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Abstract: Triple negative breast cancer (TNBC) lacks well-defined molecular targets and is highly
heterogenous, making treatment challenging. Using gene expression analysis, TNBC has been
classified into four different subtypes: basal-like immune-activated (BLIA), basal-like immune-
suppressed (BLIS), mesenchymal (MES), and luminal androgen receptor (LAR). However, there is
currently no standardized method for classifying TNBC subtypes. We attempted to define a gene
signature for each subtype, and to develop a classification method based on machine learning (ML)
for TNBC subtyping. In these experiments, gene expression microarray data for TNBC patients
were downloaded from the Gene Expression Omnibus database. Differentially expressed genes
unique to 198 known TNBC cases were identified and selected as a training gene set to train in seven
different classification models. We produced a training set consisting of 719 DEGs selected from
uniquely expressed genes of all four subtypes. The highest average accuracy of classification of
the BLIA, BLIS, MES, and LAR subtypes was achieved by the SVM algorithm (accuracy 95–98.8%;
AUC 0.99–1.00). For model validation, we used 334 samples of unknown TNBC subtypes, of which
97 (29.04%), 73 (21.86%), 39 (11.68%) and 59 (17.66%) were predicted to be BLIA, BLIS, MES, and
LAR, respectively. However, 66 TNBC samples (19.76%) could not be assigned to any subtype.
These samples contained only three upregulated genes (EN1, PROM1, and CCL2). Each TNBC
subtype had a unique gene expression pattern, which was confirmed by identification of DEGs and
pathway analysis. These results indicated that our training gene set was suitable for development of
classification models, and that the SVM algorithm could classify TNBC into four unique subtypes.
Accurate and consistent classification of the TNBC subtypes is essential for personalized treatment
and prognosis of TNBC.

Keywords: TNBC subtype; machine learning; microarray; gene expression profile

1. Introduction

Triple negative breast cancer (TNBC) is a subset of breast cancer which lacks the
expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal
growth factor receptor-2 (HER2). TNBC accounts for 10–20% of breast cancers, and pri-
marily affects women under 40 years old [1]. Due to the heterogeneity of the disease, and
the absence of molecular targets, TNBC patients are not sensitive to endocrine or HER2
targeted therapy. Chemotherapy remains a standard treatment for patients with TNBC.
This cancer has a poor prognosis and a high rate of relapse and metastasis leading to
tumor recurrence [2,3]. Hence, it is important to explore therapeutic targets to improve
the outcomes of TNBC. Advances in gene expression microarray analysis have facilitated
comprehensive molecular profiling, which can be used to classify TNBC into distinct sub-
types [4–8]. According to gene expression signatures, Burstein et al. classified TNBC into
four subtypes: basal-like immune-activated (BLIA), basal-like immune-suppressed (BLIS),
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mesenchymal (MES), and luminal androgen receptor (LAR) [8]. Previous studies have
found that each TNBC subtype has different characteristics and responses to neoadjuvant
chemotherapy [9,10]. Thus, TNBC subtyping is of value for prioritizing patients for per-
sonalized medicine. However, a laboratory tool for classification of TNBC subtype is still
under investigation, and has not yet been implemented in the clinic.

Over the past decade, research groups studied the gene signatures of TNBC subtypes
using different techniques. Advancement in gene microarray technology have produced
datasets with a very large number of genes (features), but a small number of samples.
This high dimensionality is a major challenges to the development of classification meth-
ods [11,12]. To address these challenges, machine learning (ML) approaches have been
used. ML is the study of computer algorithms which improve automatically through
experience. It learns from previous data to create the classification, prediction or identify
processes [13]. To date, ML-based cancer classification models have been used to predict
death outcomes [14], seek new drug mechanisms [15] and identify genes to differentiate
TNBC from non-TNBC [16]. However, no reported studies have proposed ML-based
classification schemes for classifying TNBC subtypes using gene expression data. The
aim of this study was to investigate the potential application of ML to the classification of
TNBC subtypes using microarray data derived from the public Gene Expression Omnibus
(GEO) database [17]. In the present study, we analyzed a dataset consisting of 198 TNBC
patients, to identify a set of upregulated differentially expressed genes (DEGs) among
TNBC subtypes. We subsequently used this gene set to develop classification models
using seven different ML algorithms: Support Vector Machines (SVM), K-nearest neigh-
bor (KNN), Naïve Bayes (NB), Decision Tree (DT), Ensemble, Linear Discriminant, and
Logistic Regression.

2. Results
2.1. Identification of DEGs and Feature Selection

In this study, 198 known TNBC cases used as the training set were classified into
four TNBC subtypes: BLIA, BLIS, MES, and LAR, containing 54, 60, 47, and 37 cases,
respectively. The samples contained the expression profiles of 20,186 genes, making the
dataset very high dimensional. Using a large number of genes to train the ML model takes
a long time, and may reduce the efficiency of ML. Thus, to train the model and identify the
best classifiers, we extracted the genes with upregulated expressed in each TNBC subtype
according to the p-value and log2 fold change cut-offs. We identified 80, 80, 400, and 197
upregulated DEGs in BLIA, BLIS, MES, and LAR, respectively (Figure 1A). The top 20
upregulated DEGs of each subtype are shown in Table 1. We also used Venn diagrams to
check the overlap between upregulated DEGs of each subtype, and found 73, 75, 385, and
186 genes which were expressed only in BLIA, BLIS, MES, and LAR, respectively (Figure 1B)
(Supplementary Table S1). There were few overlapping upregulated DEGs among the four
subtypes. Hence, the 719 DEGs which were only expressed in each subtype were selected
as the training gene set for training the classification models.

2.2. GO Term and KEGG Pathway Enrichment Analysis of Unique Upregulated DEGs in Each
TNBC Subtype

GO function and KEGG pathway enrichment analysis were performed using MetaS-
cape [18] to explore the biological functions of unique upregulated DEGs in each TNBC
subtype. DEGs which were only upregulated in the BLIA subtype were significantly
enriched in organelle fission, nuclear division, cell cycle phase transition, and immune
regulation pathways. These genes were different from those of the BLIS subtype, which
were significantly downregulated in immune regulation pathways [5]. In our study, func-
tional enrichment analyses of upregulated DEGs in the BLIS subtype which is one of
two basal-like clusters, showed significant enrichment in epithelial cell differentiation,
tissue morphogenesis, chordate embryonic development. and the Wnt signaling path-
way. In the MES subtype, signal transduction pathways associated with the naba core
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matrisome, which is an ensemble of genes encoding core extracellular matrix elements
including ECM glycoproteins, collagens, and proteoglycans. The upregulated DEGs of the
LAR subtype were mainly significantly enriched in estrogen-dependent gene expression,
metabolism of lipids, and organic acid catabolic processes. Thus, our results indicated that
each TNBC had a unique pattern of gene expression and signaling pathways (Figure 2)
(Supplementary Table S2).
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Table 1. Top 20 unique upregulated DEGs of each TNBC subtype.

BLIA BLIS MES LAR

DEGs FC DEGs FC DEGs FC DEGs FC

IDO1 4.41 GABRP 6.97 ADIPOQ 16.63 PIP 14.29
CXCL13 4.13 SOX8 5.49 ADH1B 14.32 FOXA1 12.52
MMP12 3.69 SHC4 4.51 OGN 10.44 DHRS2 10.59
LAMP3 3.60 ROPN1 4.21 CD36 9.46 TFF1 10.27
CXCL11 3.49 PROM1 4.17 FABP4 9.40 MLPH 9.97
GZMB 3.43 KRT14 3.89 CHRDL1 9.21 AGR3 9.70

RARRES1 3.40 KRT81 3.86 CFD 8.50 TFF3 9.48
CXCL10 3.40 HORMAD1 3.75 LINC01279 8.05 NAT1 8.27
CHI3L1 2.85 VTCN1 3.74 PLIN1 7.49 AGR2 8.01
AIM2 2.81 SOSTDC1 3.57 SFRP4 7.15 C9orf152 7.87
NUF2 2.71 PNMA8A 3.50 ACKR1 7.11 SCUBE2 6.99
TTK 2.70 IRX1 3.47 IGF1 5.95 GATA3 6.86

CXCL9 2.66 UGT8 3.38 HBB 5.86 SIDT1 6.79
APOBEC3B 2.65 KRT23 3.31 EFEMP1 5.84 REEP6 6.60
MCM10 2.63 ART3 3.24 GPX3 5.82 MUCL1 6.37

GBP5 2.62 ELF5 3.23 CXCL14 5.51 AR 6.20
EZH2 2.61 MIA 3.21 ENPP2 5.32 TOX3 5.90
CCL5 2.60 TTYH1 3.15 SRPX 5.27 GPR160 5.32

ADAMDEC1 2.55 PTPRZ1 3.15 DPT 5.23 PRR15 5.25
CEP55 2.54 COL9A3 3.08 IL33 5.19 FAM110C 5.19

2.3. Modeling Prediction and Performance Evaluation

In this section, all of the unique upregulated DEGs of each TNBC subtype were
selected as the training set for classification and prediction using the MATLAB 2020a
environment [19]. To choose the best model, we trained a selection of models, including
SVM, KNN, NB, DT, Ensemble, Linear Discriminant, and Logistic Regression. We trained
all of the models using five-fold cross validation, to protect against overfitting. The training
data in our experiment were divided into five sets of similar size, and four of them were
used in turn as the training set. One set was used as the test set to evaluate the model. In
terms of model accuracy, the prediction models ranged from 61.5% for logistic regression,
to 98.8% for SVM. The SVM algorithm was the best classification model, with the highest
average accuracy of 95.7, 95.6, 95.0, and 98.8% for the BLIA, BLIS, MES, and LAR subtypes,
respectively. The experimental results are presented in Table 2 (Supplementary Table S3).

Since the number of TNBC patients in each subtype was not balanced, the accuracy
may not reflect the performance of the ML algorithms. Therefore, to prevent misleading
interpretation of our results, the F1 score, which is the harmonic mean of precision and
recall, was also considered. The BLIA, BLIS, MES, and LAR models exhibited F1-scores
of 0.91, 0.91, 0.90, and 0.97, respectively. The LAR model was able to predict non-LAR
patients correctly, resulting in a recall (sensitivity) of 1.00 (100%) (Figure 3, Table 3). The
area under the ROC curve (AUC) value was also used to evaluate the model performance.
The SVM model of LAR exhibited the highest AUC, of 1.00, compared to BLIA, BLIS, and
MES, with an AUC of 0.99 (Figure 4). Our result showed that a training gene set and ML
algorithms could classify TNBC with high accuracy.
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Table 2. Comparison of classification accuracy of all algorithms using 719 training genes.

Classification Methods
% Accuracy

BLIA BLIS MES LAR

SVM Linear SVM 92.3 ± 0.4 93.6 ± 0.5 94.8 ± 0.2 98.0 ± 0.3
Quadratic SVM 93.9 ± 0.7 93.4 ± 1.1 94.5 ± 0.2 98.4 ± 0.2
Cubic SVM 94.2 ± 1.2 93.9 ± 1.0 94.4 ± 0.4 98.4 ± 0.2
Fine Gaussian SVM 72.7 ± 0.0 69.7 ± 0.0 76.3 ± 0.0 81.3 ± 0.0
Medium Gaussian SVM 95.7 ± 0.7 95.6 ± 0.7 95.0 ± 0.3 98.3 ± 0.2
Coarse Gaussian SVM 74.2 ± 0.0 83.1 ± 0.4 91.4 ± 0.5 98.8 ± 0.2

KNN Fine KNN 89.0 ± 1.0 88.5 ± 0.7 93.3 ± 0.4 98.4 ± 0.2
Medium KNN 92.3 ± 0.8 93.4 ± 0.4 93.5 ± 0.4 97.8 ± 0.4
Coarse KNN 72.7 ± 0.0 69.7 ± 0.0 76.3 ± 0.0 81.3 ± 0.0
Cosine KNN 94.8 ± 0.8 94.3 ± 1.3 94.7 ± 0.6 98.5 ± 0.4
Cubic KNN 92.1 ± 1.0 93.8 ± 0.7 93.9 ± 0.5 97.6 ± 0.8
Weighted KNN 94.1 ± 0.8 93.7 ± 0.8 94.7 ± 0.5 98.1 ± 0.2

Ensemble Boosted Trees 72.7 ± 0.0 69.7 ± 0.0 76.3 ± 0.0 81.3 ± 0.0
Bagged trees 86.6 ± 1.8 88.5 ± 1.0 90.7 ± 1.4 92.9 ± 0.8
Subspace Discriminate 91.1 ± 1.9 91.5 ± 1.1 92.2 ± 1.1 98.0 ± 0.5
Subspace KNN 90.5 ± 1.0 90.3 ± 1.3 93.8 ± 0.2 98.4 ± 0.2
RUSBoosted Trees 88.2 ± 1.8 88.9 ± 0.9 92.4 ± 0.7 95.4 ± 0.6

Tree Fine Tree 82.3 ± 2.1 79.0 ± 2.5 89.7 ± 1.6 95.5 ± 1.6
Medium Tree 81.7 ± 2.2 79.0 ± 2.5 89.7 ± 1.6 95.5 ± 1.6
Coarse Tree 83.5 ± 1.7 80.9 ± 2.4 89.9 ± 1.8 95.5 ± 1.6

Linear Discriminant Linear Discriminant 86.0 ± 1.2 90.2 ± 0.8 90.2 ± 1.1 97.4 ± 0.6

Logistic Regression Logistic Regression 64.7 ± 1.7 61.5 ± 2.9 61.9 ± 4.0 74.0 ± 3.4

Naïve Bayes Gaussian Naïve Bayes 76.8 ± 0.8 78.4 ± 0.2 95.0 ± 0.5 97.9 ± 0.2
Kernel Naïve Bayes 83.0 ± 0.9 79.3 ± 0.4 95.0 ± 0.9 97.5 ± 0.6
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Table 3. Overall performance of four selected classification models.

BLIA BLIS MES LAR

Medium Gaussian SVM Medium Gaussian SVM Medium Gaussian SVM Coarse Gaussian SVM

Recall 85.2 88.3 93.2 100.0
Specificity 99.3 97.1 96.1 98.8

Precision (PPV) 97.9 93.0 87.2 94.6
Negative Predictive value 94.7 95.0 98.0 100.0

F1 score 0.91 0.91 0.90 0.97
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and LAR.

2.4. Testing on Independent Cohorts Demonstrated the Generalizability of the Classification Model

The model was then evaluated on independent datasets of TNBC subtypes that had
never been used in the training process. In model validation of 334 unknown TNBC
samples, 97 (29.04%), 73 (21.86%), 39 (11.68%) and 59 (17.66%) were predicted to be
BLIA, BLIS, MES, and LAR, respectively. In addition, 66 TNBC samples (19.76%) could
not be predicted as any subtype, and were defined as unclassified samples (Figure 5)
(Supplementary Table S4). Then, the upregulated DEGs of the test set were compared
with those of the training set, to confirm the accuracy of each model. Our result showed
that the DEG comparisons of the individual subtypes were quite similar between the
training and the test set (Figure 6) (Supplementary Table S5). The unclassified samples
included only three upregulated genes, including EN1, PROM1, and CCL2 among all TNBC
subtypes (Table 4).
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Table 4. Upregulated DEGs of unclassified samples.

Unclassified Samples

Gene FC
EN1 2.33

PROM1 2.11
CCL2 2.09

3. Discussion

TNBC is a more aggressive and highly heterogeneous disease than other type of breast
cancer [20,21]. TNBC patients do not benefit from targeted therapies such as endocrine
therapy or trastuzumab, due to the absence of ER, PR, or HER2. TNBC patients have poorer
survival and prognosis than other breast cancer types after chemotherapy [22,23]. Due to
its high heterogeneity, TNBC can be classified into different subtypes [6–8,24]. Burstein et al.
divided TNBC into four subtypes, BLIA, BLIS, MES, and LAR [8]. Some studies have found
that TNBC subtypes have different prognosis and responses to neoadjuvant chemotherapy.
LAR patients achieved the lowest pathologic complete response (pCR), but showed the best
overall survival rate and delayed recurrence when compared with the other subtypes [9].
Patients with Basal-like 1 subtype (Lehmann subtyping) exhibited the highest pCR to
carboplatin containing regimens [25]. TNBC subtyping can be used as a predictor of pCR,
and may impact decision pertaining to treatment of TNBC. Thus, classification tools are
needed to classify TNBC subtypes. However, the classification of TNBC subtypes has not
been routinely used in clinical practice. The main goal of our study was to use public gene
expression data to develop a tool for TNBC subtyping, using ML.

In this study, microarray gene expression data was downloaded from the GEO
database. To enhance the efficacy of ML, gene signatures were selected from genes ex-
pressed only in each subtype, as identified using a cutoff of FC > 2 and p-value < 0.05. There
were a few overlapping DEGs among subtypes, because they shared some similar charac-
teristics. For example, BLIA and BLIS displayed basal-like characteristics. The training set
719 DEGs was used to train the prediction models. The highest average accuracy of a clas-
sifier for BLIA, BLIS, MES, and LAR subtype was the SVM algorithm (accuracy 95–98.8%;
AUC 0.99–1.00). The performance was evaluated based on five-fold cross validation. SVM
is a supervised ML algorithm based on the idea of maximizing the margins between differ-
ent classes. Our results were consistent with those of previous studies. Asri et al. found
that SVM showed the highest accuracy (97.13%) and lowest error rate in the classification of
breast cancer, using the Wisconsin Breast Cancer datasets [26]. Wu et al. also found that the
SVM algorithm could accurately classify breast cancer into TNBC and non-TNBC, and had
fewer misclassification errors than the other ML algorithms [27]. Nindrea et al. confirmed
that the SVM algorithm produced better accuracy of breast cancer risk calculation than
other ML algorithms [28].

To ensure accurate subtype prediction, we compared the upregulated DEGs of each
subtype between the training and test sets. We observed that predicted TNBC samples
displayed upregulated DEGs that corresponded with those in the training set and in other
reports [8]. The different TNBC subtypes exhibited different unique gene expression and
signaling pathways. These data could be used to guide therapeutic decisions. The BLIA
subtype showed high expression of genes related to the immune system, and therefore may
be sensitive to immune checkpoint inhibitor treatments for BLIA. For the MES subtype,
upregulated DEGs were associated with extracellular structure, extracellular matrix organi-
zation, growth factors, and blood vessel development. Therefore, patients with the MES
subtype might be susceptible to anti-angiogenic therapy [29]. The LAR subtype showed
significantly upregulated DEGs enriched in estrogen-dependent gene expression, including
androgen receptors (AR). AR was expressed at a lower rate in other TNBC subtypes. The
LAR model had the highest accuracy, 98.8%, and a recall of 1.0. AR could therefore be used
as a novel therapeutic target for the LAR subtype. The use of enzalutamide, an androgen
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receptor inhibitor, is currently being explored in TNBC patients who express the androgen
receptor (NCT01889238) [30–32].

The unclassified samples, which were not predicted as any subtype, had only three
upregulated genes. EN1, PROM1, and CCL2 were found as upregulated DEGs of BLIS,
BLIA&BLIS, and MES, respectively. These patients did not express the unique gene pattern;
thus the classification model was unable to identify them into any subtypes. These findings
indicated that the training gene set could discriminate between TNBC subtypes. However,
further study is needed to investigate the unclassified subtypes. The integration of gene ex-
pression analysis with genomic, epigenetic, and microRNA data may lead to improvement
of the efficacy of ML classification tools. TNBC subtyping identified the unique patterns of
gene expression for each subtype, and could be used for guiding therapeutic choices, and
also for the development of potential therapeutic targets for TNBC patients.

Our discovery phase, the training gene set consisted of 719 DEGs which were high
number to train the prediction model. Minimize the number of unique genes in training
gene set with high accuracy is challenging. Gene signatures selection will be considered
on gene (feature) importance score based on how useful they are in classification model.
This will be a practical method to select a few gene signatures for further validation in
clinical samples using qPCR. It would be beneficial to utilize the RNAseq data with our
ML models in the future.

4. Materials and Methods
4.1. Data Sources and Preprocessing

The overall design and execution strategy used in this study is presented in Figure 7.
We downloaded the seven microarray gene expression profile datasets (GSE76124, GSE95700,
GSE48390, GSE76275, GSE19697, GSE 20,711 and GSE21653) from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 1 May 2021). Our experimental dataset
consisted of 532 TNBC cases, of which 198 TNBC cases were assigned as a training cohort
and 334 TNBC cases were assigned as a test cohort. All seven datasets were based on
platform GPL570 (Affymetrix Human Genome U133 Plus 2.0 Array) and are freely avail-
able online. No additional ethics review was required for the in silico analysis of these
data sets, because this study did not involve any experiments on humans performed by
any of the authors. The raw Affymetrix cell intensity files (.CEL files) of all datasets were
processed for normalization, background correction, and log2-transformation using robust
multi-array average from the R/Bioconductor package affy [33].

4.2. Identification of DEGs and Feature Selection

The volcano plot which was generated by mavolcanoplot in MATLAB was used to
identify DEGs with the most predictive power among TNBC subtypes. In this experiment,
known TNBC cases from a previous study [8] were assigned to four TNBC subtypes: BLIA,
BLIS, MES, and LAR. These cases were used as training data. We considered p-value < 0.05
and a log2 (fold change) >2 to indicate statistically significant upregulated DEGs of each
TNBC subtype. All upregulated DEGs were then plotted as a Venn diagram, to check for
overlapping genes among subtypes. For feature selection, all upregulated DEGs which
were expressed in only one of the four subtypes were selected as the gene set for training
the prediction models.

4.3. Functional and Pathway Enrichment Analysis

A functional enrichment analysis of the unique upregulated DEGs of each TNBC
subtype was performed using the Metascape software (http://metascape.org/, accessed
on 1 May 2021) [18]. Functional enrichment was performed using three categories of GO
terms: biological process, molecular function and cellular component (CC). In addition,
KEGG pathways, Reactome Gene Sets, and CORUM were used as sources of pathway,
gene network, and process enrichment analysis [34–36]. Terms with a p-value of <0.01, a

https://www.ncbi.nlm.nih.gov/geo/
http://metascape.org/
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minimum count of 3, and an enrichment factor of >1.5 were collected and grouped into
clusters based on their membership similarities.
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4.4. Model Construction

Seven different classification models, SVM, KNN, NB, DT, Ensemble, Linear Discrimi-
nant, and Logistic Regression, were used to generate the classification model. The detail
of each model is presented in Supplementary Table S6. Here we used all of classification
models, which are available from the Classification Learner app in the applications toolbox
in MATLAB [19]. A training gene set was used to train all of models within the training
set (N = 198) which were divided into four TNBC subtypes: BLIA (n = 54), BLIS (n = 60),
MES (n = 47) and LAR (n = 37). In this study, we performed five-fold cross validation to
evaluate the model performance. To identify the best model, the performance analysis of
each model was measured in terms of accuracy, sensitivity (recall), specificity, Precision
(positive predictive value) (PPV), negative predictive value (NPV), F1 score, and AUC [37].
These performance indicators were defined and computed as follows:

Accuracy = (TP + TN)/(TP + FP + FN + TN).
Sensitivity (Recall) = TP/(TP + FN)

Specificity = TN/(TN + FP)
Precision (positive predictive value (PPV)) = TP/(TP + FP)

Negative predictive value (NPV)) = TN/(TN + FN)
F1 score = 2(Precision* Recall)/(Precision + Recall)

where, TP = true positive, TN = true negative, FN = false negative,
FP = false positive.

Finally, the classification model which gave the best performance indicators for each
TNBC subtype was selected for model generation and evaluation.
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4.5. Modeling Prediction and Performance Evaluation

After model training, 334 unknown TNBC cases were used to evaluate the prediction
ability of the best performing model. There is no standard method to classify TNBC, so
after making the predictions we identified the upregulated DEGs using mavolcanoplot in
MATLAB for each TNBC subtype, to compare with the training set.

5. Conclusions

We proposed a new ML model to distinguish the four subtypes of TNBC using subtype-
specific gene signatures based on gene expression data. Our finding confirmed that the
SVM model offered the best potential classifier for TNBC classification. The utilization
of a training gene set could be beneficial for TNBC subtyping and the development of
personalized treatment for TNBC patients.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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test set; Table S5: Comparison of up-DEGs between training and test set; Table S6: The detail of the
classification model.
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