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Abstract

Background: Neuron-derived orphan receptor (Nor) |, nuclear receptor (Nur) 77, and nuclear
receptor-related protein (Nurr) | constitute the NR4A family of orphan nuclear receptors which
were recently found to modulate hepatic glucose production, insulin signalling in adipocytes, and
oxidative metabolism in skeletal muscle. In this study, we assessed whether common genetic
variation within the NR4A3 locus, encoding Nor-1, contributes to the development of prediabetic
phenotypes, such as glucose intolerance, insulin resistance, or -cell dysfunction.

Methods: We genotyped 1495 non-diabetic subjects from Southern Germany for the five tagging
single nucleotide polymorphisms (SNPs) rs7047636, rs1526267, rs2416879, rs12686676, and
rs10819699 (minor allele frequencies > 0.05) covering 100% of genetic variation within the NR4A3
locus (with D' = 1.0, r2> 0.9) and assessed their association with metabolic data derived from the
fasting state, an oral glucose tolerance test (OGTT), and a hyperinsulinemic-euglycemic clamp
(subgroup, N = 506). SNPs that revealed consistent associations with prediabetic phenotypes were
subsequently genotyped in a second cohort (METSIM Study; Finland; N = 5265) for replication.

Results: All five SNPs were in Hardy-Weinberg equilibrium (p > 0.7, all). The minor alleles of three
SNPs, i.e., rs1526267, rs12686676, and rs10819699, consistently tended to associate with higher
insulin release as derived from plasma insulin at 30 min(OGTT), AUC oige-to-AUC,, ratio and
the AUC, ;3o-to-AUC, 30 ratio with rs12686676 reaching the level of significance (p < 0.03, all;
additive model). The association of the SNP rs12686676 with insulin secretion was replicated in
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the METSIM cohort (p < 0.03, additive model). There was no consistent association with glucose
tolerance or insulin resistance in both study cohorts.

Conclusion: We conclude that common genetic variation within the NR4A3 locus determines
insulin secretion. Thus, NR4A3 represents a novel candidate gene for B-cell function which was not
covered by the SNP arrays of recent genome-wide association studies for type 2 diabetes mellitus.

Background

The NR4A family of orphan nuclear receptors comprises
nuclear receptor (Nur) 77 (gene: NR4A1), nuclear recep-
tor-related protein (Nurr) 1 (gene: NR4A2), and neuron-
derived orphan receptor (Nor) 1 (gene: NR4A3). These
ligand-independent constitutively active transcription fac-
tors are co-expressed in many metabolically relevant tis-
sues, such as skeletal muscle, adipose tissue, liver, heart,
and brain, and are thought to be predominantly regulated
at the transcriptional level (for review, see [1]). In this
context, a plethora of stimuli was identified, including
fatty acids [2], growth factors [3], inflammatory cytokines
[4,5], peptide hormones [6,7], membrane depolarisation
[8], and stress [9], regulating NR4A family member
expression in a tissue-specific manner. Recently, impor-
tant metabolic functions of NR4A transcription factors
were revealed. All three NR4A family members are
induced in the liver upon fasting and glucagon stimula-
tion, and their hepatic expression was found to be
increased in both type 1 and type 2 diabetic mouse mod-
els [10].

Moreover, adenoviral over-expression of these receptors
induced the expression of gluconeogenetic enzymes and
enhanced hepatic glucose production in vitro as well as in
vivo [10]. In 3T3-L1 adipocytes, NR4A1 (Nur-77) and
NR4A3 (Nor-1) expression was reported to be induced
upon insulin and thiazolidinedione treatment.

Furthermore, the expression of both receptors was found
to be decreased in skeletal muscle and adipose tissue of
multiple rodent models of insulin resistance and diabetes
[11]. As lentiviral Nor-1 over-expression additionally was
shown to enhance adipocyte insulin signalling and glu-
cose transporter-4 translocation [11] and siRNA knock-
down showed that Nor-1 regulates gene expression for
oxidative metabolism in skeletal muscle [12], we asked
whether common genetic variation within the genetic
locus harbouring the Nor-1 gene NR4A3 (OMIM ID
600542, Entrez Gene ID 8013) contributes to the devel-
opment of prediabetic phenotypes, especially such as glu-
cose intolerance and insulin resistance.

To this end, we genotyped 1495 non-diabetic subjects
from Southern Germany for the five tagging single nucle-
otide polymorphisms (SNPs) 1s7047636, 151526267,
1$2416879, 1512686676, and rs10819699 (minor allele

frequencies (MAFs) > 0.05) covering 100% of genetic var-
iation within the NR4A3 locus (with D' = 1.0 and 12> 0.9)
and assessed their association with metabolic data derived
from the fasting state, an oral glucose tolerance test
(OGTT), and, in a subgroup of 506 subjects, from a hyper-
insulinemic-euglycemic clamp. Found SNP-genotype
associations were subjected to further analysis in the MET-
SIM Study cohort from Finland (N = 5265) for replication
purposes.

Methods

Study participants

TUFITULIP cohort

Data from 1495 non-diabetic participants of the Tiibin-
gen Family Study and the Tuebingen Lifestyle Interven-
tion Program [13] were analyzed for this study. The
participants (characteristics given in Table 1) did not take
any medication known to affect glucose tolerance or insu-
lin secretion, and were requested not to smoke 24 h before
and during the test period. Informed written consent was
obtained from all study participants, and the local ethics
committee has approved the protocol.

METSIM cohort

The METabolic Syndrome In Men (METSIM) Study
addresses a random sample of 6147 Finnish men aged
from 45 to 70 years in Eastern Finland (Kuopio, see Table
1). All study participants underwent an oral glucose toler-
ance test (OGTT, see below), and the study protocol was

Table I: Clinical characteristics of the TUF/TULIP and METSIM
study population.

TUF/TULIP METSIM
Gender (female/male) 989/506 0/5265
IFG/IGT/(IFG+IGT) 150/142/113 874/498/343
Age (y) 3913 58+6
BMI (kg/m2) 28.6 +8.0 268 + 3.8
Body Fat (%) 306+ 10.5 239+ 65
Fasting glucose (mM) 5.10 £ 0.55 5.69 £ 0.50
Glucose, 120 min OGTT (mM) 6.24 + 1.66 6.09 £ 1.69
Fasting insulin (pM) 624 +51.2 48.6 + 33.8
Insulin, 30 min OGTT (pM) 481 + 384 391 +284

Data are given as means + SD. BMI — body mass index; IFG — impaired
fasting glucose (defined as 100—126 mg/dl according to AHA
guidelines); IGT — impaired glucose tolerance; OGTT — oral glucose
tolerance test.
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approved by the local ethics committee. For the study of
prediabetic traits, only non-diabetic METSIM participants
were analyzed (N = 5265, aged 58 + 6 years). METSIM par-
ticipants with newly diagnosed diabetes (N = 882) accord-
ing to the WHO criteria [14] allowed estimation for
diabetes risk using logistic regression analysis.

Anthropometrics

Body mass index (BMI) was calculated as weight divided
by the square of height (kg/m2). Body fat was determined
by bioelectrical impedance (RJL, Detroit, MI, USA).

Analytical procedures

Blood glucose was measured with a bedside glucose ana-
lyzer (Yellow Springs Instruments, Yellow Springs, OH,
USA). Plasma insulin and C-peptide concentrations were
measured by commercial chemiluminescence assays for
ADVIA Centaur (Siemens Medical Solutions, Fernwald,
Germany) according to the manufacturer's instructions.
In the METSIM Study, plasma glucose was measured by
enzymatic hexokinase photometric assay (Konelab Sys-
tems Reagents, Thermo Fischer Scientific, Vantaa, Fin-
land), and insulin was determined by immunoassay
(ADVIA Centaur Insulin IRI, no 02230141, Siemens Med-
ical Solutions Diagnostics, Tarrytown, NY).

Oral glucose tolerance test

The oral glucose tolerance test was performed according
to the WHO recommendations after a 12-h fasting period
[14]. In addition to plasma glucose, C-peptide levels and
plasma insulin were measured at 0, 30, 60, 90 and 120
min in the TUF/TULIP cohort. In the METSIM Study,
plasma glucose and insulin levels were measured at 0, 30
and 120 min.

Calculations on insulin sensitivity and insulin secretion
Insulin sensitivity was estimated from insulin and glucose
values obtained during the OGIT according to the
(HOMA) homeostasis model assessment [15] or the
method proposed by Matsuda and DeFronzo [16]. In 506
TUF/TULIP Study participants, insulin sensitivity was
additionally measured by a euglycemic hyperinsulinemic
clamp, as described elsewhere [17]. In TUF/TULIP, insulin
secretion was estimated from insulin plasma levels meas-
ured at 30 min of the OGTT and the area under the curve
(AUCQ) of C-peptide levels divided by the corresponding
AUC of plasma glucose (AUCc jepiige-t0-AUCG, Tatio)
levels [18]. In both study cohorts, insulin secretion was
estimated from insulin plasma levels measured at 30 min
during the OGIT and from the AUC i, t0-AUCq},c30
ratio [(insuling p;, + insulingg i, )/glucose, min + glucoses,
min) ] that recently has been shown to be the best surrogate
parameter for first phase insulin secretion in an intrave-
nous glucose tolerance test [19].

http://www.biomedcentral.com/1471-2350/10/77

Genotyping and selection of tagging SNPs

Genomic DNA was isolated from EDTA blood samples by
blood cell lysis, protein precipitation and a washing pro-
tocol as previously described [17]. Genotyping was
accomplished by use of the TagMan Assay (Eurogentec,
Liege, Belgium) and an ABI Prism 7500 sequence detec-
tion system (Applied Biosystems, Foster City, CA, USA)
for selected tagging SNPs. Selection criteria for tagging
SNPs of the NR4A3 locus on chromosome 9q22 were a
minor allele frequency (MAF) > 0.05 and a linkage dise-
quilibrium measure r2< 0.8 in the CEU population of the
HapMap project (Utah residents with ancestry from
Northern and Western Europe).

Gene expression analyses in human islet and adipose tissue
Pancreata were obtained from brain-dead multiorgan
donors and islet isolations were performed as previously
described according to the Ricordi method with local
(Geneva) adaptations [20,21]. Briefly, the pancreas was
distended by intraductal infusion of a cold collagenase
solution. After digestion at 37°C in a modified Ricordi
chamber, separated exocrine and endocrine tissues were
washed and purified in a continuous Biocoll gradient.
After several washings, islets were incubated in CMRL
1066 medium containing 5.6 mM glucose. RNA was
extracted from cultivated (2d) human islets and adipose
tissue specimens with PeqGOLD Tri Fast™ (PEQLAB Bio-
technologie, Erlangen, Germany) according to the proto-
col supplied by the manufacturer, and quantitative real-
time PCR was performed with Roche's LightCycler® 480
(Roche, Basel, Switzerland).

Statistical analyses

The Hardy-Weinberg equilibrium was tested with the y2-
test. Three-group comparisons without adjustments were
performed using ANOVA. In addition, multivariate linear
regression models with adjustments to relevant covariates
were undertaken for genotype-phenotype association
analyses. Non-normally distributed parameters were log-
transformed. All data are presented as means + SD. The
software package JMP 7.0 (SAS Institute, Cary, NC, USA)
and SPSS 14.0 (SPSS, Chicago, IL, USA) was used for sta-
tistical analysis. A p-value < 0.05 was considered to be sta-
tistically significant. Linkage disequilibrium was analyzed
with the JLIN software [22].

Results

Study population

The TUF/TULIP Study cohort of 1495 (506 male/989
female) non-diabetic subjects had a mean age of 39 + 13
years. 10% had an impaired fasting glucose (IFG), 9.5%
showed an impaired glucose tolerance (IGT) and 7.6%
presented with both IFG and IGT in the OGTT. METSIM
non-diabetic participants (N = 5265 men) had an average
age of 58 + 6 years, and 16.6 (9.5; 6.5)% were diagnosed
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with IFG (IGT; IFG+IGT; see Table 1). A total of 882 MET-
SIM participants (59 + 6 years) genotyped for NR4A3 were
diagnosed with diabetes. Further details on basal anthro-
pometric and metabolic traits of the investigated popula-
tions are provided in Table 1.

Genetic analyses

HapMap analysis of the NR4A3 locus revealed five tagging
SNPs (rs7047636, 1s1526267, 152416879, 1512686676
and 1s10819699) to cover 100% of variation in the
NR4A3 gene locus (55 kb) including 5 kb of its 5'-flanking
region and 5 kb of its 3'-flanking region (see Figure 1).

http://www.biomedcentral.com/1471-2350/10/77

Genotype call rates were > 98.4% for all investigated
SNPs, and minor allele frequencies of the tagging SNPs
ranged from 0.10 (rs2416879) to 0.46 (rs12686676; see
Table 2) in the TUF/TULIP cohort. All SNPs were in
Hardy-Weinberg equilibrium (p > 0.7, all; y2-test), and
linkage disequilibrium of the five selected tagging SNPs
was rather low (12 < 0.6, all; see Table 2).

Association of NR4A3 SNPs with anthropometric and
metabolic traits in TUFITULIP

We found a significant association of the minor allele of
1s7047636 with increased plasma glucose at 120 min of
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the 17 common (minor allele frequency > 0.05) informative SNPs within this region. The NR4A3 gene consists of
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r2=1.0). LD - linkage disequilibrium; SNP — single nucleotide polymorphism.
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Table 2: Linkage disequilibrium statistics (D', r2) among the five tagging SNPs rs7047636, rs1526267, rs24 16879, rs12686676, and
rs10819699 covering the 55-kb genomic locus harbouring the NR4A3 gene in the screening population (TUF/TULIP cohort).

SNP rs7047636 rs1526267 rs2416879 rs12686676 rs10819699
MAF 0.371 0.256 0.100 0.464 0.319
rs7047636 - 1.000 1.000 0.892 0.903
rs1526267 0.202 - 1.000 0.767 0.793
rs2416879 0.065 0.038 - 0.975 0.952
rs12686676 0.406 0.233 0.091 - 1.000
rs10819699 0.225 0.461 0.047 0.540 -

D' values above empty cells; r? values below empty cells. SNP — single nucleotide polymorphism, MAF — minor allele frequency

the OGTT (p = 0.03, additive model, adjusted for age, gen-
der and BMI). The minor allele of 151526267 was associ-
ated with a higher BMI (p = 0.02, additive model, adjusted
for age and gender) and with decreased insulin sensitivity
measured by clamp (p = 0.03, additive model, adjusted
for age, gender and BMI). We did not detect any signifi-
cant association of the four other tagging SNPs with BMI,
body fat, blood glucose levels (fasting state and 120 min
OGTT) and insulin sensitivity (see Table 3 and [Addi-
tional file 1]). The most consistent finding in the TUF/
TULIP population was a trend towards an association of
the minor alleles of r1s1526267, 1512686676 and
1s10819699 with increased insulin secretion, with
112686676 reaching the level of significance (p < 0.03
after adjustment for age, gender, BMI and insulin sensitiv-
ity; Table 3). This finding was independent of the insulin
secretion estimation model used for the analysis (insulin
at 30 min OGTT, AUC pepiiget0-AUCy, ratio, AUC, ;3¢
t0-AUCq) 30 Iatio; Table 3). All these findings could be
reproduced if the Matsuda model [16] instead of the
HOMA model [15] was used as an estimate of insulin sen-
sitivity. In the dominant model of e.g. AUC ,pidetoO-
AUC,, ratio, the increase in insulin secretion amounted
to 6.2% for 11526267, 6.0% for 1512686676 and 3.7%
for 1s10819699. The intronic SNP rs1526267 is in a very
low LD with the NR4A3-3'-flanking SNPs 1s12686676 and
1s10819699 in both the CEU population of the HapMap
project (Figure 1) and our cohort (Table 2), and the fact
that three rather independent SNPs associate with insulin
secretion further underscores the role of NR4A3 in beta-
cell function. The SNP 152416879 also showed a signifi-
cant association with two insulin secretion estimation
models (insulin at 30 min OGTT, AUC,,i;,-t0-AUC},350
ratio; p < 0.001 for adjusted models, [see Additional file
1]). However, no clear allele dose effect could be detected.
Therefore, we doubted about the reliability of this finding
and did not replicate this SNP in the METSIM Study.

Replication in the METSIM Study

Next, we tried to replicate the most reliable associations
between SNPs (11526267, 1512686676, 1510819699)
and insulin secretion in the METSIM cohort. Adjustment

for age, BMI and insulin sensitivity (HOMA) revealed a
significant association with both insulin secretion estima-
tion models (insulin at 30 min OGIT, AUC,,-to-
AUC 30 1atio) in 1s12686676, which yet showed the
most convincing association in the TUF/TULIP Study. In
contrast to TUF/TULIP, 1s1526267 had no effect on BMI
or insulin sensitivity in METSIM participants, and both
1s1526267 and 1510819699 did not associate with insulin
secretion (Table 4). Since the METSIM Study design also
allows the analysis of NR4A3 genetic variants for the end-
point diabetes in a population-based cohort, we tested
whether 11526267, 1s12686676 or 1s10819699 associ-
ated with the prevalence of diabetes. However, comparing
diabetic with non-diabetic study participants by logistic
regression analysis did not reveal a significantly altered
diabetes prevalence in minor allele carriers of the three
investigated SNPs (p > 0.11; all, [see Additional file 2]).
There were also no significant differences in genotype dis-
tribution of the investigated NR4A3 SNPs according to the
glucose tolerance status (normal glucose tolerance,
impaired fasting glucose, impaired glucose tolerance, dia-
betes) of both TUEF/TULIP and METSIM participants [see
Additional file 3].

NR4A3 expression in human islets

NR4A3 gene expression was determined in four inde-
pendent, freshly isolated, human islet preparations. Sig-
nal intensities of NR4A3 were comparable for all four islet
preparations. Interestingly, NR4A3 signals were ~1.5 fold
stronger in human islets as in two samples of adipose tis-
sue included as a positive control, and remarkably high in
comparison to two other positive controls, namely the
house-keeping gene RPS13 (40S ribosomal protein S13)
and IRS2 (insulin-receptor-substrate 2; Figure 2).

Discussion

This study investigated the role of NR4A3 for metabolic
traits in a prediabetic population. Our primary hypothesis
was that NR4A3 variants may associate with glucose intol-
erance or insulin resistance, based on published data on
Nor-1 functions in liver and skeletal muscle [10-12,23].
However, we did not detect any convincing associations
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Table 3: Associations of NR4A3 SNPs rs1526267, rs12686676 and rs10819699 with anthropometric and metabolic data (TUF/TULIP

cohort, N = 1495)

SNP rs1526267

Genotype GG GA AA P P2 P3
N 832 561 102 - - -
Age (y) 39+£13 39£13 38+ 14 0.9 0.9 -
BMI (kg/m?) 28072 294 +£ 89 285 + 84 0.0234  0.0225 -
Body Fat (%) 305+ 10 310 11 298+ 10 0.7 0.5 -
Fasting glucose (mM) 5.09 £ 0.54 5.11 £0.56 5.07 £ 0.55 0.8 0.9 -
Glucose, 120 min OGTT (mM) 6.25 £ 1.65 6.26 + 1.68 6.0l + 1.56 0.4 0.3 -
Insulin sensitivity (HOMA), OGTT (AU) 2.28 £2.02 261 £2.34 2.50 +2.08 0.0186 0.17 -
Insulin sensitivity, clamp (U)* 0.090  0.059 0.079 £ 0.047 0.085 + 0.054 0.0549  0.0274 -
AUCC ,epiige to-AUC, ratio, OGTT (-10-9) 310 £ 100 329+ 114 331 £ 115 0.0054  0.0241 0.07
AUC, 30-to-AUC, 30 ratio, OGTT (-10-9) 38328 433+£33 42.5 £ 31 0.0055 0.08 0.3
Insulin, 30 min OGTT (pM) 393 + 266 501 =373 459 £ 372 0.0020  0.0443 0.13
SNP rs12686676

Genotype GG GA AA P P2 Ps3
N 424 754 317 - - -
Age (y) 3813 39+ 13 3913 0.3 0.2 -
BMI (kg/m?) 280+77 288 + 80 28.7+82 0.1 0.2 -
Body Fat (%) 300+ 11 3.1+ 10 304+ 11 0.1 0.3 -
Fasting glucose (mM) 5.09 + 0.54 5.11 £0.56 5.07 £ 0.55 0.7 0.6 -
Glucose, 120 min OGTT (mM) 6.23 + .66 6.32 + 1.63 6.06 = 1.70 0.0335 0.06 -
Insulin sensitivity (HOMA), OGTT (AU) 228 £ 1.97 253 £232 235+ 1.95 0.14 0.24 -
Insulin sensitivity, clamp (U)* 0.091 £ 0.065 0.083 + 0.050 0.085 + 0.050 0.7 0.4 -
AUCC peprigeto-AUCG, ratio, OGTT (-10-9) 306 + 107 325+ 107 320 = 105 0.0055 0.0142  0.028
AUC, ;0-to-AUC, 30 ratio, OGTT (-10-9) 37.9+29 41.7 £ 31 40.9 £ 29 0.0041 0.010 0.020
Insulin, 30 min OGTT (pM) 388 + 301 445 £ 309 478 £ 357 0.0017 0.0058 0.012
SNP rs10819699

Genotype GG GA AA P P2 P3
N 698 637 158 - - -
Age (y) 39+ 13 39+ 13 38+ 14 0.5 0.5 -
BMI (kg/m2) 283+76 288 + 8.1 29.0 £89 0.4 0.5 -
Body Fat (%) 30410 3.1+ 10 298 £ |1 0.3 0.7 -
Fasting glucose (mM) 5.09 £ 0.55 5.10 £ 0.55 5.09 £ 0.56 1.0 0.9 -
Glucose, 120 min OGTT (mM) 6.23 + 1.63 6.29 + |.67 6.08 + 1.68 0.3 0.5 -
Insulin sensitivity (HOMA), OGTT (AU) 238 £2.27 248 +2.08 239+ 191 0.68 0.24 -
Insulin sensitivity, clamp (U)* 0.087 £ 0.058 0.084 + 0.053 0.087 + 0.050 0.8 0.2 -
AUC pepiigeto-AUCG, ratio, OGTT (-10-9) 313+ 105 324110 325+ 103 0.07 0.1 0.2
AUC, ;0-to-AUC,, 30 ratio, OGTT (-10-9) 389+ 30 41.9 + 31 41.3+29 0.0349  0.0538 0.18
Insulin, 30 min OGTT (pM) 396 + 288 471 £ 339 372 + 352 0.0125 0.0201 0.08

Data are given as means + SD. For statistical analysis, data were log-transformed. p, — non-adjusted additive model; p, — adjusted additive model:
age was adjusted for gender; BMI and body fat were adjusted for gender and age; glucose (Gluc) levels as well as insulin sensitivity (HOMA model,
clamp) and insulin (Ins) secretion (AUCc_oyige-t0-AUCq, ratio, AUC, ;35-t0-AUC, 59 ratio, plasma insulin at 30 min OGTT) were adjusted for
gender, age, and BMI; p; — Ins secretion parameters with adjustment for age, BMI, gender and insulin sensitivity. *clamped subgroup (N = 506). AUC
— area under the curve; BMI — body mass index; OGTT — oral glucose tolerance test; SNP — single nucleotide polymorphism.

between the selected NR4A3 tagging SNPs and glucose
intolerance/insulin resistance in the two investigated
study cohorts. Contrary to our expectation, the principal
finding was that three out of the five investigated tagging
SNPs, namely 1s1526267, 1512686676, and rs10819699,
showed a consistent trend towards an association with
insulin secretion in the TUF/TULIP cohort, with
112686676 reaching a significant level after adjustment

for confounding variables. This finding could be repli-
cated in a second independent cohort of Finnish male
subjects (METSIM Study). Summarizing our data
obtained from both cohorts, we assume a rather domi-
nant effect of NR4A3 on insulin secretion. However, fur-
ther research is needed to verify this hypothesis in other
cohorts, as all other detected diabetes risk genes show an
additive allele effect [24]. It is of note that the tested SNPs
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Table 4: Associations of NR4A3 SNPs rs1526267, rs12686676 and rs10819699 with metabolic data and insulin secretion indices

(METSIM cohort, N = 5265)

SNP rs1526267

Genotype GG GA AA P P2 P3
N 2311 2317 637 - - -
Age (y) 58+ 6 58+7 58+6 0.3 - -
BMI (kg/m?) 268 +3.7 268 +3.8 267 +37 0.5 - -
Insulin sensitivity (HOMA), OGTT (AU) 2.10 £ 1.55 211 +1.54 1.95 + 1.32 0.14 0.12 -
AUC, ;0-to-AUC,, 30 ratio, OGTT (-10-9) 347 £ 24 359+25 340+ 24 0.0381 0.08 0.12
Insulin, 30 min OGTT (pM) 445 + 320 464 + 340 437 £ 314 0.040 0.10 0.10
SNP rs12686676

Genotype GG GA AA P P2 Ps
N 1127 2520 1585 - - -
Age (y) 58+6 59+7 58+6 0.3 - -
BMI (kg/m2) 268+ 3.6 269 £ 3.9 26.7 £3.7 0.14 - -
Insulin sensitivity (HOMA), OGTT (AU) 2.02 £ 1.40 2,12+ 1.58 2.10 £ 1.54 0.3 0.6 -
AUC, 30-to-AUC,, 30 ratio, OGTT (-10-9) 343 +23 362 +25 344 +23 0.021 0.09 0.029
Insulin, 30 min OGTT (pM) 44| + 320 466 * 345 442 £ 314 0.025 0.11 0.038
SNP rs10819699

Genotype GG GA AA P P2 P3
N 1830 2480 913 - - -
Age (y) 58+6 587 586 0.6 - -
BMI (kg/m2) 268 3.7 269 +3.8 268 +38 0.5 - -
Insulin sensitivity (HOMA), OGTT (AU) 201 £ 1.6l 2.09 £ 1.47 2.02 £ 1.47 0.3 0.3 -
AUC, ;35-to-AUC, 3, ratio, OGTT (-10-9) 349 +24 356 +24 35.1 £25 0.2 0.5 0.4
Insulin, 30 min OGTT (pM) 447 £ 325 459 + 332 451 £ 336 0.2 0.4 0.3

Data are given as means * SD. For statistical analysis, data were log-transformed. p, — non-adjusted additive model; p, — additive model with
adjustements to BMI and age; p; — AUC, ;30-to-AUC, 30 ratio and plasma insulin at 30 min OGTT with adjustements for age, BMI and insulin
sensitivity; AUC — area under the curve; OGTT — oral glucose tolerance test; SNP — single nucleotide polymorphism, Gluc — Glucose, Ins — Insulin.

were not covered by the SNP arrays used in recent
genome-wide association studies (GWA), according to
currently available statistic data http://www.wtccc.org.uk.
Interestingly, most diabetes genes detected by the GWA
studies are also involved in insulin secretory function [25-
28], as it is the case for NR4A3.

As the effect of NR4A3 on insulin secretion was not
dependent on the levels of non-esterified fatty acids as a
read-out of adipose tissue metabolism determined in our
study cohort (data not shown), we assume that NR4A3
genetic variability is an independent determinant for insu-
lin secretion. Our finding of a remarkably high NR4A3
gene expression in freshly isolated human islets also sup-
ports a physiological role of NR4A3 in beta cells. Further
evidence for this hypothesis arises from a study on target
genes of a fusion protein encoded by a t(9;22) chromo-
somal translocation. The resulting EWS/NOR-1 fusion
induces serum- and glucocorticoid-regulated kinase 1
(SGK1) [29], which mediates inhibition of insulin release
in insulin-secreting cells [30].

As mentioned above, there was no replicable significant
effect of NR4A3 genetic variability on insulin sensitivity in
the two study populations, despite that both NR4A1 and
NR4A3 expression is reduced in skeletal muscle of various
diabetic animal models [11] and increased in L6 skeletal
muscle cells and muscle biopsies upon insulin stimula-
tion [31] or dietary restriction [32]. We also were not able
to show a replicable association with BMI in our two
study cohorts. This finding may reflect the fact that the
NR4A family of nuclear orphan receptors was shown to be
dispensable for adipogenesis, at least in the 3T3L1 adi-
pocyte cellular model [33].

The following limitations of our study should be
addressed: we did not a priori correct our data for multiple
comparisons. Bonferroni correction for 5 independently
analyzed SNPs (corrected a-level: 0.0102) would render
all reported findings nominal. However, association with
insulin secretion was consistently seen in three tagging
SNPs in the NR4A3 gene and independent of the model
used for estimation of insulin secretion (plasma insulin at
30 min OGTT, AUC( ,¢pige-to-AUC), ratio, AUC,;,-to-
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Figure 2

NR4A3 gene expression in human islets. RNA was iso-
lated from four independent (islet|-4) freshly isolated human
islet preparations, and NR4A3 gene expression was deter-
mined with quantitative real-time PCR in comparison with
the house-keeping gene RPS|3 (40S ribosomal protein S13)
and insulin-receptor-substrate 2 (IRS2). RNA preparations of
two adipose tissue samples were included as a positive con-
trol for NR4A3 expression analysis.

AUC 30 Tatio) in the TUF/TULIP Study cohort, and the
most significant association of 112686676 could be rep-
licated in a second larger population (METSIM Study). As
recent GWA studies mainly detected genes involved in
insulin secretion as diabetes risk genes [24], one may
assume that NR4A3 genetic variants have an impact on
diabetes prevalence. Surprisingly, this was not the case in
the METSIM cohort. As the METSIM study (diabetes prev-
alence: 13.8%) provides a power of 80% to detect a geno-
type relative risk of 1.15 assuming a SNP minor allele
frequency of ~0.35 [see Additional file 3], we conclude
that NR4A3 genetic variability may confer a rather modest
effect on diabetes risk, and that analysis of this locus
necessitates even larger replication samples.

Conclusion

We are confident that the described association between
NR4A3 genetic variants and insulin secretion is not a by-
chance finding, and that further research on the role of
orphan nuclear receptors in beta cell function and diabe-
tes pathogenesis is warranted. In addition, it would be
interesting to investigate the role of NR4A3 genetic vari-
ants in large studies employing a case-control design.
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Additional file 1

Associations of NR4A3 SNPs rs7047636 and rs2416879 with anthro-
pometric and metabolic data (TUF/TULIP cohort, N = 1495). Data
are given as means + SD. For statistical analysis, data were log-trans-
formed. p, — non-adjusted additive model; p, - adjusted additive model:
age was adjusted for gender; BMI and body fat were adjusted for gender
and age; glucose (Gluc) levels as well as insulin sensitivity (HOMA
model, clamp) and insulin (Ins) secretion (AUC_pyiq,10-AUCy, Tatio,
AUC,,,39t0-AUC 3 Tatio, plasma insulin at 30 min OGTT) were
adjusted for gender, age, and BMI; p; — Ins secretion parameters with
adjustment for age, BMI, gender and insulin sensitivity. *clamped sub-
group (N =506). AUC - area under the curve; BMI — body mass index;
OGTT - oral glucose tolerance test; SNP — single nucleotide polymor-
phism.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2350-10-77-S1.xls]

Additional file 2

Logistic regression analysis for differences of NR4A3 SNP's minor
allele prevalences in individuals with normal glucose tolerance (NGT)
and overt diabetes mellitus (DM) in the METSIM Study. The [95%]
confidence interval of the data provided is indicated for all different sta-
tistical models (additive, dominant, recessive) for all investigated SNPs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2350-10-77-S2.doc]

Additional file 3

Distribution of NR4A3 SNP minor allele frequencies according to glu-
cose tolerance status in the TUF/TULIP (N = 1495) and the METSIM
(N = 6147) cohort. Minor allele frequencies for each investigated
NR4A3 SNP are presented for study participants (TUEF-TULIP/MET-
SIM trial) with normal glucose tolerance (NGT), impaired fasting glucose
and/or impaired glucose tolerance (IFG/IGT) and with manifest diabetes
(METSIM participants only). p, — NGT vs. IFG/IGT in TUEF-TULIP/
METSIM( 2-test); p, - NGTvs.IFG/IGTvs. DIABETESinMETSIM (12
test). SNPs screened in TUEF/TULIP only and not replicated in METSIM
are marked with an asterisk.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2350-10-77-S3.doc]
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