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Chronic rotator cuff pathology is often complicated by fatty degeneration of the rotator cuff (FDRC)
muscles, an insidious process associated with poor prognosis with or without surgical intervention.
Currently there is no treatment for FDRC, and many studies have described a natural course for this
disease almost always resulting in further degeneration and morbidity. Recapitulating FDRC using animal
injury models, and using imaging-based studies of human FDRC, the pathophysiology of this disease
continues to be further characterized. Researchers studying mesenchymal stem cellederived progenitor
cells and known fibrogenic and adipogenic signaling pathways implicated in FDRC seek to clarify the
underlying processes driving these changes. While new cell- and molecular-based therapies are being
developed, currently the strongest available avenue for improved management of FDRC is the use of
novel imaging techniques which allow for more accurate and personalized staging of fatty degeneration.
This narrative review summarizes the evidence on the molecular and pathophysiologic mechanisms of
FDRC and provides a clinical update on the diagnosis and management of this condition based on the
existing knowledge. We also sought to examine the role of newer biologic therapies in the management
of RC fatty degeneration and to identify areas of future research.

© 2021 The Authors. Published by Elsevier Inc. on behalf of American Shoulder & Elbow Surgeons. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Fatty degeneration (FD) of the rotator cuff (RC) muscles in the
setting of RC tears has been unequivocally linked to progressively
worsening shoulder symptomology and poor outcomes after repair
for more than thirty years.2,5,6,15,17,25,51,54,58 Having proven a strong
predictor of disease progression and surgical outcomes, scientists
and clinicians have dedicated significant effort to elucidating the
etiology of fibroadipogenic changes in the muscle that fall under
the constellation of “fatty degeneration/fatty infiltration” of the
RC.27,39,41

Research has evolved over the last years to better understand
the pathophysiological mechanisms underlying the process of fatty
degeneration of the rotator cuff. The clinical diagnosis and man-
agement of this condition is particularly challenging, and scientific
efforts have focused on early recognition and/or reversal of fatty
degeneration of the rotator cuff to optimize the outcomes of
shoulder preservation therapies. One major area of interest is the
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role of mesenchymal stem cell (MSC)ederived progenitor cells in
the RC as well as major signaling pathways regulating fibrogenesis
and adipogenesis, such as transforming growth factor-b (TGF-b)
and peroxisome proliferator-activated receptor g (PPARg).29,41

There has also been great consideration of the pathophysiology of
fatty degeneration of the rotator cuff (FDRC) and studies of asso-
ciated structural and functional alteration patterns seen during
progression of this disease.1,20 Currently, clinical management of
FDRC is guided by accurate and personalized staging of patients’ RC
pathology, including radiographic grading of the degree of FD.80

Several groups have developed new methods and software for
image capturing and analysis that report improved reliability in
grading FDRC and can help clinicians better educate and counsel
patients on their treatment options as per their unique presenta-
tion.59,60 Recent advances have been made on the path to novel
treatments developed in the research laboratory, focusing on
modulating behavior of potent muscle-resident progenitor cells
and chemically mitigatingmolecular cues that promote fibrosis and
FD, but they remain more distant solutions.8,29,42,47

This narrative review summarizes the evidence on the molec-
ular and pathophysiologic mechanisms of FDRC and provides a
clinical update on the diagnosis and management of this condition
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Figure 1 Key molecular pathways involved in the pathogenesis of fatty degeneration
of the rotator cuff. Akt, protein kinase B; FAP, fibroadipogenic progenitors; mTOR,
mammalian target of rapamycin; TGF-b, transforming growth factor b; Wnt, wingless-
related integration site.
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based on the existing knowledge. We also sought to examine the
role of newer biologic therapies in the management of RC fatty
degeneration and to identify areas of future research.

Cellular and molecular etiology

Given the multifactorial causes of FD of the RC and varying
phenotypes, the underlying cellular and molecular mechanisms
driving this process are not fully understood.27,41 Several cellular
origins of adipose tissue in FDRC have been proposed, including
expansion of existing adipocytes, migration of adipocytes from
outside the RC, and differentiation of pluripotent MSC cells residing
in the muscle.71 While any or all of these scenarios may contribute
to FDRC, recently a novel population of MSC-derived progenitor
cells residing in RC muscle interstitium has been characterized and
strongly implicated in fibrosis and FDRC after injury in a murine
model.8,29 These progenitor cells express the cell surface marker
platelet-derived growth factor receptor a (PDGFRaþ) and have been
dubbed “fibroadipogenic progenitor” (FAP) cells owing to their
fibrogenic and adipogenic potential.29

The fibrotic and adipogenic potential of murine FAP cells has
been demonstrated in vitro and in vivo using small animal injury
models of FDRC.8,29,42,47 Lineage tracing using transgenic reporter
mice revealed significant expansion and differentiation of FAPs and
their contribution to fibrotic and fatty tissue formation in a chronic
RC injury model.29 In 2020, the presence of FAPs in human RC
muscle was first reported by Feeley et al14 who also demonstrated
that in human RC tears the number of FAP cells present correlated
to tear size (P < .01) and Goutallier grade of FD (P < .01). FAP cells
have been shown to primarily adopt a white adipose tissue (WAT)
phenotype in FDRC marked by secretion of additional adipokines
and further WAT expansion.42 Recently FAP cells have been re-
ported to possess the potential to adopt a beige adipose tissue (BAT)
phenotype, described as being pro-myogenic via production of
known anabolic cytokines such as follistatin and insulin-like
growth factor 1 (IGF-1).42,47 Further characterization of FAP cells
and the signaling pathways that govern their commitment and cell
fate is needed in order to better understand their role in FDRC and
offer therapeutic avenues to modulate their effects.

Molecular signaling pathways that are involved in adipogenesis,
lipid metabolism, fibrosis, myogenesis, muscle atrophy, and cellular
apoptosis have been also been implicated in FDRC.27,28,41 PPARg is a
canonical regulator of adipogenic differentiation, and is required
for commitment of progenitor cells and pre-adipocytes to become
mature adipocytes.41 Increased expression of PPARg has been
consistently reported in the presence of FD in RC muscle.28,31,86

Wnt signaling has also been implicated in adipogenesis within
muscle tissue.41 Activation of Wnt signaling by muscle stretch
prevents myoblasts from differentiating into adipocytes; however,
with the loss of mechanical stimulation or Wnt signaling this
inhibitory effect is lifted and adipogenesis proceeds.28,31 TGF-b
signaling is considered a master regulator of fibrosis in many or-
gans and has been shown to promote fibrosis and FD in RC injury.41

Additionally, TGF-b signaling inhibited adipogenic differentiation
in FAP cells in favor of fibrogenic differentiation, and has been
shown to prevent FAP cell apoptosis.8,41 Inhibition of TGF-b using a
small molecule inhibitor has been shown to decrease muscle at-
rophy, fatty infiltration and fibrosis following a RC injury in a small
animal model. The authors suggest mitigation of FD by inhibition of
TGF-b signaling was achieved by increasing apoptosis of FAP cells,
offering another avenue for limiting deleterious effects of FAP cells
following RC injury.8 The role of these major signaling pathways
and other molecular mechanisms which result in induction of
fibrogenic and adipogenic differentiation in FAPs and muscle resi-
dent cells remains a primary focus among researchers aiming to
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uncover the cellular etiology of FDRC.14,29,41 Figure 1 presents a
demonstration of key molecular pathways involved in the
pathogenesis of fatty degeneration.

Pathogenesis

Currently the mechanisms underlying the pathophysiology of
FDRC remain poorly understood, despite many novel findings and
inroads being made by the research community.29,39,41 What has
become clear is that FD follows a progressive and heterogenous
course based on a multitude of factors, some of which have been
uncovered and will be discussed further in this section.12,27,31,41

Despite its varied pathogenesis, there is seemingly a consensus
that fatty degeneration is rarely reversible and likely to progress
further to varying degrees with or without intervention.11,17,24,42,86

Furthermore, to date there is no targeted treatment for FD and
management typically consists of surveillance of low-grade FD and
RC repair in the hopes of stopping or delaying FD progression.1,48,59

In the setting of failed repair, re-tear with worsening symptoms, or
severe FD leaving the RC muscles unsalvageable for repair, reverse
total shoulder arthroplasty is among very few remaining surgical
options to offer symptom relief and restore shoulder function now
dependent on the deltoid muscle. Despite high grade FD’s associ-
ation with poor surgical outcomes and re-tears, it has been para-
doxically reported that even with structural failure of the repair
patients may continue to see stable or improved functional out-
comes and mitigate progression of their FD.3,24,26,69 A deeper
understanding of the pathogenesis of FD remains critical to
optimizing and innovating clinical management.

While FD changes in RC muscle have been reported sparingly in
partial thickness tears, FD is classically associatedwith full thickness
tears of one ormore RC tendon and correlates significantlywith tear
size, such that one study found that 87.8% (43/49) of patients with
largeormassiveRC tears had radiographic evidence of FD.6,34,36,71 To
better understand the relationship between large/massive full



J. Bogdanov, R. Lan, T.N. Chu et al. JSES Reviews, Reports, and Techniques 1 (2021) 301e308
thickness tears and FDRC, the structural and functional disturbances
associated with this process have been carefully examined and
tracked. Muscle denervation, suprascapular nerve (SSN) traction,
and SSN neuropathy are reported to contribute to or elicit FD in
subsets of patients with RC pathology, however the primary insult
for the majority of patients is likely the gross anatomical and me-
chanical changes associated with musculotendinous unloading and
retraction.1,35,39,73 Nonetheless, understanding the consequences
and interplay of both gross structural defects and SSN pathology
may help delineate the varying FDRC phenotypes they give rise to
and better guide clinical management.

Gerber et al studied the effect of infraspinatus tendon release
and retraction on the architecture of the affected muscle in sheep
via electron microscopy.20 They demonstrated that muscle retrac-
tion increases the muscle fiber pennation angle, which decreases
fiber length, and ultimately results in increased space between
muscle fibers.1,20 Over the course of 40 weeks following tendon
release, the group would describe how myofibrillar volume
decreased (but not myofibrillar density), and how fibrous extra
cellular matrix (ECM) and adipose tissue would infiltrate and fill
these growing interfascicular spaces.20 Indeed, they characterized
the typical fibrotic and adipogenic features that have become
classically associated with FD: muscle retraction, atrophy and
infiltration of resultant architectural defects by fibrotic ECM and
fat.1,31,39,41 Ultimately, muscle composition becomes significantly
altered by disorganized myofibers and disordered fatty fibrosis,
compromising the elasticity and structural integrity of the muscle
eventually to an irreparable point.39

Unloading of the muscle directly disrupts regulation of muscle
size via the Akt-mammalian target of rapamycin (mTOR) signaling
pathway whose physiologic role includes transduction of me-
chanical loads to signals upregulating muscle protein synthesis.41

In a rat massive RC tear injury model, Laron et al observed
altered Akt/mTOR signaling and “increased muscle atrophy”, in
accordance with Gerber et al’s report of decreased myofibrillar
volume following infraspinatus release in sheep.20,41 Muscle
atrophy further complicates architectural changes associated with
retraction and significantly affects shoulder function.

Disturbance of the SSN and innervation of the supraspinatus
and/or infraspinatus has been described as a consequence of RC
retraction, with proposed mechanisms of injury including SSN
traction and entrapment at the suprascapular or spinoglenoid
notch.1,35,38,41 SSN neuropathy in the absence of RC tears has been
demonstrated to induce RC atrophy and FD, following a well-
described model of peripheral nerve injury leading to aberrant
energy metabolism and disuse atrophy in the affected muscle.1,35,38

Highly variable rates of SSN neuropathy associated with RC tears
have been reported, ranging from 2%-100% of patients depending
on the study.38 Further complicating matters, FD caused by SSN
neuropathy or RC tears have distinguishing features and patterns
on radiographic imaging reflecting unique mechanisms of FD for
each injury type, which may be occurring concurrently in some
patients.1 This again emphasizes the heterogenous etiologies and
phenotypes of FD associated with RC tears, and further explains
why establishing a definitive disease model remains challenging.

Diagnosing fatty degeneration

While many physical exam tests exist to detect rotator cuff pa-
thology, only the “dropping” and “hornblower’s” lag signs havebeen
shown to correlate with fatty degeneration (FD) in the corre-
sponding muscle.70 When either of these signs are positive, a large
rotator cuff tear, often coupled with extensive FDRC (Goutallier
stage 3 or 4) is suspected.83 Radiographic studies are normally
performed in evaluation of chronic RC pathology, but only one
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finding (acromiohumeral distance <8mm on anteroposterior view)
has been shown to be predictive of a large RC tear with FD and its
reliability has not been confirmed.76 Ultrasonography (US) is an
inexpensive and readily accessible diagnostic tool whose use in
rotator cuff imaging was first described by Wiener et al and
Takagishi et al in the 1990s.50,79,87 In 2005, Strobel et al evaluated
muscle pennate architecture and echogenicity of the supraspinatus
(SSP) and infraspinatus (IS) using US and developed a three-point
scale which has been used by other groups to confirm comparable
US results to standard magnetic resonance imaging
(MRI).33,46,64,66,68,72,78,84 Despite promising results, drawbacks of US
include the inability to distinguish moderate from severe fatty
infiltration, problems with US wave penetrance in deep tissue and
obese patients, and dependence on operator expertise.33,39,67

Due to the lack of accurate clinical tests for mild or moderate
FDRC, standard imaging modalities such as computerized tomog-
raphy (CT), andMRI have beenwidely used to diagnose and classify
rotator cuff FD.16,23,25,80 Goutallier et al initially proposed a five-
stage semi-quantitative classification system based upon CT
images (stage 0, no fatty streaks; stage 1, minor fatty streaks; stage
2, less fat thanmuscle; stage 3, as much fat as muscle; stage 4, more
fat thanmuscle), which Fuchs et al later adapted for use in standard
T1-weighted spin-echo sequence MRI.16,25 Fuchs et al proposed a
simplified 3-grade scale whose reliability compared to the tradi-
tional Goutallier scheme has been extensively studied and shown
to be largely comparable but not necessarily better
(Table I).7,16,30,59,60,63,75,77,78,84,88 Additionally, radiographical rota-
tor cuff atrophy signs such as the occupation ratio (SSP muscle
surface area/SSP fossa surface area) and tangent sign (SSP does not
intersect the line from the coracoid’s superior aspect to the superior
border of the scapular spine on sagittal MRI) have been shown to
correlate strongly with FDRC and may provide quick indications of
muscle quality.37,69,81,88

Although the five-stage Goutallier classification with MRI re-
mains the most popular method of evaluating FDRC, it is not
without limitations. Assessment of fatty infiltration from a single,
static, two-dimensional MRI or CT image may not be representative
of heterogenous muscle and fat volume.82 Furthermore, the vari-
ability in interrater agreement (Table I) and subjectivity present in
the semi-quantitative Goutallier scale stresses the need for more
objective quantitative metrics.39,76,77 Lee et al measured Houns-
fields Units (HU) and found a significant correlation between HU
measurements and Goutallier grade in CT images (P < .05).44 Two
other studies used different specialized software to quantitatively
grade standard MRI sequences and reported excellent reliability
(ICC 0.94710, ICC 0.99743) and comparable results to newer Dixon
MRI fat fractions and MR spectroscopy fat/water ratios.10,43 Both
these computer-based techniques present viable alternatives to the
Goutallier scale without the need for new imaging modalities,
although accessibility of specialized computer programs may be an
issue.

Advanced MRI techniques for fat quantification are also being
developed.10,59,60 Dixon MRI sequences use chemical shift-based
water-fat separation and can produce a 3D spatial image of intra-
muscular fat.32,49 This technique has been shown to be reliable and
predictive of re-tear after repair, and fat quantification can be
normalized to account for ageandother confounding factors.9,55,60 A
pilot study by Davis et al found significant inverse correlation with
range of motion (ROM) measures for Dixon fat fractions (P < .01)
compared to Goutallier MRI scale (no significance).9 Iterative
decomposition of water and fat with echo asymmetry and least-
squares estimation (IDEAL) MRI sequence is another water-fat
imaging technique that correlates strongly with tendon tear
severity and other clinical parameters.40,45,59 Nardo et al evaluated
57 shoulders and found that fat fractions measured using IDEAL



Table 1
Reliability of imaging-based grading of fatty degeneration of the rotator cuff.

Study (Year) Imaging protocol Grading scale Interobserver reliability (test)

Magnetic resonance imaging (MRI)
Fuchs et al. (1999)56 T1 weighted 3-grade scale 0.82-0.93 (weighted kappa)
Spencer et al. (2008)57 T1/T2 weighted 5-grade scale 0.1 (kappa)
Oh et al. (2010)58 T1/T2 MRA 3-grade scale 0.6-0.75 (ICC)

5-grade scale 0.60-0.72 (ICC)
Slabaugh et al. (2012)59 T1 weighted 3-grade scale 0.61 (kappa)

5-grade scale 0.43 (kappa)
Wall et al. (2012)48 T1/T2 weighted 5-grade scale 0.59-0.77 (weighted kappa)
Jo et al. (2013)62 T1 weighted 5-grade scale 0.55-0.79 (kappa)
Nardo et al. (2014)18 T1/T2 IDEAL Quantitative Fat Fraction in Muscle 0.81-0.91 (kappa)
Nozaki et al. (2016)17 Two-point Dixon MRI Quantitative Fat Fraction in Muscle 0.80-0.94 (ICC)
Collin et al. (2017)61 T1-weighted 3-grade scale 0.56 (kappa)

Computed tomography (CT)
Fuchs et al. (1999)56 CT 5-grade scale 0.68-0.83 (weighted kappa)
Williams et al. (2009)60 Three-plane 3-grade scale 0.46-0.62 (kappa)

5-grade scale 0.37-0.52 (kappa)
Oh et al. (2010)58 CTA 3-grade scale 0.43-0.63 (ICC)

5-grade scale 0.43-0.6 (ICC)
Ultrasonography
Strobel et al. (2005)46 Two-plane 3-grade scale for echogenicity and contour 0.55-0.71 (kappa)
Wall et al. (2012)48 “ “ 0.65-0.72 (weighted kappa)

CTA, computed tomographic arthrography; ICC, interclass correlation coefficient; IDEAL, iterative decomposition of water and fat with echo asymmetry and least-squares
estimation; MRA, magnetic resonance arthrography.
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significantly correlate (P < .0001, k > 0.9) with Goutallier grades.59

Many of these new imaging techniques demonstrate better reli-
ability (Table I) and clinical correlations than traditional Goutallier
MRI evaluation, but must be further refined in speed, availability,
and ease of use before widespread clinical adoption.39

Clinical management

In the context of clinical decision making, imaging studies for
tear evaluation and FD grading play a critical role in determining
appropriate management, in addition to consideration of shoulder
function and patients’ activity level, quality of life and expectations
with treatment.60 Strong correlations between the severity of FD
and patient age, chronicity of symptoms, and size of RC tear have
been extensively documented, and preoperative FDRC levels
have been shown to independently predict poor surgical
outcomes.6,17,21,22,36 Gladstone et al evaluated 38 patients and re-
ported that FDRC at Goutallier stage two or higher greatly increases
risk of re-tear, and thus may constitute a “point of no return”.24

Similarly, Nozaki et al used Dixon MRI imaging to quantify preop-
erative fat fractions (FF) in 50 patients, and found significantly
higher preoperative supraspinatus fat fractions in the failed-repair
group compared to the intact-repair group (37.0% vs. 19.5%, P < .01).
This group was the first to report quantitative preoperative FF cut-
off points that predict re-tears in both the supraspinatus (26.6%,
sensitivity ¼ 0.706; specificity ¼ 0.80) and infraspinatus (31.0%,
sensitivity ¼ 0.931; specificity ¼ 0.65).60

Preoperative FDRC has also been shown to correlate with
postoperative clinical patient reported outcome scores.40,56,65

Ohzono et al performed receiver operative characteristic (ROC)
curve analysis to show that Goutallier stage 2 represents a cutoff
point in both supraspinatus and infraspinatus for unsatisfactory
outcomes after surgery.65 Because the natural history of FDRC is
one of increasing severity over time, several groups have recom-
mended early surgical intervention to achieve the best possible
functional and structural outcomes.22,24,52,53 Another goal of sur-
gical repair is to prevent or delay progression of FDRC, although
several studies have shown that it may continue to progress
following repair.11,16,22,24,25,67 Deniz et al reported on 87 patients
undergoing RC repair and found that none showed improvement in
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muscle atrophy or fatty infiltration, and that patients with re-tears
had more severe progression of FD (P ¼ .0001).11

Even if FDRC does not reverse following surgical repair, func-
tional improvements may occur without accompanying muscle
quality improvement.3,24,26,69 Burkhart et al evaluated 22 patients
with Goutallier stage 3 and 4 infraspinatus FDRC, and reported
significant improvements in range of motion, UCLA score (preop-
erative 12.3 and postoperative 29.5), and Constant score (preop-
erative weighted score 74.8, postoperative 88.5).3 Another study
found that ASES, Constant, and pain scores improved significantly
(P < .0001) while muscle degeneration did not improve following
repair, although preoperative fatty infiltration and muscle atrophy
were independent predictors of ASES and Constant scores.24 Higher
preoperative fatty infiltration may correlate with higher re-tear
rates and sub-optimal outcomes, but symptomatic improvements
may still be achieved. To this point Fermont et al demonstrated that
preoperative FDRC was not a predictor of quality of life following
repair as measured by the Western Ontario Rotator Cuff Index
(WORC).15

It has been suggested that patients with operable RC tears with
low grade FD, and no functional deficits can be conservatively
managed with non-operative therapy and radiographic surveil-
lance for progression of FD and tear size.48 On long-term follow-up
of patients managed non-operatively, Maman et al reported pro-
gression of tear size in 40-60% of cases, while Zingg et al reported
progression of FD in three RC muscles by an average of one Gou-
tallier stage after 48 months.48 Zingg et al also demonstrated that
48 months is the average duration patients with a massive rotator
cuff tear can be managed non-operatively before shoulder function
becomes unsatisfactory. The severity of morphologic and anatomic
changes in the RCmuscle by this point typically exclude repair as an
advisable surgical option. Management of cases that have
progressed to severe and irreparable degeneration is limited to RC
d�ebridement, muscle transfers, or reverse total shoulder
arthroplasty.

In order to avoid progression of debilitating shoulder symptoms
or the need for more intensive surgical procedures, patient edu-
cation on the natural history of RC tears and FD progression is
critical to managing expectations and ensuring the best possible
outcome.48,51-53 Clinicians must use all the tools available at their
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disposal to thoroughly characterize RC injury and associated FD,
which may convey a more personalized clinical picture of a
patient’s course with this dynamic and heterogenous disease. For
example, FD of the infraspinatus has proved an even stronger
predictor of repair failure and poor outcomes than that of the other
RC muscles.6,38,65 While the reason for this is not fully understood,
the FDRC phenotype that involves the infraspinatus is thought to be
especially deleterious, and patients with evidence of infraspinatus
FD should be advised of the increased urgency for surgical
intervention.

Future treatment

Recent cell-based approaches in developing new therapies to
combat rotator cuff fatty degeneration have centered around a
subset of PDGFRaþ muscle resident MSC-derived progenitor cells,
or ‘fibro-adipogenic progenitors’ (FAPs).8,29,42,47 These cells have
been inextricably linked to fibrosis and fatty degeneration
following RC tears in small animal injury models, and have now
been shown to participate in the same process in humans suffering
from chronic rotator cuff tears with FD.14 FAPs demonstrate sig-
nificant expansion following RC injury and their progeny constitute
to some degree the fibroblasts and adipocytes seen in degenerated
muscle.8,14,29,86 These progenitors also have other more positive
physiologic roles in the muscle milieu, where they act as support
cells for myogenic differentiation and help maintain muscle ho-
meostasis.29,47 Efforts are ongoing to better understand FAPs and
related progenitor cell subsets residing in muscle with the hope of
uncovering physiologic or pathologic cellular and molecular path-
ways with strong therapeutic potential in FDRC. The discovery of
FAPs with a pro-myogenic beige adipose tissue (BAT) phenotype in
lieu of the more ubiquitous and adipogenic white adipose tissue
phenotype has offered a novel and exciting avenue for modulation
of the deleterious response of FAPs to RC injury.14,42,47 Lee et al42

isolated and expanded FAPs expressing uncoupling protein-1, a
reliable marker for BAT FAPs, and transplanted them into mouse
RCs two weeks after inducing injury using their tendon transection
and denervation chronic injury model. BAT FAPs, which produce
promyogenic follistatin and IGF-1, when transplanted reduced
muscle atrophy and fatty infiltration and increased angiogenesis via
vascular epithelial growth factor expression.42 Strategies are now
being developed to inducewhite adipose tissue FAPs into becoming
more BAT-like or to “brown” deleterious white fat in the RC. Tri-
chostatin A (TSA) and b3 adrenergic receptor agonists have been
shown to “brown” fat and demonstrated similar promising effects
on muscle atrophy and degeneration as BAT FAP transplantation in
murine chronic RC injury models.14,47 While the therapeutic po-
tential of TSA and b3 agonists is limited, others are being designed
to modulate these same pathways and hopefully to benefit patients
in the future.14,47

While FAPs coexpressing PDGFRb and PDGFRa have been
demonstrated to contribute significantly to fibroadipogenesis in
FDRC, Mosich et al57 recently detailed a novel PDGFRbþ/PDGFRa-

subset of perivascular cells with antifibroadipogenic potential.29,74

These cells (PDGFRbþCD146þCD34-CD56-) were derived from hu-
man embryonic stem cells using a reliable induction and purifica-
tion protocol and transplanted into murine RCs after injury in a
chronic RC injury model.57 Transplantation of these non-FAPs
resulted in decreased fibrosis and adipogenesis, while also mark-
edly reducing muscle atrophy, which was also observed in in vitro
cultures treated with non-FAP cultured medium alone.57 In addi-
tion to PDGFRa’s role in determining the phenotype adopted by
FAPs, Sharma et al74 demonstrated that aged mice experienced
significantly increased fibrosis and FDRC than younger mice in a
chronic RC injury model. PDGFRbþ/PDGFRaþ FAPs displayed an
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amplified response to RC injury in aged mice, whose more severe
FD was reflected by an increase in collagen deposition and number
of adipocytes, possibly indicating a more profibroadipogenic
cellular environment associated with aging.74 These novel findings
concerning the different phenotypes of FAPs, their behavior, and
the milieu they reside in must continue to be characterized with
the goal of developing tools that may sway this balance more
favorably and offer therapeutic benefit.74

In 2017, Eliasberg et al13 attempted human lipoaspirate-derived
perivascular stem cell transplantation in a murine massive RC tear
model, which resulted in reduced muscle atrophy in all groups, as
well as reduced adipogenesis in mice undergoing tendon transec-
tion without denervation. In mice undergoing tendon transection
and denervation, perivascular stem cell transplantation resulted in
increased muscle wet weight and cross-sectional area, but neither
increased nor decreased fibrosis and adipogenesis, highlighting the
potent effects of denervation on FDRC.13 While autologous peri-
vascular stem cells can be made readily available from lipoaspirate,
further studies are ongoing to optimize the source and preparation
of cells used for transplantation.

Oh et al62 used adipose-derived stem cell (ADSC) trans-
plantation in a rabbit chronic subscapularis tear model and
demonstrated significantly improved tendon-to-bone healing and
decreased FD. These cells were postulated to directly differentiate
into tenocytes, fibroblasts, myofibers, and other mesenchymal-
derived cells needed for regeneration and to support surrounding
cells in the milieu via TGF-b and vascular epithelial growth factor
signaling.62 Despite promising effects, bringing stem cell trans-
plantation to therapeutic fruition remains a very challenging task.85

Recently, Wang et al85 developed a “cell-free” therapeutic candi-
date using ADSC-derived exosomes, which are 30-nm to 150-nm
vessels used by ADSCs for cellular communication and transport
of proteins, lipids, RNAs, and more. In a rabbit chronic RC injury
model, ADSC exosomes were able to replicate the improved
tendon-to-bone healing and decrease in FD reported by Oh et al62

using ADSCs themselves. These exosomes are thought to be less
immunogenic than ADSCs and thus present a safer therapeutic
option, although they must continue to be characterized and
studied further in animal models.85

As Wang et al85 describes, several small molecule drugs
including Licofelone, an inhibitor of 5-lipoxygenase,
cyclooxygenase-1, and cyclooxygenase-2, and SB431542, a TGF-b1
inhibitor, have demonstrated the ability to improve RC healing and
decrease FDRC, but their clinical potential is low given their
pleiotropic effects and safety profile.8,61 Anabolic steroids have also
shown decreased muscle atrophy and FD in small animal RC injury
models, while tamoxifen, an estrogen receptor modulator,
decreased muscle atrophy and inflammation but did not affect
FD.4,18,19 As for the experimental small molecule therapies, it can be
said that anabolic steroids and tamoxifen are also poor candidates
for therapeutic use in FDRC given their potent and widespread
action. Although these agents are not feasible for therapeutic use,
they provide invaluable mechanistic insight into the diverse pro-
cesses governing FDRC and may help usher in efficacious and more
refined drug candidates in the future.

Conclusion

FDRC has proven a significant contributor to worsening RC pa-
thology, morbidity, and poor outcomes after RC repair. No solution
appears imminent, as the mechanisms driving FDRC are not fully
understood. Canonical fibrogenic and adipogenic signaling path-
ways continue to be studied in the context of FDRC, but their
widespread and dynamic effects complicate determining a defini-
tive pathophysiological mechanism. Cell-based therapies using
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MSC-derived progenitors, as well as chemical strategies to
modulate their behavior in situ, have been shown to be effective in
animal RC injury models but are currently still in the experimental
stages. Basic science researchers and clinicians must continue their
efforts to fully characterize FDRC, validate imaging protocols using
readily available techniques, and develop novel therapies to
improve the quality of life for patients with RC disease.
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