applications which have seen real-work implementation. A special emphasis will be placed on the role AI can play in 
online adaptive radiotherapy, such as performed at MR-linacs, where online plan adaptation is a procedure which could 
benefit from automation to reduce on-couch time for patients. Pseudo-CT generation and AI for motion tracking will be 
introduced in the scope of online adaptive radiotherapy as well. We further discuss the use of AI for decision-making 
and response assessment, for example for personalized prescription and treatment selection, risk stratification for 
outcomes and toxicities, and AI for quantitative imaging and response assessment. Finally, the challenges of general-
izability and ethical aspects will be covered. With this, we provide a comprehensive overview of the current and future 
applications of AI in radiotherapy.
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cone beam computed tomography (CBCT) image guidance or 
MRgRT.

AI IN CURRENT RADIOTHERAPY WORKFLOWS
The most common application of AI in RT is volume of interest 
segmentation. For this task, the U-shaped convolutional neural 
network (U-net) has become the workhorse and consistently 
produces clinically acceptable results. The method has evolved 
from 2D segmentation to 3D and has seen the development of 
dedicated loss functions for model training, such as the Dice 
similarity coefficient (DSC) or focal loss.1 By now, state-of-the-art 
models come with self-configuration pipelines which determine 
which hyperparameters are optimal for a segmentation task.2 
AI auto-segmentation is a reality in several clinics, and multiple 
vendors now provide commercial solutions for CT images (see 
for example references3,4). Several clinical trials have been initi-
ated to explore auto-segmentation algorithms, e.g., for brain 
(NCT05093751) or lung lesion segmentation (NCT04164186, 
NCT05775068). Advantages of automatic segmentation include 
the reduction of variability among observers5 and more impor-
tantly time savings in clinical practice. Currently, it is accepted 
that automatic segmentation is not to be used in an unsupervised 
manner, but that performing correction of automatic contours 
saves time compared to a solely manual workflow.6,7 Evaluation 
of the benefits of AI segmentation make use of a set of metrics 
which include classical geometrical analysis such a DSC and 
Hausdorff distance, but also expert evaluation using a grading 
scale.8 The geometric metrics do not readily reflect the main 
clinical advantage, namely, time saving. For this, besides directly 
recording correction times, metrics such as surface DSC and 
added path length (APL) may be useful, and Vaassen et al7 report 
that APL correlates the most with time savings.

Another area where AI has made inroads into clinical practice 
is at the level of automated treatment planning. This part of the 

workflow will dramatically reduce the time required for an RT 
technician to deliver a clinically acceptable treatment plan and 
is thus an area where efforts toward AI automation have been 
made.9,10 One approach based on machine-learning (ML, refer-
ring here to models such as support vector machines or random 
forests) has been knowledge-based planning,11 where features 
such as organ and target distances or number of beams are passed 
to a ML model predicting characteristics of the dose distribution, 
such as dose volume histograms (DVH) points. These can then 
be used in an optimizer as objectives, leading to an automatic 
procedure. More recently, DL methods, again using U-nets, 
have been used to predict an entire dose distribution instead 
of a limited set of DVH points, which allows to steer the opti-
mizer to directly achieve that dose distribution.12 Interestingly, 
in a study where knowledge-based planning was used clinically, 
the authors reported that 61% of automatic treatment plans were 
selected. This was surprising since in a simulated environment, 
a higher percentage of automatic plans (83%) had been selected, 
indicating that there remain hurdles to the adoption of this tech-
nology in clinical routine.

AI FOR ONLINE ADAPTIVE RADIOTHERAPY
Online adaptive radiotherapy has been made feasible thanks to 
the clinical introduction of MR-linacs such as the 0.35 T ViewRay 
MRidian13 or 1.5 T Elekta Unity,14 where MR images are used to 
perform online plan adaptation, typically in a hypo-fractionated 
setting.15,16 In parallel, CBCT-based systems making use of AI, 
such as the Varian Ethos,17 have also recently allowed for clin-
ical online adaptive radiotherapy. Whether CBCT- or MR-based, 
the online adaptive workflow is one of the areas of radiotherapy 
with the highest demand for automation. With the patient on the 
treatment couch, it is highly desirable to accelerate the various 
steps required to perform plan adaptation, namely, pseudo-CT 
generation, delineation and plan optimization. At modern 
MR-linacs, relatively long fraction durations are reported, 

Figure 1. Overview of the modern RT workflow. The top arm represents cone beam computed tomography (CBCT)-guided RT, 
while the bottom arm represents MRgRT. Various areas of application of AI are highlighted to indicate in which part of the 
workflow they come into play: automatic segmentation, pseudo-CT generation, dose prediction and automatic planning, motion 
tracking and outcome prediction.
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ranging from 30 min up to 70 min.18–20 Delineation can take up 
to 30 min and currently the main bottle-neck of the online adap-
tation process.21

Several studies have investigated automatic segmentation specific 
to MRgRT,5,22–29 some of them applied clinically.30 While most 
segmentation algorithms employ morphological MRI sequences, 
also studies making use of diffusion-weighted imaging exist.31 
This is well summarized in the review by Cusumano et al.32 
Given the richness of data available, the online adaptive work-
flow also brings opportunities for novel approaches to auto-
matic segmentation. For example, it may be possible to exploit 
patient-specific training approaches,33 where we assume that 
high-quality, physician-approved planning contours may be 
available at the time of plan adaptation for a given fraction. In 
that case, a conventional baseline model trained on a population 
dataset could be refined on the planning data of a single patient.8 
Alternatively, the training could be refined as a function of added 
fraction images.34 Others have trained models from scratch on 
planning images of an individual patient only,35,36 however issues 
of robustness may arise in this case, especially in the presence 
of pronounced anatomical changes. In general, when training 
or fine-tuning models in a patient-specific fashion, care has 
to be taken to ensure that the model is not overly matched to 
the planning image, to the detriment of performance on frac-
tion images. One approach is to select a set of patient datasets 
where fraction images are used as a validation set to monitor the 
patient-specific training. In this way, it can be ensured that the 
model performance is optimal on fraction images by selecting 
an optimal augmentation strategy and training epoch, which will 
be subsequently fixed for all new patients.8 Another issue here 
is that delineation errors on the planning image may be prop-
agated to the fraction images; however, the availability of more 
time for planning segmentation should mitigate this. Another 
way to exploit planning segmentations is to use AI-based DIR, 
as done in Eppenhof et al for CTV segmentation.37 While they 
achieved convincing results for CTV, limited evidence is avail-
able as to the feasibility of this approach for larger deformations 
for organs such as the bladder or rectum. The studies listed above 
were focused on MRgRT; however, similar approaches should be 
applicable to CBCT-based online adaptive RT. In the latter case, 
however, additional challenges might arise due to the consider-
ably lower soft tissue contrast of CBCT images and the lack of 
available ground-truth segmentation on clinical CBCT images. 
In consequence, CBCT segmentation might be combined with 
domain adaptation to support auto-segmentation.38

For pseudo-CT generation, also representing a domain adap-
tation task, several well-established deep-learning methods 
have by now been identified either for CBCT to CT or MRI to 
CT conversion, as well reviewed by Spadea et al39 or Gurney-
Champion et al for MRI.40 The most common approach is to use 
a U-net, as used by Han et al for MRI to CT41 and Kida et al for 
CBCT to CT.42 For this approach, paired data are required. This 
functions well for relatively static anatomies such as the head 
and neck or brain, where deformable image registration (DIR) 
may allow correcting slight anatomical mismatches between 
CBCT/MR and CT scans.42 Alternatively, unpaired training may 

be used for anatomical sites where DIR may not be sufficient to 
correct for anatomical variations. For this, generative adversarial 
networks (GAN) provide an elegant solution.43 The cycleGAN 
architecture in particular allows to use unpaired data, affording 
flexibility when collecting datasets for network training. Kurz 
et al applied this to CBCT to CT conversion with success.44 A 
potential drawback of these generative models is that they might 
suffer from reduced geometric fidelity, such that additional 
cross-modality loss terms constraining the networks might be 
required.45,46

Another area where AI may play a role in online adaptive 
MRgRT is for motion tracking on cine-MRI. At the 0.35 T 
MRIdian MR-linac for example, 2D cine-MRI images are 
acquired at each fraction for beam gating at a frequency of either 
4 Hz or 8 Hz. While gating is a very robust way of ensuring target 
coverage, it does come at the cost of increased treatment times, 
with duty cycles as low as 20%.47 An alternative which has seen 
recent interest for MRgRT is multi-leaf collimator (MLC) tumor 
tracking,48 which can be achieved by rigidly or deformably 
shifting the MLC to match the tumor centroid displacement and 
shape as observed on 2D cine-MRI. Recent proof-of-principle 
work at the 1.5 T Unity MR-linac showed that MLC tracking 
should be feasible,49,50 and the Australian MR-linac project has 
even demonstrated tracking multiple targets.51 Optimal MLC 
tracking requires target tracking52 and accounting for system 
latency, which has been reported to be about 350 ms for different 
MR-linacs.51,53,54 One approach to account for latency is motion 
prediction, and AI methods such as long-short-term memory 
(LSTM) networks have been shown to outperform non-AI 
methods for this.55,56 Another interesting approach for motion 
tracking itself would be again to use DIR networks to deform a 
key frame to a moving frame.57

DECISION-MAKING AND RESPONSE 
ASSESSMENT
Advances in RT delivery techniques and the advent of promising 
new therapies such as immunotherapy or targeted therapies have 
created a sort of “explosion of treatments”,58 from which doctors 
and patients have to choose. Not only the portfolio of therapies 
has increased, but many of these treatments interact among 
each other (e.g., RT enhancing immune response). Personalized 
medicine refers to choosing the optimal treatment strategy and 
regimen based on each single patient tumor fingerprints, which 
are extracted using data mining techniques based on routinely 
acquired data related to the medical history of the patients, 
such as electronic health records, genetic testing, and medical 
imaging.59 AI offers a diverse choice of multiple data analytics 
algorithms that can support personalized medicine.

PERSONALIZED PRESCRIPTION AND 
TREATMENT SELECTION
Many treatment indications in RT (and oncology in general) 
strongly rely on the results obtained from randomized controlled 
clinical trials (RCT). If on one hand, RCTs are recognized for 
their capability of isolating confounding factors during the 
comparison of treatments (‘control groups’); on the other hand, 
the “one size does not fit all” is a well-known limitation of RCTs. 
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The upcoming challenge in personalized medicine is to use the 
knowledge derived from RCTs but adapted on a patient-to-
patient basis using routinely collected data during the patient 
journey: real-world evidence.60 AI algorithms can support 
this practice, given their capability of mining a vast amount 
of unstructured data and find correlations with an outcome of 
interest. It is important to point out that the role of AI in person-
alized prescription and treatment selection is not to replace 
RCTs, but rather suggesting, for example, one among two treat-
ments that have shown comparable outcomes (e.g., local control, 
survival) but will provide for example less toxicities. These AI 
algorithms are often referred to as decision support systems 
(DSS).61 The most optimal DSS will be based on an estimate of 
the probability of the outcome (e.g., treatment response) vs the 
risk of unwanted toxicities (e.g., RT side-effects). However, it is 
difficult to use AI to change the dose prescribed to a tumor, given 
the fact that dose prescriptions are determined by strict clinical 
guidelines and considering also that the relation among changes 
in the dose released to a biological tissue and the resulting DNA 
changes are still under investigation. At the time of writing treat-
ment decisions and clinical constraints on doses to be prescribed 
are based on the NTCP (Normal Tissue Control Probability) and 
TCP (Tumor Control Probability) models. However, the research 
community is investigating how AI can complement and enhance 
the above models by introducing tumor- and host(organs at 
risk)-derived fingerprints. An advanced example is the study by 
Scott et al, where the investigators validated a genomic-adjusted 
radiation dose, which is a method that accounts for biological 
heterogeneity and can be used to predict optimal RT dose for an 
individual patient.62 They have shown that using data from the 
RTOG 0617 trial, 80% of the patients could have been exposed to 
unnecessary dose escalation without benefit to TCP. A comple-
mentary overview of the applications of AI for personalized 
prescription is provided by the special issue edited by Rancati 
et al.63 The studies vary from the integration of radiosensitivity 
biomarkers during treatment planning (similarly to Scott et al), 
but most of the original research studies in the collection focus 
on the application of AI algorithms for the modeling of toxicity 
outcomes in clinical cohorts. Cancer sites include brain tumors, 
head-and-neck, and thoracic diseases (mainly breast cancer, lung, 
and esophageal cancers), and prostate cancer, and substantial AI 
algorithm heterogeneity can be found. Some studies prefer to 
focus on more traditional ML algorithms such as logistic regres-
sion or random forest, up to studies that included image-derived 
biomarkers (radiomics/deep learning) and finally research 
that uses advanced AI methods such as convolutional neural 
networks beyond the previously cited U-NET, or even recurrent 
neural networks in case of time series data (e.g., data acquired 
during each delivery fraction). It is impossible to draw a conclu-
sion whether more traditional AI algorithms should be preferred 
over more complex ones, since the choice of the AI algorithms 
cannot be separated from the type of data that are mined. For 
example, in case of genomic data, more classical AI algorithms 
have been chosen compared to when using imaging, dosimetry 
or clinical data, probably showing that embedding biological 
knowledge of the interaction of radiation with the tumor/host 
helps reducing the complexity of the AI models. What emerges 
is the lack of studies that pool all the possible data available and 

try to investigate correlations among them. Therefore, we urge 
the research community to collaborate to provide recommenda-
tions for the most optimal choice of the AI algorithms to be used 
according to the data available.

RISK-STRATIFICATION FOR OUTCOMES AND 
TOXICITIES
As mentioned earlier, AI algorithms can also be used to select the 
optimal treatment for a patient using DSSs that evaluate the likeli-
hood of treatment response vs toxicities. The same DSSs can also 
be used to isolate groups of patients with different hazard ratios for 
the risk of an event such as early death, poor response, or the devel-
opment of metastases. Moving from the identification of these risk 
groups into an actual actionable for the clinician to be discussed 
with the patient is not trivial. At the time of writing, many of the AI 
studies trying to isolate high-risk vs low-risk patients can be used 
for example to propose adjuvant treatment for the high-risk group, 
while preserving the low-risk group from unnecessary harmful addi-
tional radiation. Examples of these are the studies by Wu et al64 and 
Mattonen et al65 who looked at identifying early-stage lung cancer 
patients at higher risk of developing distant metastasis that might 
benefit from SBRT and/or systemic therapy instead of lobectomy, 
despite being in good fit for surgery. Another example of AI-based 
risk stratification is the development of combined imaging/clinical 
signatures for the identification of small cell lung cancer patients 
that might benefit from PCI (Prophylactic Cranial Irradiation).66 
Many studies have also associated risk stratification with treatment 
response prediction. These AI models can have a strong impact in 
supporting the selection of patients that will benefit from adjuvant 
treatment following RT such as immunotherapy. Examples are the 
studies by Duffy et al67 and by Trebeschi et al.68 First prospective 
clinical trials are currently recruiting patients to explore outcome 
as well as toxicity prediction by means of AI in a clinical setting, 
e.g., for head and neck cancer (NCT05607225, NCT05081531). It 
is worth mentioning that almost all the studies investigating risk 
stratification and treatment response/ toxicity prediction made a 
strong use of mining imaging data. As already mentioned in the 
previous sections, RT planning/delivery and monitoring strongly 
rely on the use of medical images, which come as “cost-free” data 
to be analyzed. Overall, we are also seeing a trend toward using 
more and more complex deep learning-based algorithms to mine 
imaging data.

REPRODUCIBILITY, GENERALIZABILITY, AND 
DISTRIBUTED LEARNING
Despite the clinical endpoint investigated, we found that many AI 
algorithms suffer from the issues of reproducibility and general-
izability. Reproducibility refers to the ability of being able to fully 
reproduce the results of a research study developing an AI model 
on another dataset, without the need of re-training the algorithm 
from scratch. Many studies have raised the attention over the 
lack of reproducibility of AI studies in RT independently from 
the type of algorithms chosen from the data used and for the 
outcome of interest.69,70 We can mainly distinguish two causes 
behind this issue: A) poor reporting and lack of standardized 
good practices (both for data collection and algorithms), and 
B) complexity of the AI models during its whole lifecycle from 
development to training and deployment. To solve the first issue, 
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consortia of researchers have been focusing on the development 
of guidelines that will hopefully support reproducibility of devel-
oped AI algorithms.71,72 Again, we have noted a lack of agree-
ment among the different consortia, so that it possible only to 
isolate a small subset of recommendations common among these 
publications. To solve the second issue, stating that from now on 
the research community should discard the use of complex AI 
algorithms, often borrowed from outside the medical field, is not 
the solution. This is because the choice of the AI algorithms and 
their complexity with respect to the data types that are mined is 
still not standardized. Nevertheless, there are methods to over-
come the complexity of these algorithms for deployment and 
make them easily accessible to other researchers or even to clin-
ical professionals. Examples of these are common repository such 
as GitHub, and modelHub.AI for release of the code, while for 
the straightforward use of the models, Docker containers should 
be the preferrable solutions. Another interesting opportunity is 
to bypass the installation of the software (i.e., an AI algorithm) 
within one institution and adopt a SaaS (Software as a Service) 
approach, which is typically achieved by Cloud infrastructures.73

Next to reproducibility, the issue of generalizability of AI models, 
overall and for RT, remain a critical issue impeding a fast clin-
ical translation of these powerful technologies. Generalizability 
refers to the capability of an AI algorithm to hold prognostic/
predictive values or more in general to be robust on heteroge-
nous datasets, besides the data used for training. Generalizability 
is the opposite of overfitting. Therefore, generalizability strongly 
relies on the availability of a large amount of annotated data in 
RT. Annotating and collecting data is expensive, and annotations 
can vary among different RT clinics because of different clinical 
guidelines. If solutions like auto-contouring or auto-planning 
can help in reducing the burden of manually annotating data, 
still the issue of centrally collecting the data remains. Even in the 
presence of deep-learning algorithms that can generate synthetic 
data (e.g., Generative Adversarial Models for pseudo-CT), a 
large dataset needs to be collected for training the algorithms. 
Data produced by the use of AI algorithms should be stored 
and re-used to re-train or fine-tune the algorithms to achieve 
better performances and eventually increase clinical applica-
bility. The ecosystem produced by AI algorithms, the operators 
using the algorithms and the results of this interaction (e.g., 
measured outcome vs predicted outcome) should move toward 
a self-learning healthcare system. Examples of promising appli-
cations are self-learning algorithms, or reinforcement learning.74 
Centrally transferring and collecting the data always come with 
concerns about privacy and the legal path to approval is much 
longer than the technical obstacles (almost inexistent) that 
need to be solved. Therefore, distributed learning as a privacy 
preserving solution, where the model is trained and transferred 
to the institutions, rather than the data, is becoming more and 
more popular, also supported by enterprise research on distrib-
uted learning infrastructures. Recent publications have shown 
not only the possibility to fully develop machine-learning algo-
rithms in a distributed fashion for outcome prediction75 but also 
for the development of distributed deep learning algorithms 
for auto-contouring76 and again prognostication/predictions.77 
Performance metrics used to evaluate AI algorithms might 

not be fully representative of the real clinical applicability and 
value of these algorithms. The literature suggests the use of DCA 
(Decision Curve Analysis) as an objective quantification of clin-
ical impact. In the case of AI algorithms for segmentation, the 
usage of reading tests (e.g., Turing test) is strongly recommended 
to evaluate, for example, the clinical acceptance of automated 
contours, compared to for example just using a DICE score. 
Finally, we strongly support the idea of performing clinical trials 
where the impact of AI algorithms in supporting clinical deci-
sions is evaluated in a controlled setting.

ETHICAL CHALLENGES
Currently, while many AI algorithms have been proposed, few 
have become a clinical standard. A first requirement is that 
prospective evaluation is important to make sure that the results 
of retrospective evaluation were not biased by data selection 
and curation. In other words, application to real-world data is 
needed to determine the performance of an AI algorithm. This 
is important since some models rely on feature selection by the 
model designer (for example, radiomics models) with choices 
made based on the retrospective data used to train the model. 
This makes these models semi-automatic in nature, and poten-
tially the selected features may not be ideal for prospective data 
or different populations.

In that context, ethical, medicolegal and quality control aspects 
are critical. Questions such as the obligation to inform patients 
on the use of AI tools and of responsibility when AI does harm 
are far from answered. The frequency of AI quality control evalu-
ations to detect drifts in the input data is also an open question. A 
good summary of these points can be found in Bhowmik et al.78

The interaction of humans with machines and algorithms is a 
field of active investigations. Introducing AI systems in the 
consolidated process of decision-making and RT planning/
delivery requires a dedicated process of change management. 
Naik et al stated that the legal and ethical issues that confront 
society due to AI include privacy and surveillance, bias, or 
discrimination.79 In their analysis, the authors underline how 
there are no well-defined regulations in place to address the legal 
and ethical issues that may arise due to the use of AI in a health-
care setting. Without going into detail, we believe that the key 
questions that we are asked to solve as the RT/oncology commu-
nity is: does AI fit within the existing legal categories? Should a 
new category with its special features and implications be devel-
oped? Sub-questions related to the applications of AI presented 
in this review are: 1) “If new data are generated with AI, who is 
the data owner? Should informed consent be required again? 2) 
Since AI algorithms are trained on specific collected data, which 
may have human biases, is AI really supporting equality of care? 
3) Is it possible to make decisions based on data that do not have 
real-world counterparts (e.g., AI pseudo-generated/synthetic 
data), and 4) Are AI algorithms medical devices and do we need 
to re-design clinical trials to evaluate and approve AI algorithms? 
We believe that all these questions demand to be evaluated by not 
only RT and healthcare professionals but also involving policy-
makers and governmental agencies.
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