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Abstract

Nucleic acids, especially extracellular RNA, are exposed following tissue- or vessel damage and have previously been shown
to activate the intrinsic blood coagulation pathway in vitro and in vivo. Yet, no information on structural requirements for
the procoagulant activity of nucleic acids is available. A comparison of linear and hairpin-forming RNA- and DNA-oligomers
revealed that all tested oligomers forming a stable hairpin structure were protected from degradation in human plasma. In
contrast to linear nucleic acids, hairpin forming compounds demonstrated highest procoagulant activities based on the
analysis of clotting time in human plasma and in a prekallikrein activation assay. Moreover, the procoagulant activities of the
DNA-oligomers correlated well with their binding affinity to high molecular weight kininogen, whereas the binding affinity
of all tested oligomers to prekallikrein was low. Furthermore, four DNA-aptamers directed against thrombin, activated
protein C, vascular endothelial growth factor and nucleolin as well as the naturally occurring small nucleolar RNA U6snRNA
were identified as effective cofactors for prekallikrein auto-activation. Together, we conclude that hairpin-forming nucleic
acids are most effective in promoting procoagulant activities, largely mediated by their specific binding to kininogen. Thus,
in vivo application of therapeutic nucleic acids like aptamers might have undesired prothrombotic or proinflammatory side
effects.
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Introduction

For a long time, the (patho-) physiological role of the intrinsic

pathway of blood coagulation remained unclear, largely because

the initiation of the ‘‘contact phase’’ activation was thought to

occur mainly via artificial surfaces such as kaolin or glass [1,2].

Although fibrillar collagens or heparin were proposed to serve as

natural promoters of contact phase activation (via factor XII

autoactivation) [3,4], recent studies from our and other laborato-

ries proposed that extracellular nucleic acids, or polyphosphates

and denatured proteins may serve as efficient cofactors in the onset

of intrinsic pathway activation under patho-physiological condi-

tions [5,6,7,8]. In particular, being an ‘‘alarm signal’’ under

conditions of tissue damage or vascular injury, extracellular

nucleic acids were proposed as ‘‘natural foreign surface’’ to

initiate factor XII autoactivation, resulting in enhanced thrombus

formation [5]. Several in vivo models confirmed the involvement of

extracellular RNA in arterial and venous thrombus formation,

edema formation and vascular hyperpermeability. Interestingly

enough, administration of ribonuclease 1 (RNase 1) significantly

reduced or prevented thrombus formation, stroke and develop-

ment of edema in respective animal models [5,9]. Under

conditions of activation of innate immunity with the formation

of neutrophil extracellular traps (NET), such DNA-histone

networks were shown to provide a procoagulant surface as well

[8].

Mechanistically, structure-function relationships that were

considered as determining factors for the procoagulant activity

of extracellular nucleic acids include: (a) the high negative charge

density of nucleic acids and (b) their polyanionic nature, required

for high affinity binding to the proteins of the contact phase

(including factors XII and XI, high molecular weight kininogen

and prekallikrein) [5]. In addition, (c) sufficiently long extracellular

RNA was found to promote protease activation in this system via a

‘‘template mechanism’’, by which both, the respective protease

and its protein substrate need to bind to the same RNA molecule,

which then may catalyse protease conversion [5,10]. Although

additional factors and conditions may contribute to the functional

activity of procoagulant nucleic acid molecules, a structure-based

analysis of their respective functions has not been undertaken so

far.

In the present study we provide first evidence that the secondary

structure of DNA and RNA oligonucleotides appears to be

important for their function as cofactors of the intrinsic

coagulation pathway in vitro. To this end, the influence of length,

secondary structure and sequence of such DNA- and RNA-

oligomers was assessed by functional coagulation assays. Further-

more, we addressed the question, whether artificial nucleic acids in
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form of DNA-aptamers, which recently provided promising results

as therapeutics for several diseases, were able to promote contact

phase activation. Additionally, we analyzed the procoagulant

activity of small nucleolar RNAs (snRNAs), which are released in

protein complexes during systemic lupus erythematosus (SLE), an

auto-immune disease with prevalent thrombotic side-effects

[11,12].

Our results indicate that small, double-stranded nucleic acid

compounds, including four DNA-aptamers and a snRNA, were

most effective to serve as promoters of intrinsic blood coagulation,

very likely through specific binding of the cofactor protein

kininogen.

Materials and Methods

Material
RNA-oligonucleotides were purchased from Purimex (Greben-

stein, Germany); biotinylated, unlabeled and hexaethylenglycol-

modified DNA-oligonucleotides were from Biomers (Ulm, Ger-

many). Sequences of the tested RNA and DNA constructs used in

this study are given in figure 1. Secondary structures of RNA- and

DNA-oligonucleotides were calculated by the mFold RNA and

mFold DNA database of the University of Albany (USA). Poly

(I:C) was purchased from InvivoGen (San Diego, USA). Chro-

mogenic substrate S2366, single-chain high molecular weight

kininogen and tissue plasminogen activator were from Haemo-

chrom Diagnostica (Essen, Germany); prekallikrein, factor XI and

factor XII were from American Diagnostica (Pfungstadt, Ger-

many). RNase, DNase, 26 RNA loading dye, 66 DNA loading

dye and 100 bp DNA ladder and the restriction enzyme BamH1

with according reaction buffer were from Fermentas (St. Leon-

Rot, Germany). PureLink HiPure Plasma Midiprep Kit, Quant-

iTTM RNA assay kit and Qubit fluorometer were from Invitrogen

(Carlsbad, USA). DNA-plasmid and reagents for in vitro transcrip-

tion of U6snRNA were provided by Dr. Albrecht Bindereif

(Institute for Biochemistry, Justus-Liebig-University, Giessen,

Germany).

In vitro Transcription of U6snRNA
U6snRNA-containig DNA-plasmid was amplified and purified

by using the PureLink HiPure Plasma Midiprep Kit according to

the manufacturer’s instructions, followed by digestion with the

restriction enzyme BamH1 and purification via phenol/chloro-

form extraction. RNA-transcription of 1 mg BamH1-digested

DNA-plasmid was performed at 37uC for one hour by using

SP6 polymerase buffer, 10 mM dithiothreitol, 0.5 mM of the

ribonucleotides adenosine-, cytosine- and uracile-triphosphate as

well as 0.1 mM guanosine-triphospate, 20 units RNase Inhibitor

and 30 units of SP6-polymerase. Remaining DNA was digested by

incubation with 2 units of DNase at 37uC for 30 min. RNA was

isolated by phenol/chloroform extraction. The quality of the

RNA-transcript was confirmed by agarose gel electorphoresis

followed by staining in a 20% (v/v) ethidium bromide solution.

Concentration of RNA was measured with the Quant-iTTM RNA

assay kit and the Qubit fluorometer.

Plasma Preparation
Blood samples were obtained from the blood bank, University

Hospital, Giessen. All patients had to give a written consent,

approved by the Ethics Committee of the Medical Faculty, Justus-

Liebig-University, Giessen, file number 05/00. Data were

analyzed anonymously. Blood samples were centrifuged at

2,8006g at 4uC for 10 min to obtain platelet-poor plasma, pooled

and aliquots were frozen at 280uC until further use.

Polyacrylamide Gel Electrophoresis of RNA- and DNA-
oligonucleotides

Oligonucleotides were subjected to electrophoresis (1.25 mg/

lane) onto 20% (v/v) polyacrylamide gels and seperated using tris-

borate-EDTA buffer, followed by ethidium bromide staining. For

digestion experiments, 1.25 mg of the respective oligonucleotides

was incubated for 1 or 5 min at 37uC with 10 mL of pooled human

EDTA- plasma, followed by addition of 10 mL RNA loading dye

or 1.5 mL DNA loading dye and subsequent polyacrylamide gel

electrophoresis. Gels were stained in a 20% (v/v) ethidium

bromide solution.

Clot/lysis Assay in Human Plasma
A 96-well microtiter plate was blocked with 3% (w/v) bovine

serum albumin (BSA) in Tris-buffered saline (TBS) at 37uC for

1 h. All reagents to be added were dissolved in 0.1 M imidazol to a

final volume of 100 mL. Increasing concentrations of RNA- or

DNA-oligonucleotides were incubated with 100 ng/mL tissue

plasminogen activator (tPA). After addition of pooled EDTA-

plasma the plate was incubated for 5 min at 37uC. Following

addition of CaCl2 (200 nM) to start the reaction, clotting times,

defined as time points with maximal absorbance, were recorded

up to 30 min at 405 nm by using KC4 software (BIO-TEK, Bad

Friedrichshall, Germany).

Prekallikrein Acitivity Assay
A 96-well microtiter plate was blocked with 3% (w/v) BSA in

HEPES buffered saline (HBS) at 37uC for 1 h. All reagents were

dissolved in HBS to a final volume of 100 mL. Twenty nM

prekallikrein was incubated with 55 nM high molecular weight

kininogen, 0.3 mM chromogenic substrate S2366, 50 mM ZnCl2
and increasing concentrations of U6snRNA, poly (I:C) or artificial

RNA- and DNA-oligonucleotides, respectively. Prekallikrein (auto-

) activation was registered up to 60 min by cleavage of

chromogenic substrate S2366 and recorded at 405 nm by using

KC4 software (BIO-TEKs).

Binding of Nucleic Acids to Proteins
Biotinylated DNA-oligonucleotides were purchased from Bio-

mers (Ulm, Germany). Microtiter plate wells were coated with

50 mL solutions of prekallikrein, high molecular weight kininogen,

factor XI or factor XII (10 mg/mL each) in 100 mM sodium

carbonate (pH 9.5) at 4uC for 20 h. Wells coated with 100 mM

sodium carbonate (pH 9.5) only were used as blank for detection

of unspecific binding of biotinylated DNA-oligonucleotides. Wells

were washed and blocked with TBS containing 3% (w/v) BSA for

2 h. Different concentrations of biotinylated DNA-oligonucleo-

tides (0.31–50 mg/mL) were allowed to bind to adsorbed proteins

at 22uC for 2 h followed by three times washing with TBS. Bound

biotinylated nucleic acids were detected using peroxidase-conju-

gated streptavidin (Dako, Glostrup, Denmark) and the immuno-

pure TMB (3,39,5,59-tetramethylbenzidine) substrate kit (Pierce,

Rockford, USA) by quantitating the reaction products at 450 nm.

Statistics
Results were expressed as the mean 6 standard error of the

mean (SEM). Two-paired analysis of variance (ANOVA) and

subsequent multiple comparison using Bonferroni-post test were

used for statistical analysis. Results were considered as significant

at p,0.05.

Hairpin-Forming Nucleic Acids Promote Coagulation
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Figure 1. Sequences and secondary structures of DNA- and RNA-oligonucleotides. Described are the secondary structures of (A) DNA- and
(B) RNA-oligonucleotides as predicted by the mFold DNA or RNA database. Delta G (DG) values represent changes in free enthalpy representative for
the stability of the compounds with negative (exergonic) or positive values (endergonic).
doi:10.1371/journal.pone.0050399.g001
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Results

Stability of RNA- and DNA-oligonucleotides in Plasma
Cellular RNA and DNA have been demonstrated to serve as

cofactors for the initiation of the intrinsic pathway of coagulation

by promoting the auto-activation of the contact phase proenzymes

[5]. In order to gain insight into the structural features for their

mode of action, two oligonucleotides forming different secondary

structures (single-stranded, hairpin) were tested for their pro-

coagulant cofactor function in plasma and in purified systems

(Fig. 1). Firstly, the stability of these DNA- and RNA-oligonucle-

otides in human plasma was analyzed by polyacrylamide gel

electrophoresis. Pretreatment with human plasma for 1–5 min

revealed that all DNA-oligonucleotides remained largely stable,

while the 21mer-L1 RNA-oligonucleotide immediately disap-

peared, likely due to hydrolysis. The 21mer-H1 RNA-oligonucle-

otide was only partly degraded during the time of incubation, and

remained detectable even after 20 min (data not shown) due to

higher stability in human plasma compared to the linear RNA-

oligomer (Fig. 2A, 2B).

Procoagulant Activity of RNA- and DNA-oligonucleotides
In a plasma recalcification clotting assay different concentra-

tions of RNA- and DNA-oligonucleotides were tested for

procoagulant activity. Among the DNA- and RNA-oligonucleo-

tides, the 21mer-H1 was most effective to shorten the clotting time

in a dose-dependent manner to 60% or 75% of the control value,

respectively. The 21mer-L1-oligonucleotide promoted only a weak

procoagulant effect (Fig. 3A, 3B).

To investigate the influence of different oligonucleotides on a

typical protease activation step of the intrinsic coagulation

pathway, prekallikrein auto-activation (in the presence of kinino-

gen) was analysed. Among all RNA- and DNA-oligonucleotides,

the 21mer-H1 DNA compound exhibited the most impressive

cofactor activity in promoting prekallikrein auto-activation. No

cofactor activity was observed for both 21mer-L1-oligonucleotides

(Fig. 3C, 3D).

Functional Activities of Different DNA-hairpin Structures
As the 21mer-H1 DNA oligonucleotide revealed the highest

cofactor activity to promote coagulation, the procoagulant

functions of different single-stranded as well as hairpin-forming

DNA-oligonucleotides were compared (Fig. 1).

All tested single-stranded DNA-oligonucleotides revealed no or

only low effects in turbidity clot/lyis assays (Fig. 4B) or

prekallikrein activity tests (Fig. 4A). In contrast, the blunt-ended

21mer-H1 exhibited prominent cofactor activity in promoting the

auto-activation of prekallikrein, while 21mer-H2, which reveals a

39-overhang, was considerably less active. Moreover, 21mer-H3,

demonstrating a 59-overhang, had no cofactor activity (Fig. 4C).

All three compounds shortened the clotting time of human plasma

in a dose-dependent manner, whereby 21mer-H1 and 21mer-H2

showed most prominent effects (Fig. 4D). As demonstrated by

polyacrylamide gel electrophoresis, the DNA-oligonucleotides

21mer-H1 and 21mer-H2 represent single hairpin secondary

structures, while the majority of 21mer-H3 may form dimers

(Fig. 4E).

In order to corroborate these findings, binding assays using

biotinylated forms of two 21mer-DNA-hairpins as well as the

21mer-L1-molecule were performed. The oligonucleotide 21mer-

H1 revealed most efficient binding to kininogen with a dissociation

constant of KD = 1.82 mM (60.23) (Fig. 5A). All tested DNA-

oligomers only showed weak binding interactions to prekallikrein

(Fig. 5B). Furthermore, all tested oligomers exhibited low binding

to factor XII, while binding towards factor XI remained

undetectable (Fig. 5C). Functionality of the biotinylated oligonu-

cleotides was confirmed by prekallikrein activity assays (Fig. 5D).

Figure 2. Stability of DNA- and RNA-oligonucleotides in human plasma. (A) Integrity of 21mer-L1 and (B) 21mer-H1 DNA- and RNA-
oligonucleotides was confirmed by polyacrylamide gel electrophoresis without or after preincubation in pooled human plasma for 1 or 5 min,
respectively. Each panel represents one representative experiment out of three independent ones.
doi:10.1371/journal.pone.0050399.g002
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Contact Phase Activation by DNA-aptamers
Aptamers, exhibiting complex secondary structures, which

promote specific binding to target proteins, were analyzed for

their procoagulant functions. Therefore, four different apatmers

that are known as potent inhibitors of thrombin, activated protein

C (APC), vascular endothelial growth factor (VEGF) or nucleolin

(AS1411) were chosen (Fig. 1) [13,14,15,16]. All aptamers were

identified as efficient procoagulant cofactors by triggering the

auto-activation of prekallikrein, whereby the 15mer-thrombin

aptamer revealed the lowest effects (Fig. 6A). As the cofactor

activity of all tested aptamers decreased at higher concentrations, a

template mechanism is most likely. The functionality of the 15mer-

thrombin aptamer to inhibit thrombin formation in human plasma

was confirmed, as the clotting time was significantly prolonged or

completely impaired at high concentrations of the aptamer. In

contrast, all other tested aptamers promoted a significant

reduction of the clotting time (Fig. 6B).

As most aptamers with potential clinical relevance are

chemically modified to improve their stability in plasma, the

influence of one possible modification on the procoagulant

function of DNA-oligonucleotides was analyzed. Therefore a 59-

hexaethylenglycol was introduced to the 21mer-H1 DNA-oligo-

nucleotide and prekallikrein auto-activation was measured. No

significant difference was observed between the modified and the

unmodified compound. (Fig. 6C).

Procoagulant Activity of Small Nucleolar RNA (snRNA)
Spliceosomal protein-RNA complexes (small nuclear ribonu-

cleoprotein particles, snRNPs) serve as auto-antigens in several

auto-immune diseases like systemic lupus erythematosus (SLE),

which is often accompanied by thrombotic side-effects [11]. To

address the question, whether the protein-associated snRNA can

contribute to a procoagulant state, the influence of purified

U6snRNA (Fig. 7B) on prekallikrein auto-activation was deter-

mined. U6snRNA promoted the auto-activation of prekallikrein in

a concentration-dependent manner, which was comparable in its

degree to the artificial RNA-polymer poly (I:C) (Fig. 7A).

Discussion

Our study describes structural features of nucleic acids that are

required for promoting procoagulant cofactor function. Three

different aspects were identified to influence procoagulant

activities of small nucleotides in vitro: stability, secondary structure

and multimerisation. The analysis of stability of DNA- and RNA-

oligomers in human plasma demonstrated that all DNA-oligomers

remained largely intact confirming former studies which revealed

that DNA-oligomers are stable in plasma for up to two hours

independently of their structure [17]. In contrast, the decay rate of

RNA-oligomers, largely due to hydrolysis by RNases which are

present in human plasma [18,19], appeared to be dependent on

the secondary structure of the compounds. Accordingly, our

results demonstrate that linear RNA-structures are hydrolyzed

Figure 3. Procoagulant activity of DNA- and RNA-oligonucleotides with different length and secondary structures. Increasing
concentrations of (A) DNA-oligonucleotides 21mer-H1 (closed circles) or 21mer-L1 (closed squares) as well as (B) the respective RNA-oligonucleotides,
21mer-H1 (closed circles) or 21mer-L1 (closed squares) were tested for procoagulant activity in a turbidity clot-lysis assay using pooled human
plasma. Coagulation was initiated by recalcification; clotting times were defined as respective time points of maximal absorbance. The clotting time
of untreated plasma was defined as 100%. The activation of prekallikrein was followed in the presence of increasing doses of (C) DNA-
oligonucleotides 21mer-H1 (closed circles) or 21mer-L1 (closed squares) as well as (D) the respective RNA-oligonucleotides 21mer-H1 (closed circles)
or 21mer-L1 (closed squares). Enzyme activity was registered by chromogenic substrate assay as described in ‘‘Material and Methods’’. All data
represent mean 6 SEM (n$3; *p,0.05; 21mer-H1 vs. 21mer-L1).
doi:10.1371/journal.pone.0050399.g003
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immediately, while hairpin-forming compounds are more stable

and were detectable for up to 20 min in human plasma.

Moreover, a clear correlation was seen between secondary

structure-dependent stability of nucleic acid oligomers and

functional activity as procoagulant cofactors.

To further analyze the interactions between nucleic acid

oligomers and coagulation processes, the binding abilities of

different DNA-oligonucleotides to coagulation proteins were

compared. The data revealed that only the 21mer-H1 DNA

oligomer specifically interacted with high molecular weight

kininogen, whereas the other tested compounds presented low or

no binding to kininogen, prekallikrein, FXI or FXII. High

molecular weight kininogen is a multifunctional protein that

serves to accelerate the activation of FXII by kallikrein as well as

the activation of FXI [20,21,22] by forming non-covalent

equimolar complexes either with FXI [23,24] or with prekallikrein

in the presence of zinc ions [20,24,25,26]. Eighty percent of

prekallikrein is bound to kininogen in plasma, and this complex

may become associated with negatively charged surfaces (like

RNA or DNA) during contact phase activation [1,2,3,4]. Our

previous and present data indicate that contact phase activation is

mediated via a specific binding of hairpin-structured nucleic acid

oligomers to kininogen, mediating activation of prekallikrein and

FXI [5].

The present results extend the knowledge on differential

interactions of nucleic acids with the blood clotting cascade. Until

now, the roles of natural extracellular RNA and DNA as cofactors

for the (auto-) activation of serine proteases in the initiation of the

intrinsic coagulation pathway were mainly ascribed to charge-

dependent interactions. Based on the present results, nucleic acids

Figure 4. Procoagulant activity of different linear and hairpin-forming DNA-oligonucleotides. Increasing concentrations of the linear
DNA-oligonucleotides 21mer-L1 (closed squares), 21mer-L2 (closed triangels) or 21mer-L3 (closed circles) were analyzed for (A) prekallikrein auto-
activation or (B) procoagulant activity in a turbidity clot-lysis assay. The clotting time of untreated plasma was defined as 100%. All data represent
mean 6 SEM (n = 3). Increasing concentrations of the hairpin-forming DNA-oligonucleotides 21mer-H1 (closed circles), 21mer-H2 (open squares) or
21mer-H3 (open triangles) were analyzed for (C) prekallikrein auto-activation or (D) procoagulant activity in a turbidity clot-lysis assay. The clotting
time of untreated plasma was defined as 100%. All data represent mean 6 SEM (n$3; *p,0.05; 21mer-H1 vs. 21mer-H3; #p,0.05; 21mer-H2 vs.
21mer-H3). (E) The sizes of DNA-oligonucleotides were analyzed by polyacrylamide gel electrophoresis. Shown is one representative experiment out
of three independent ones.
doi:10.1371/journal.pone.0050399.g004

Hairpin-Forming Nucleic Acids Promote Coagulation
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containing hairpin-forming structures provide potent procoagulant

functions. These structures are present in naturally occurring

RNA-macromolecules like ribosomal RNA, transfer-RNA and

messenger RNA, which are exposed/released from the cytoplasm

of damaged cells. Due to the presence of RNases in the circulation,

the half-life of such RNA-species may be limited and therefore a

systemic effect on activation of the clotting cascade would be

moderate. Nevertheless, local RNA concentrations at the site of

injury may be sufficient to trigger procoagulant effects.

Our study firstly identified a hairpin-containing, small nucleolar

RNA (U6snRNA; 107 nucleotides), which is part of the

spliceosome, as an efficient cofactor for the auto-activation of

prekallikrein. Several studies already described elevated plasma

levels of antibodies directed against snRNA-protein complexes

(snRNPs) [12,27] in patients suffering from SLE, an auto-immune

disease that is accompanied by thrombotic side-effects with a

prevalence of more than 10% (for review see [11]). Our results

indicate that snRNAs, likely to be released due to abnormal

apoptotic processes during SLE (for review see [28]), could

contribute to this prothrombotic state already at very low

concentrations. This effect was comparable to the activity of the

artificial RNA-polymer poly (I:C), which has no defined secondary

structure and promotes coagulation most likely via charge-

dependent interactions due to its polyanionic character.

In vivo models of thrombosis and stroke revealed that

pretreatment with RNase but not with DNase completely

abolished procoagulant activities of extracellular RNA [5,9]. This

indicates that the physiological role of cellular DNA for activation

of the clotting cascade under conditions of tissue damage is low,

possibly due to its buried position within the nucleus and its

association with histones [5,9]. Additional studies of Oehmcke

et al. identified extracellular DNA released by neutrophils under

inflammatory conditions in form of neutrophil extracellular traps

(NET) as physiologically relevant inducer of the intrinsic

coagulation pathway [8]. This NET-forming DNA reveals stable

secondary structures [29], which could, beside charge-dependent

interactions, represent possible binding sites for serine proteases.

Our observations that hairpin-forming DNA-oligomers were

most potent activators of the intrinsic coagulation pathway may

also have clinical relevance, since activation of blood coagulation

might be a potential side effect during the application of various

DNA- or RNA-aptamers. First indications that DNA-aptamers

have a procoagulant potential were presented in a study from Paul

et al. in 2010, whereby DNA-aptamer libraries, which represent a

Figure 5. Binding of biotinylated DNA-oligonucleotides to different coagulation factors of the intrinsic coagulation pathway.
Microtiter plate wells were coated with 10 mg/mL each of (A) kininogen or (B) prekallikrein and binding of increasing concentrations of the
biotinylated DNA-oligonucleotides 21mer-H1 (closed circles), 21mer-H3 (open triangles), 21mer-L1 (closed squares) was assessed. All data represent
mean 6 SD (n = 3; *p,0.05; 21mer-L1 and 21mer-H3 vs. 21mer-H1) of one representative experiment out of three independent ones. (C) Microtiter
plate wells were coated with 10 mg/mL kininogen, factor XI (FXI) or factor XII (FXII) each and incubated with 25 mg/mL each of different biotinylated
DNA-oligonucleotides: 21mer-H1 (black bars), 21mer-H3 (white bars) or 21mer-L (hatched bars). All data represent mean 6 SD (n = 3) of one
representative experiment out of three independent ones. (D) Increasing concentrations of the biotinylated DNA-oligonucleotides 21mer-H1 (closed
circles), 21mer-H3 (open triangles) or 21mer-L1 (closed squares) were analyzed for prekallikrein auto-activation. All data represent mean 6 SEM (n$3;
*p,0.05; 21mer-H1 vs. 21mer-H3).
doi:10.1371/journal.pone.0050399.g005

Hairpin-Forming Nucleic Acids Promote Coagulation
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Figure 6. Influences of DNA-aptamers on the intrinsic coagulation pathway. (A) The activation of prekallikrein was followed in the presence
of increasing doses of the DNA-aptamers 15mer-thrombin (open circles, interrupted line), 44mer-APC (closed squares), 26mer-AS1411 (closed circles)
or 25mer-VEGF (closed triangles, dotted line). (B) Turbidity clot-lysis assays were performed in the absence (black bars) or presence of 1.25 mg/mL
(white bars) and 10 mg/mL (striped bars) of the DNA-aptamers 15mer-thrombin, 44mer-APC, 26mer-AS1411 or 25mer-VEGF, respectively. Coagulation
was initiated by recalcification, clotting times were defined as respective time points of maximal absorbance. The clotting time of untreated plasma
was defined as 100%. All data represent mean 6 SEM (n = 3; *p,0.05; 1.25 mg/mL or 10 mg/mL vs. control). (C) The activation of prekallikrein was
followed in the presence of increasing doses of the oligonucleotide 21mer-H1 (closed circles) and 21mer-H1-HEG (closed squares). All data represent
mean 6 SEM (n = 6).
doi:10.1371/journal.pone.0050399.g006

Figure 7. Procoagulant activity of snRNAs. (A) Increasing concentrations of U6snRNA (closed triangles, black line) or poly (I:C) (closed diamonds,
dotted line) were analyzed for prekallikrein auto-activation. All data represent mean 6 SEM (n = 3). (B) Integrity of U6snRNA was confirmed by
agarose gelelectrophoresis.
doi:10.1371/journal.pone.0050399.g007
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mixture of DNA molecules with random sequences and secondary

structures, were shown to activate the contact phase protein

prekallikrein in an in vitro Chandler-Loop-model [30]. Their study,

however, did not approach the question, whether all molecules of

the library were able to provide cofactor functions or if only

aptamers with certain characteristics were responsible for the

described effects.

To address this question, the procoagulant functions of four

DNA-aptamers against thrombin (determined to be anti-coagu-

lant) [13], APC (determined to inhibit the anti-coagulant function

of APC) [14], VEGF (binding to VEGF) [16] and AS1411

(inhibiting nucleolin function for cancer therapy) [15] were

analyzed at concentrations comparable to plasma levels achieved

during different clinical studies [31,32,33]. All aptamers revealed

appreciable procoagulant cofactor function concerning the auto-

activation of prekallikrein. Referring to the results discussed above,

especially the already described quadruplex-structure of the

thombin-aptamer, the AS1411-aptamer [15,34], the probable

quadruplex structure (due to high GC-content) of the VEGF-

aptamer as well as the hairpin-containing sequences of the APC-

aptamer should be considered as procoagulant domains.

Additionally, all aptamers except the thombin-aptamer reduced

the clotting time of human plasma significantly, underlining their

direct procoagulant function. As the significant increase in clotting

time in human plasma confirmed the functionality of the

thrombin-aptamer due to efficient inhibition of clot formation,

no thrombotic side effects are expected by a systemic application

of this compound. However, due to the activation of prekallikrein

and the related release of bradykinin from kininogen, all tested

aptamers could induce vasodilation or proinflammatory effects,

which should be investigated by further studies. Preliminary

experiments indicated a VEGF-mediated induction of endothelial

hyperpermeability by different DNA-oligomers, which was inde-

pendent of their secondary structure (data not shown). This effect

was comparable to the already described RNA-induced hyper-

permeability [9].

Furthermore, it has to be mentioned that the DNA-aptamers

used for this study were not chemically modified. In contrast, most

of the aptamers developed for therapeutical issues may carry

several modifications including 59-polyethylenglycol, 29-fluoro-, 29-

aminomethyl- or 29-O-methyl groups [35,36,37] to increase their

stability in plasma. These modifications could modulate the here

identified procoagulant activities of aptamers. To address this

question, the procoagulant activity of the unmodified 21mer-H1

oligonucleotide was compared with a 21mer-H1 construct

carrying a 59-hexaethylenglycol modification. Both compounds

revealed comparable promotion of auto-activation of prekallikrein,

indicating that a 59-hexaethylenglycol modification is not influ-

encing the procoagulant activity of this DNA-olionucleotide.
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