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Abstract: Alzheimer’s disease (AD) is a multifactorial pathology characterized by β-amyloid (Aβ)
deposits, Tau hyperphosphorylation, neuroinflammatory response, and cognitive deficit. Changes
in the bacterial gut microbiota (BGM) have been reported as a possible etiological factor of AD. We
assessed in offspring (F1) 3xTg, the effect of BGM dysbiosisdysbiosis in mothers (F0) at gestation and
F1 from lactation up to the age of 5 months on Aβ and Tau levels in the hippocampus, as well as on
spatial memory at the early symptomatic stage of AD. We found that BGM dysbiosisdysbiosis with
antibiotics (Abx) treatment in F0 was vertically transferred to their F1 3xTg mice, as observed on
postnatal day (PD) 30 and 150. On PD150, we observed a delay in spatial memory impairment and Aβ

deposits, but not in Tau and pTau protein in the hippocampus at the early symptomatic stage of AD.
These effects are correlated with relative abundance of bacteria and alpha diversity, and are specific
to bacterial consortia. Our results suggest that this specific BGM could reduce neuroinflammatory
responses related to cerebral amyloidosis and cognitive deficit and activate metabolic pathways
associated with the biosynthesis of triggering or protective molecules for AD.

Keywords: dysbiosis; novel-object localization; firmicutes; bacteroidetes; alpha-diversity;
beta-diversity; antibiotics; high-throughput DNA sequencing; fecal bacterial microbiota

1. Introduction

Currently, more than 55 million people suffer from dementia worldwide, and there
are nearly 10 million new cases every year. Alzheimer’s disease (AD) has been the most
common dementia contributing to 60–70% of cases. AD is a neurodegenerative disorder
characterized by β-amyloid peptide (Aβ) plaques and tau neurofibrillary tangle forma-
tion [1,2] with progressive cognitive deficit [1,3]. A model for studying AD is the triple
transgenic mouse (3xTg-AD), which contains three mutations associated with familial AD
(APP Swedish, MAPT P301L, and PSEN1 M146V mutations). In this model, extracellular
Aβ accumulation within the hippocampus (HIP) appears when mice are 6 months old
(mo), and tau changes at 12 to 15 mo, with hyperphosphorylated tau (pTau) aggregates
also detected in the HIP [4]. These histological changes are associated with cognitive
impairment in behavioral paradigms, such as the T-maze, elevated plus maze, Morris water
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maze (MWM), and object recognition [4–9]. However, few reports have studied alterations
at the early symptomatic stage of AD (before six mo). In the early symptomatic stage of AD
researchers observed Aβ accumulation and pTau related to changes in theta oscillations in
the HIP; postsynaptic potential alterations in CA1 of the HIP; decreases in CA1 neuronal
excitability; decreases in dendritic spine density; low release of dopamine, norepinephrine,
and glutamate; and memory impairment in novel object localization (NOL), 8-arm radial
maze, and MWM [10–15].

Several factors are linked to AD development and progression such as neuroinflam-
mation, lipid and glucose metabolism alterations, oxidative stress, and synaptic plasticity
impairment [6,16–24]. Recent studies have focused on the role of BGM dysbiosis. Dysbiosis
refers to the loss of homeostasis between commensal, symbiotic, and pathogenic bacteria
within the intestine functionally related to the host [25,26]. Thus, at the symptomatic stage
(beyond 6 mo), an increase in Proteobacteria and Firmicutes and a decrease in Bacteroidetes
phyla in 5xFAD mice have been observed, whereas an increase in Bacteroidetes and Tener-
icutes and a decrease in Actinobacteria, Proteobacteria, and Firmicutes phyla have been
reported in APPPS1 mice. Regarding bacterial abundance, Rikenellaceae increases, and
both Akkermansia and Allobaculum genera decrease in these transgenic models [27,28]. In
3xTg mice, an increase in Firmicutes and Bacteroidetes and a decrease in Proteobacteria,
Cyanobacteria, Verrucomicrobia, and Tenericutes were observed [27–29]. On the other
hand, in the early symptomatic stage of AD, an increase in Firmicutes and a decrease in
Bacteroidetes, Actinobacteria, and TM7 phyla have been reported [10,30,31].

BGM is composed of gram-negative and -positive bacteria, i.e., Bacteroidetes and
Firmicutes, respectively. A component of the extracellular membrane of gram-negative bac-
teria is lipopolysaccharides (LPS) [32] which travel via bloodstream from the gut lumen to
the cerebral parenchyma. LPS in cerebral structures induces a microglial and inflammatory
response related to Aβ monomers, dimers, and oligomers; this suggests that the compo-
nents and metabolites produced for the BGM could participate in amyloid neurotoxicity
and could contribute as etiological factors of AD [33–36].

It is unknown if specific BGM members could act as predisposing factors for cognitive
deficits and the Aβ and tau accumulation that characterize AD. In this study, we analyzed
the composition changes of BGM induced by chronic antibiotic (Abx) treatment, transmitted
from mother to offspring. Furthermore, we investigated if these changes attenuate or delay
the spatial memory impairment, total Aβ and Aβ1-42 accumulation, and total tau and
phosphorylated tau in the HIP, at the early symptomatic stage in the 3xTg preclinical model
of AD.

2. Results
2.1. A Habituation Period for Abx Consumption Was Observed in Offspring after Weaning

The F1 NoTg-Ctrl and 3xTg-Ctrl mice maintained a stable fluid intake from weaning on
PD30 until PD60. While F1 NoTg-Abx showed a decrease in liquid intake from days 1 to 8,
this effect was also observed in the 3xTg-Abx group. A decrease in fluid consumption for
14 days was observed in 3xTg-Abx (Supplementary Figure S1a). Since then, NoTg-Abx and
3xTg-Abx equaled the fluid consumption of NoTg-Ctrl and 3xTg-Ctrl, showing no Abx
avoidance.

2.2. Offspring Body Weight Was Affected by Abx Consumption

Body weight was higher in NoTg-Ctrl mice in comparison to NoTg-Abx mice at 3
to 9 (p < 0.05 to < 0.0001), 11 (p < 0.05), 14 (p < 0.05), 15 (p < 0.01), and 17 to 23 (p < 0.01
to < 0.0001) weeks of age (Supplementary Figure S1b); the same effect was observed in
3xTg-Abx compared to 3xTg-Ctrl mice at 3 to 10 (p < 0.01 to < 0.0001), 15 (p < 0.05), and 17
to 23 (p < 0.05 to < 0.0001) weeks of age (Supplementary Figure S1b).
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2.3. BGM Perturbation with Abx Produces a Delayed Motor Alteration in 3xTg

During the NOL habituation session, there were significant differences in resting
time. The Bonferroni post hoc test showed a decrease in resting time in 3xTg-CtrlCtrl
in comparison to NoTg-Ctrl (p = 0.001) and NoTg-Abx (p = 0.005). No differences were
observed in speed or traveled distance (Figure 1a,b). These results demonstrate that 3xTg-
CtrlCtrl mice had a subtle motor alteration on PD150 (Figure 1c).
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Figure 1. BGM dysbiosis with Abx treatment slows the progression of motor and memory impairment
at the early symptomatic stage of AD. Behavioral results in the novel object localization (NOL) task.
Mean (±SEM) of (a) speed, (b) distance traveled, and (c) resting time measured in motor activity
during the NOL habituation session. (d) Exploration time of familiar object localization 1 (Fam1) in
light-colored bars and familiar object localization 2 in dark-colored bars (Fam2; three-way ANOVA)
and (e) preference percentage of familiar object localization in the training session. (f) Exploration
time of familiar object localization (Fam) in light-colored bars and novel object localization (Nov) in
dark-colored bars and (g) preference percentage of novel object localization in the retention session
of offspring (F1) male non-transgenic (NoTg) or Alzheimer’s disease triple-transgenic (3xTg) mice
that received water (Ctrl) or antibiotics (Abx) from gestation to PD150. The results were analyzed
with a two-way ANOVA for a, b, c, e, and g data or a three-way ANOVA for d and f data. * p < 0.05,
*** p < 0.0001 vs. NoTg group; # p < 0.05 to <0.0001 between groups; n = 7–10 mice per group. In this
Figure and in the following Figures, the small circles represent the data of individual animals.
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2.4. BGM Dysbiosis with Abx Attenuates NOL Memory Impairment in 3xTg Mice

A significant effect was found in the object exploration time during training between
groups. Exploration time was lower in Fam1 than in Fam2 in 3xTg-Ctrl mice (p = 0.04)
(Figure 1d). The exploration times for Fam1 and Fam2 were not significantly different from
each other; this result reflects a good familiarization process, which is relevant for recogni-
tion memory acquisition [37]. To obtain a single measurement that represents training in
the NOL and is related to BGM, we analyzed the preference percentage of familiar object
localization and found no significant differences (Figure 1e). In the retention test, significant
differences were observed in the exploration time of the novel object localization (Nov).
Exploration time for Nov was higher than for the familiar object localization (Fam) in
NoTg-Ctrl (p = 0.0006), NoTg-Abx (p < 0.0001), and 3xTg-Abx (p = 0.0081) mice (Figure 1f).
No differences were found in exploration time between Nov and Fam in 3xTg-Ctrl; this
result demonstrates that as expected there is a NOL memory deficit in 3xTg-Ctrl mice.
Additionally, statistical differences were identified in Nov exploration time between NoTg-
Ctrl and 3xTg-Ctrl groups (p = 0.0155) (Figure 1f). These results indicate a preference for the
displaced object, which is the normal behavior for memory recognition [38]. Interestingly,
Nov preference percentage was higher in 3xTg-Abx group in comparison to the 3xTg-Ctrl
group, with no effects for NoTg-Ctrl and NoTg-Abx groups (p < 0.0001 for all comparisons)
(Figure 1g), indicating a therapeutic effect of Abx treatment.

2.5. BGM Dysbiosis with Abx Treatment Attenuates Total Aβ in the Hippocampus of 3xTg Mice

There were significant differences in the total Aβ area ratio (BAM-10) in the subiculum,
CA1, and CA3. The area ratio of BAM-10 was larger in 3xTg-Ctrl than in NoTg-Ctrl, NoTg-
Abx, and 3xTg-Abx groups (p < 0.01 to <0.0001) (Figure 2a,b). Specifically, in the CA1, the
BAM-10 area ratio was larger in 3xTg-Ctrl than in NoTg-Ctrl, NoTg-Abx, and 3xTg-Abx
mice (p < 0.05 to <0.0001) (Figure 3a,c). In the CA3, the BAM-10 area ratio was larger
in 3xTg-Ctrl mice than in NoTg-Ctrl, NoTg-Abx, and 3xTg-Abx mice (p < 0.05 to 0.0001)
(Figure 2a,d), confirming now histologically the therapeutic effects of the Abx treatment.

2.6. BGM DysbiosisDysbiosis with Abx Treatment Alleviates Aβ1-42 in the Hippocampus of
3xTg Mice

In the subiculum, significant differences were reported in the Aβ1-42 area ratio. The
Aβ1-42 area ratio was larger in 3xTg-Ctrl than in NoTg-Ctrl, NoTg-Abx, and 3xTg-Abx mice
(p < 0.05 to 0.0001) (Figure 3a,b). In the CA1, the Aβ1-42 area ratio was larger in 3xTg-Ctrl
than in NoTg-Ctrl, NoTg-Abx, and 3xTg-Abx groups (p < 0.05 to <0.0001) (Figure 3a,c). In
the CA3, the Aβ1-42 area ratio was larger in 3xTg-Ctrl than in NoTg-Ctrl, NoTg-Abx, and
3xTg-Abx groups (p < 0.05 to <0.0001) (Figure 3a,d) again confirming histologically the
therapeutic effects of the Abx treatment.

2.7. Total and Phosphorylated Tau Protein in the Hippocampus of 3xTg Mice Are Not Affected by
BGM DysbiosisDysbiosis with Antibiotics

In the subiculum, significant differences were found in the total Tau protein area ratio
(Tau499). The area ratio of Tau499 was larger in 3xTg-Ctrl and 3xTg-Abx than in NoTg-
Ctrl and NoTg-Abx groups (p < 0.05 and 0.01, respectively) (Figure 4a). In the CA1, the
Bonferroni test showed that the Tau499 area ratio was larger in 3xTg-Ctrl and 3xTg-Abx
than in NoTg-Ctrl and NoTg-Abx mice (p < 0.05 and 0.01, respectively) (Figure 4b). In
the CA3, no differences were observed (Figure 4c). In the subiculum, a significant effect
was observed in the phosphorylated Tau area ratio (pTau) on Thr231. The Bonferroni
post-hoc test showed that the pTau area ratio was larger in 3xTg-Ctrl and 3xTg-Abx than in
NoTg-Ctrl and NoTg-Abx mice (p < 0.05 in all comparisons) (Figure 4d). No differences
were identified in CA1 or CA3 (Figure 4e,f).
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total Aβ. (a) Representative images show BAM-10 (green) and DAPI nuclei detection (blue) acquired 
from the hippocampus with a 40× objective. Mean BAM-10 area ratio (±SEM) in the (b) subiculum, 
(c) CA1, and (d) CA3 of F1 male non-transgenic (NoTg) or Alzheimer’s disease triple-transgenic 

Figure 2. BGM dysbiosisdysbiosis with Abx treatment slows the accumulation of total Aβ (BAM-10)
in the hippocampus at the early symptomatic stage of AD. Immunohistochemistry analysis for total
Aβ. (a) Representative images show BAM-10 (green) and DAPI nuclei detection (blue) acquired from
the hippocampus with a 40× objective. Mean BAM-10 area ratio (±SEM) in the (b) subiculum, (c) CA1,
and (d) CA3 of F1 male non-transgenic (NoTg) or Alzheimer’s disease triple-transgenic (3xTg) mice
that received water (Ctrl) or antibiotics (Abx), from gestation to PD150. The results were analyzed
with a two-way ANOVA, * p < 0.05, ** p < 0.01, *** p < 0.0001 vs. NoTg group; # p < 0.05 to <0.0001
between groups; n = 4–5 mice per group. Scale bar = 20 µm.
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Figure 4. BGM dysbiosis with Abx treatment does not change the accumulation of total Tau (Tau499)
and phosphorylated Tau (pTau) in the hippocampus at the early symptomatic stage of AD. Im-
munohistochemistry analysis for Tau499 and pTau. Mean Tau499 area ratio (±SEM) in (a) subiculum,
(b) CA1, and (c) CA3 and mean pTau area ratio (±SEM) in (d). subiculum, (e) CA1, and (f) CA3 of
F1 male non-transgenic (NoTg) or Alzheimer’s disease triple-transgenic (3xTg) mice that received
water (Ctrl) or antibiotics (Abx) from gestation to PD150. The results were analyzed with a two-way
ANOVA, * p < 0.05, ** p < 0.01 vs. NoTg; n = 4–5 mice per group.

2.8. Chronic Abx Treatment Promotes Proliferation of Proteobacteria

The relative abundance of the BGM showed statistically significant changes (Supple-
mentary Table S2). Specifically, in 3xTg-Abx vs 3xTg-Ctrl groups, we observed an increase
in Proteobacteria and a decrease in Bacteroidetes and Firmicutes in F0 at GD18–19, and in
their F1 at PD30 and PD150 (p < 0.05 to 0.0001) (Supplementary Figure S3 and Table S2).
However, F0 NoTg-Ctrl vs NoTg-Abx at GD18–19 comparisons did not show significant
changes at phylum level, but their F1 NoTg-Abx showed a significant increase in Proteobac-
teria and decrease in Bacteroidetes and Firmicutes at PD30 and PD150 (p < 0.001 to 0.0001)
(Supplementary Figure S3 and Table S2).

For the bacterial alpha-diversity indexes, statistically significant changes were shown
for all comparisons (Supplementary Table S3). In F0 at GD18–19, significant differences
were observed in NoTg-Ctrl vs NoTg-Abx (Chao1 p = 0.014, Shannon p = 0.014, and Simpson
p = 0.016) and 3xTg-Ctrl vs 3xTg-Abx (Chao1 p = 0.014, Shannon p = 0.014, and Simpson
p = 0.016) (Supplementary Figure S5a–c). In F1 at PD30, a significant effect was observed
in NoTg-Ctrl vs NoTg-Abx (Chao1 p = 0.001, Shannon p = 0.001, and Simpson p = 0.001)
and 3xTg-Ctrl vs 3xTg-Abx (Chao1 p = 0.001, Shannon p = 0.001, and Simpson p = 0.001)
(Supplementary Figure S7a–c). In F1 at PD150, significant differences were observed in
NoTg-Ctrl vs NoTg-Abx (Chao1 p = 0.001, Shannon p = 0.001, and Simpson p = 0.001)
and 3xTg-Ctrl vs 3xTg-Abx (Chao1 p = 0.001, Shannon p = 0.042, and Simpson p = 0.012)
(Supplementary Figure S9a–c).

For the beta-diversity analysis, we found that the Abx treatment significantly influ-
enced the bacterial community in all comparisons. We observed a clustering separating both
groups related to Ctrl and Abx treatments in F0 NoTg (p = 0.013) and F0 3xTg (p = 0.002)
at GD18–19 (Supplementary Figure S5d); in F1 NoTg (p = 0.001) and F1 3xTg at PD30
(p = 0.001) (Supplementary Figure S7d); and in F1 NoTg (p = 0.001) and F1 3xTg (p = 0.011)
at PD150 (Supplementary Figure S9d).
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2.9. A Vertical Transfer of BGM from F0 to F1 Was Observed at PD30

Firmicutes (5–28%) and Bacteroidetes (33–75%) are predominantly observed in parents
with no antibiotics treatment (a, F0 chart; NoTg-Ctrl and 3xTg-Ctrl). Both phyla were
vertically transferred to the offspring (F1 NoTg-Ctrl and F1 NoTg-Ctrl). The microbiome
is predominantly made up of the Proteobacteria phylum; a vertical transfer preserving a
similar relative abundance percentage of the Proteobacteria phylum (89–94%) was also
observed (Figure 5).
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Figure 5. Profile comparison of relative abundance at phylum level in (F0) mothers and (F1) offspring
treated or not with antibiotics. Stool samples from F0 were obtained on gestational day 18–19 and on
postnatal day 30 for F1. (a) Representative data from two non-transgenic mothers without antibiotics
treatment and their respective F1 (in pie chart in front) (b) Profile of two non-transgenic mothers
and their offspring that received the antibiotics. (c) Alzheimer’s disease triple-transgenic mouse
with its respective F1. (d) Profile of F0 3xTg-Abx with their respective F1. Each pie chart represents
one animal.

2.10. Bacterial Diversity Is Directly Correlated with NOL Performance and Total Aβ and Aβ1-42
in the Hippocampus

The Shannon diversity index of F1 3xTg-Ctrl and 3xTg-Abx mice at PD150 positively
correlates with NOL data (Supplementary Figure S10a–b) and the total Aβ and Aβ1-42 area
ratio in the subiculum, CA1, and CA3 of the HIP (Supplementary Figure S11a–f and Table S5).
The preference percentage of familiar object localization (NOL training) was not correlated
with bacterial diversity (p = 0.0633) (Supplementary Figure S10a). However, a statistically
significant correlation was observed between the Shannon diversity index and the prefer-
ence percentage of the NOL retention test in the F1 3xTg-Ctrl and 3xTg-Abx groups at PD150
(p = 0.0113) (Supplementary Figure S10b). Otherwise, positive correlations were found
between the total Aβ (BAM-10) area ratio in the subiculum, CA1, or CA3, and the Shannon
diversity index (p = 0.003, 0.0007, and 0.0012, respectively) (Supplementary Figure S11a,c,e).
Moreover, there was a positive correlation between the Shannon diversity index and the
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Aβ1-42 area ratio in the subiculum, CA1, or CA3 in F1 3xTg-Ctrl and 3xTg-Abx mice at
PD150 (p = 0.072, 0.008, and 0.017, respectively) (Supplementary Figure S11b,d,f). These
results indicate that F1 3xTg-Abx mice at PD150 had a low Shannon index value and a low
total Aβ and Aβ1-42 area ratio in the subiculum, CA1, and CA3 of the HIP. Likewise, F1
3xTg-Ctrl at PD150 presented a large total Aβ and Aβ1-42 area ratio in the subiculum, CA1,
and CA3 and a high Shannon diversity index (Supplementary Figure S11a–f).

2.11. NOL Performance and Aβ in the Hippocampus Correlates with BGM Taxa in 3xTg Mice
at PD150

To investigate whether the BGM is implicated in spatial memory impairment and the
accumulation of total Aβ and Aβ1-42 in HIP triggered by AD, we performed Spearman
correlation analyses using BGM abundance data, NOL data, and immunohistochemistry
data of the total Aβ and Aβ1-42 area ratio in the subiculum, CA1, and CA3 in F1 3xTg mice
at PD150 (all p-values are listed in Supplementary Tables S6 and S7) and observed interest-
ing tendencies. In the NOL paradigm, we found that the preference percentage of familiar
object localization (training) suggest positive association with the Lachnospiraceae family
and the bacterial genera Clostridium, Lactobacillus, Bifidobacterium, Allobaculum, AF12, Ru-
minococcus, Mucispirillum, Streptococcus, and negatively associated with genera Mycoplasma
and Sutterella (Figure 6). In the preference percentage of novel object localization (retention
test), we observed a tendency of association with bacterial Desulfovibrionaceae, Lach-
nospiraceae, F16, Rikenellaceae, Coriobacteriaceae families; Clostridium, Turicibacter, Dorea,
Lactobacillus, Ruminococcus, Streptococcus genera, and a negative association with Mycoplasma,
Sutterella, Klebsiella, and Enterobacter genera (Figure 6). In motor activity parameters evalu-
ated during the habituation session of NOL, resting time was positively associated with
Ruminococcaceae, Rikenellaceae, F16, and Muribaculaceae (S24-7) families (Figure 6). In
addition, speed and traveled distance were associated positively in the Streptococcus genus
and negatively with the Muribaculaceae family (Figure 6).

Concerning the bacterial taxa correlated with the Aβ1-42 area ratio in the HIP of F1
3xTg mice at PD150, the Lachnospiraceae, Desulfovibrionaceae, Ruminococcaceae, Rikenel-
laceae families and AF12, Clostridium, Prevotella, Streptococcus, Paraprevotella, Parabacteroides,
Bacteroides genera were positively associated with the total Aβ area ratio found in the subicu-
lum, and negatively associated with Enterobacteriaceae family, and Klebsiella, Enterobacter,
Mycoplasma and Sutterella genera (Figure 7).

The Aβ1-42 area ratio in the CA3 has a tendency of positive correlation with the
Clostridiales and Bacteroidales order; Lachnospiraceae, Desulfovibrionaceae, Rikenel-
laceae, Muribaculaceae, Enterobacteriaceae families; and the AF12, Clostridium, Oscillospira,
Prevotella, and Lactobacillus genera (Figure 7), and negatively correlated with the Enterobac-
teriaceae family and the Klebsiella, Enterobacter, and Mycoplasma genera (Figure 7). Similarly,
the Aβ1-42 area ratio in the CA1 brain was positively correlated with the Ruminococ-
caceae, Rikenellaceae, and F16 families and negatively correlated with the Mycoplasma
genus (Figure 7).

The total Aβ (BAM-10) area ratio in the subiculum was positively associated with
Lachnospiraceae and Rikenellaceae families and AF12, Ruminococcus, Dorea, Anaeroplasma,
Turicibacter, and Lactobacillus genera. In addition, it is negatively associated with the En-
terobacteriaceae family and the Mycoplasma and Sutterella genera (Figure 7). Regarding
the CA3, the total Aβ area ratio was positively correlated with the Rikenellaceae, Murib-
aculaceae, and F16 families and the Oridobacter and Lactobacillus genera (Figure 7), and
negatively correlated with the Enterobacteriaceae family and Klebsiella, Mycoplasma, and
Sutterella genera (Figure 7). The total Aβ (BAM10) area ratio in the CA1 was only positively
correlated with the Rikenellaceae family and negatively correlated with the Sutterella genus
(Figure 7).
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Figure 6. Heat map of Spearman correlation between the relative abundance of the main phyla and
22 genera (see rows) identified in BGM and behavioral performance in motor activity (MA), such
as speed (MA speed), traveled distance (MA distance), and resting time (MA resting time), also
the preference percentage of familiar object localization in training and novel object localization in
retention test of NOL (see columns) in Alzheimer’s disease triple-transgenic (3xTg) mice that received
water (Ctrl) or an antibiotics (Abx). The heat colors indicate positive correlations, and cool colors
indicate a negative correlation. + symbol represents significant differences (p < 0.05) observed in the
correlation analysis.

2.12. There Is a Differential Abundance in the BGM Composition in All Groups

Linear discriminant analysis (LEfSe) was used to identify the differential abundance of
bacteria, using an LDA Score of 2.5 as cutoff value. Comparing all groups in F0 at GD18–19.
In Ctrl groups, F0 NoTg showed an increase in the Clostridia order, the Muribaculaceae
family and the Coprococcus and Lactobacillus genera. In addition, 3xTg mice exhibited an
increase in the Prevotella genus. However, in the Abx groups, NoTg only showed an increase
in the Enterobacter genus, and 3xTg exhibited an increase in the Klebsiella and Sutterella
genera (Supplementary Figure S4a).

For F1 NoTg-Ctrl, NoTg-Abx, 3xTg-Ctrl, and 3xTg-Abx at PD30 comparisons, the
NoTg-Abx group showed an increase in the Enterobacteriaceae family, and the 3xTg-Ctrl
group presented an increase in the Lachnospiraceae family (Supplementary Figure S6a).

Concerning the differential abundance of bacteria inF1 NoTg-Ctrl, NoTg-Abx, 3xTg-
Ctrl, and 3xTg-Abx mice at PD150, we observed in NoTg-Ctrl an increase in the Clostridia
order; in the Lachnospiraceae, Rikenellaceae, and F-16 families; and in the Lactobacillus,
Prevotella, Ruminococcus, Clostridium, and Odoribacter genera. The 3xTg-Ctrl group exhibited
an increase in the Erysipelotrichaceae, Ruminococcaceae, Helicobacteraceae, and Murib-
aculaceae families; in the Prevotella, Bacteroidetes, Oscillospira, and AF12 genera. Moreover,
NoTg-Abx mice showed a differential bacterial abundance with an increase in the Enter-
obacteriaceae family and in the Enterobacter, Sutterella, and Klebsiella genera (Supplementary
Figure S8a).
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and 22 genera (see rows) identified in BGM microbiota and the total Aβ (BAM10) area ratio in the
subiculum, CA1, and CA3 of the HIP, as well as the Aβ (B-amyloid) 1-42 area ratio in the subiculum,
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correlation analysis.

A different profile in the differential abundances of bacteria was observed in Ctrl and
Abx in F0 NoTg and 3xTg mice at GD18–19 and F1 mice at PD30 and PD150 (Supplementary
Table S4, Supplementary Figures S4b,c and S8b,c).

2.13. The Predicted Functional Metagenome Shows Reduced Detonator Molecules and Greater
Metabolism of Protective Molecules after Abx Treatment

PICRUSt analysis shows a low pyruvate fermentation to acetone, lysine fermenta-
tion to acetate and butanoate, pyruvate fermentation to propanoate, CDP-diacylglycerol
biosynthesis, and peptidoglycan biosynthesis metabolism in NoTg-Abx and 3xTg-Abx
mice in comparison with NoTg-Ctrl and 3xTg-Ctrl mice, respectively. Interestingly, Acetil-
CoA fermentation to butanoate was identified in 3xTg-Abx compared to 3xTg-Ctrl mice
(p-values < 0.05 to <0.001 for each comparison) (Figure 8a–f); these metabolic pathways
participate in AD appearance and progression such as short-chain fatty acids (SCFA:
acetate, propionate, and butyrate), diacylglycerol related to apolipoprotein E, and pepti-
doglycan. Oppositely, the dysbiosis in BGM with Abx treatment produced an increase
in 1,4-dihydroxy-2-naphthoate, 8-amino-7-oxononanoate, pyridoxal 5′-phosphate, biotin,
oleate, L-alanine, L-phenylalanine, and L-tyrosine (p-values < 0.05 to <0.001 for each com-
parison) biosynthesis in NoTg-Abx and 3xTg-Abx groups in comparison with NoTg-Ctrl
and 3xTg-Ctrl groups, respectively (Figure 8g–n); these metabolic pathways are related to
protective AD such as vitamins and omega fatty acids biosynthesis, and neurotransmitter
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precursors. All these effects on functional metagenomics occur specifically in the mice that
received Abx treatment regardless of the genotype.
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Figure 8. BGM dysbiosis with an Abx reduces the metabolism of detonator molecules such as
(a) acetate, (b) acetate and butyrate, (c) propanoate, (d) butyrate, (e) diacylglycerol, and (f) pepti-
doglycan; and greater metabolism of protective molecules such as (g,h) biotin precursors, (i) biotin
cofactor, (j) vitamin B, (k) oleate, (l) alanine, (m) phenylalanine, and (n) tyrosine in F1 male non-
transgenic (NoTg) or Alzheimer’s disease triple-transgenic (3xTg) mice that received water (Ctrl) or
an antibiotics (Abx) from gestation to PD150. All graphs show the mean proportion of sequences
(±SEM). * p < 0.05, ** p < 0.01, *** p < 0.0001 vs. NoTg or 3xTg; n = 7–10 mice per group.
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3. Discussion

We studied vertical transference from F0 to F1 NoTg and 3xTg mice, and our results
suggest that BGM composition changes due to an Abx treatment in F0 are transmitted
to their F1. We reported that the BGM dysbiosis characteristic of AD was modified in
3xTg-Abx mice. Importantly, we found that a BGM dysbiosis with Abx treatment delays
or attenuates spatial memory impairment and total Aβ and Aβ 1-42, but not in total Tau
and phosphorylated Tau in the subiculum, CA1, and CA3 at an early symptomatic stage of
AD. On the other hand, we observed that alpha diversity correlates with NOL retention
performance, total Aβ and Aβ1-42 accumulation, and with specific bacterial consortia.

We found that F1 NoTg-Abx and 3xTg-Abx mice decrease Abx consumption for
9 and 15 days, respectively. These results are due to the neophobia that occurs in mice that
are exposed to a novel taste experience. Previous studies show that 3xTg mice exhibit
habituation impairment related to a cholinergic deficit and alteration in perirhinal cortex
function, both associated with the progression of AD [39–42]. Furthermore, we observed
a body weight decrease in NoTg-Abx and 3xTg-Abx groups; this result agrees with the
outcome obtained by Reikvam et al., who reported a decrease in body weight and liquid
consumption after Abx cocktail administration in drinking water related to the foul taste of
metronidazole [43].

Interestingly, we reported that BGM composition in F0 NoTg-Ctrl and 3xTg-Ctrl mice
and the BGM dysbiosis in F0 NoTg-Abx and 3xTg-Abx mice were transmitted to their
F1. Specifically, in the F0 3xTg-Abx group, an increase in Proteobacteria and a decrease
in Bacteroidetes and Firmicutes phyla were observed; the same relative abundance was
detected in F1 mice at PD30 and PD150. In the 3xTg-Abx group, we found an increase
in the Actinobacteria phylum in comparison to the 3xTg-Ctrl group. It is important to
notice that Actinobacteria have been associated with maintaining gut barrier homeostasis,
a decrease in intestinal permeability, and anti-inflammatory response [44,45]. Further, a
decrease in Actinobacteria is related to aging [46].

In F1 NoTg-Abx and 3xTg-Abx mice, we observed an increase in Proteobacteria and a
decrease in Bacteroidetes and Firmicutes phyla; these effects were also previously reported
in NoTg and AD transgenic mouse models [47–50]. Recent studies have shown a decrease in
Proteobacteria, and have related increased levels of Bacteroidetes and Firmicutes to AD and
aging [10,28,29,44,46,51,52]. The vertical transference from F0 to their F1 could be occurring
through vaginal microbiota [53,54] during birth, milk microbiota [55] during lactation,
and coprophagia that is common in rodents [56]. Vertical transference of BGM suggests
that the dysbiosis observed in AD mice or patients could be transmitted to their offspring
enhancing the amount of the factors that trigger the onset of AD in early adulthood.

Concerning alpha diversity, we found a decrease in the Simpson and Chao1 index in
F0 and F1 NoTg-Abx and 3xTg-Abx groups; a similar decrease was also observed after
chronic Abx treatment in NoTg and 5xFAD mice at 4 mo [57].

Regarding beta-diversity analysis, we observed a clustering separating both groups
related to Ctrl and Abx treatments in NoTg and 3xTg in F0 at GD18–19 and F1 at PD30
and PD150. The same effect was reported previously in adult AD transgenic [57,58] and
NoTg [50] mice.

In the LEfSe analysis for BGM, we reported differential dynamics of BGM associated
with each life stage such as gestation (GD18–19), childhood (PD30), and early adulthood
(PD150) and with treatment and genotype. In F0 NoTg-Ctrl and 3xTg-Ctrl groups at
GD18–19, we observed an increase in Prevotellaceae and Paraprevotellaceae families, while
in F0 3xTg mice we observed an increase in Paraprevotella and Bacteroides genera. More-
over, in the F0 NoTg-Ctrl and 3xTg-Ctrl groups at GD18–19 and F1 at PD30, we found an
increase in the Muribaculaceae family and Parabacteroides genus; these bacterial consortia
have been reported in fetal lung and placental humans during pregnancy [59], confirming
BGM vertical transference. In NoTg-Ctrl mice at PD150, the Erysipelotrichaceae and Rikenel-
laceae families, and Odirobacter and Clostridium genera were identified; these results agree
with previous reports in NoTg mice [10,28]. However, in 3xTg-Ctrl at 5 mo, an increase was
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found in Helicobacteraceae and Desulfovibrionaceae families and Bifidobacterium, Dorea,
and Allobaculum genera [10].

Furthermore, we show BGM changes related to AD progression from gestation to early
adulthood. In F0 3xTg-Ctrl mice at GD18–19, an increase in the Rikenellaceae family and in
the Clostridium, Odoribacter, Dehalobacterium genera was reported. In F1 at PD30, we found
an increase in Helicobacteraceae, Erysipelotrichaceae, and Desulfovibrionaceae families,
and in Odoribacter, Streptococcus, and Coprobacillus genera. In F1 at PD150, we found an
increase in Helicobacteraceae, Desulfovibrionaceae, and Muribaculaceae families, and in
Bifidobacterium, Dorea, Paraprevotella, Allobaculum genera. These BGM consortia alterations
could be related to vertical transference and AD progression. Likewise, the antibiotics
treatment also produced in NoTg and 3xTg an increase in the Enterobacteriaceae family
and in the Enterobacter, Klebsiella, and Sutterella genera in F0 at GD18–19 and in F1 at PD30
and PD150; these BGM changes were reported after Abx treatment [47,49,50].

In this study, we observed motor activity alterations in 3xTg-Ctrl mice at PD150.
Previous studies in 3xTg mice have demonstrated that this alteration is produced in the
later symptomatic stage of AD [60,61]. In the cognitive aspect, we found a subtle NOL
learning deficit in the exploration time variable; however, in preference percentage, this
was not observed because the preference percentage is a proportion that can dilute the
subtle effect observed in 3xTg at 5 mo [10,38]. On the other hand, in the NOL retention test,
we found a spatial memory impairment in 3xTg-Ctrl mice, as previously reported [10,11].

Here we reported an increase in total Aβ and Aβ1-42 accumulation in the subiculum,
CA1, and CA3 of the HIP from 3xTg-Ctrl mice, as previously reported [10–12]. We also
observed an increase in total Tau protein in the subiculum and CA1 as well as an increase in
phosphorylated Tau in the subiculum in 3xTg-Ctrl and 3xTg-Abx mice; these results have
been reported previously [62]. However, total Tau and pTau dynamics were circumscribed
to these hippocampal areas because Tau changes were observed in 3xTg mice at the late
symptomatic stage of AD [4,62–64].

Surprisingly, we found an amelioration in motor activity alteration, NOL training,
retention test impairment, and improvement in total Aβ and Aβ1-42 accumulation in the
subiculum, CA1, and CA3 of 3xTg-Abx mice at PD150 when BGM was perturbed. These
behavioral, cognitive, and histological effects are positively correlated with BGM alpha
diversity, relative abundance, and specific bacterial consortia, demonstrating that specific
bacteria could be related to the appearance of cognitive impairment and Aβ accumulation.
In addition, the BGM dysbiosis has no significant effect on total Aβ or phosphorylated Tau
nor does it have any correlation with BGM analysis.

It is well known that the BGM participates in the SCFA and vitamin synthesis and in
the nervous and immune system [65–67]. In our study, functional metagenomic prediction
analysis shows an interesting effect: a decrease in metabolic pathways associated with
AD, triggering molecules such as SCFA, diacylglycerol, and peptidoglycan synthesis in
NoTg-Abx and 3xTg-Abx groups. However, these effects are independent of transgenes in
the 3xTg mouse model, but the improvement in NOL memory and delay in total Aβ and
Aβ1-42 is specific to the presence of transgenes in 3xTg mice. Currently, it is known that
SCFAs participate in the appearance and progression of AD. There are controversial data
on the role of SCFAs in AD. SCFAs, such as acetate, propionate, and butyrate, are metabolic
products of anaerobic fermentation by BGM [68] (e.g., Bacteroides, Lachnospiraceae, Ru-
minococcaceae, Rikenellaceae, Desulfovibrionaceae families) [69]. There is evidence that
acetate participates in the pro-inflammatory response and that propionate and butyrate
contribute to the anti-inflammatory response, specifically regulating the levels of TNFα,
and to the activation of TNFKB [70]. Other reports describe SCFAs as a fundamental
physiopathological key that compromises the integrity of the tissue-blood barrier linking
AD and the microbiota [71]. In addition, a decrease in acetate, propionate, and butyrate
levels in plasma were observed in germ-free (GF) APPPS1 transgenic mice. These results
are associated with an increase in Barnes maze performance. Furthermore, oral adminis-
tration of SCFAs to GF APPPS1 mice produces an increase in the percentage of cerebral
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Aβ plaques, microglial activation phenotype, and microglial apolipoprotein E area [72].
There is evidence that acetate, propanoate, and butyrate participate in the inflammatory
response related to amyloidogenesis and microglial response. MacFabe et al. [73] reported
a social behavior alteration and an increase in oxidative stress and innate neuroinflamma-
tory response produced by SCFA in patients with autism spectrum disorder. Likewise,
AD patients with mild cognitive impairment exhibit high plasmatic and frontal cortex
diacylglycerol levels in the early stage of AD [74].

BGM dysbiosis could lead to an increase in the growth of pathogenic bacteria that
decrease intestinal barrier integrity, allowing pro-inflammatory molecules to travel through-
out the bloodstream to the brain [75]. The most common gram-negative bacteria in the
gastrointestinal tract are Bacillus, Pseudomonas, Staphylococcus, Streptomyces, and others that
could be associated with amyloid deposits [36]. LPS and peptidoglycan are a component of
gram-negative bacteria. These molecules are considered potent inflammatory and amy-
loidogenic factors in the parenchyma and around vessels in AD brains [76,77]. In addition,
it is possible that BGM produces Aβ aggregates and insoluble proteins exhibiting β-pleated
sheet structures, both of which induce Aβ plaque formation and enhance the risk for AD
development [58,78]. Harach et al. (2017) [28] demonstrated that a gradual increase in
BGM in aged APPPS1 mice is related to an increase in cerebral Aβ.

In PICRUSt prediction analysis, we found an increase in metabolic pathways of
protective metabolites for AD such as vitamin B (precursor, cofactor biotin, and vitamin
B) and omega 9 biosynthesis, as well as neurotransmitter precursors such as alanine,
phenylalanine, and tyrosine after BGM dysbiosis. Bacteroides, Prevotella, and Lactobacillus
bacteria produce vitamin B that participates in immune system regulation [79]. Biotin or
its precursors act as anti-inflammatory molecules, recovering the activity of the soluble
guanylate cyclase, which is inhibited by Aβ [80]. Furthermore, researchers using the
TgCRND8 transgenic model for AD observed that chronic administration of oleate (omega
9) induces a decrease in Aβ plaques in the cortex, HIP, and amygdala [81] and blocks
inflammatory signaling in neuronal cultures [82].

In our study, we found negative correlations between Aβ in the HIP of 3xTg-Abx and
some BGM such as Klebsiella, Enterobacter, Mycoplasma, and Sutterella. Previous studies
reported the participation of these bacteria in neurotransmitters and their precursor’s
biosynthesis such as dopamine, serotonin, GABA, norepinephrine, and histamine [83,84].
This finding is associated with our results reported in functional metagenomic predic-
tion observed after Abx treatment. Taken together, these results suggest a recovery of
neurotransmitter biosynthesis in the HIP of 3xTg mice at 5 mo [15].

Recently, BGM alterations have been reported with different strategies. The most
relevant results show that GF APP transgenic mouse recolonization increased cerebral
AD pathology [28]. In the APP-PS1 transgenic model, researchers reported changes in
gut microbiota after Abx modified neuro-inflammatory responses and altered microglial
morphology [58]. Probiotics administration in 3xTg mice decreases pro-inflammatory
molecules such as IL-1β, IFN-γ, and TNF-α and cerebral Aβ [85].

Overall, BGM dysbiosis, such as relative abundance, alpha and beta diversity, and
LEfSe analysis changes, caused in F0 3xTg mice at GD18–19 is vertically transferred to their
F1 observed at PD30 and PD150. Our study suggests that BGM dysbiosis with Abx is closely
linked to the delay in Aβ deposits in the HIP and cognitive deficit in the 3xTg preclinical
model of AD at the early symptomatic stage of the pathology. Abx treatment modified
BGM dysbiosis, allowing Klebsiella, Enterobacter, Mycoplasma, and Sutterella growth, which
could induce a decrease in neuroinflammatory response related to cerebral amyloidosis. In
addition, these bacterial consortia could be activating metabolic pathways related to the
biosynthesis of detonators and protective molecules of AD. Finally, we demonstrated that
total Tau and phosphorylated Tau protein were not modified by BGM dysbiosis, suggesting
that Tau accumulation and phosphorylation could be regulated by other factors in the
symptomatic stage of AD.
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Finally, it is important to mention some limitations of this study. The Spearman analy-
ses suggest interesting tendencies of correlation that did not reached statistical significance.
Similar to other preclinical results, these should be interpreted with caution, as they may
not translate directly to the human condition. Additionally, it is necessary to test out the
functional metagenomic predictions observed to link multiple factors associated with BGM
in AD onset and progression.

4. Methods and Materials
4.1. Animals

The study subjects were female (n = 16) and male (n = 8) triple-transgenic mice for
AD (3xTg) harboring APPSwe and TauP30L transgenes on a mutant PS1M146V knock-in
background, and female (n = 10) and male (n = 5) non-transgenic mice (NoTg) from the
same genetic background B6129SF1/J (both Jackson Laboratory, Bar Harbor, ME, USA)
at postnatal day 90 (PD90). All mice were housed in groups of 3–5 per cage with water
and food (LabDiet 5001) ad libitum and maintained in a room with 12h/12h light-dark
cycle, lights on at 20:00 h. We performed all behavioral procedures between 9:00 and
13:00 h. We performed genotyping as previously reported [15] to confirm the 3xTg-AD
mouse genotype.

4.2. Chronic Antibiotics Treatment

To evaluate the effect of manipulating BGM composition on memory impairment
and the accumulation of Aβ and pTau in a preclinical model of AD, the female NoTg and
3xTg mice received an antibiotic cocktail consisting of ampicillin (1.0 g/L), vancomycin
(0.5 g/L), metronidazole (1.0 g/L), and neomycin (1.0 g/L) in drinking water [49,50,86–88].
From PD90 to the end of the experiments, females were divided into groups: half of them,
including NoTg and 3xTg mice, were allowed to drink water (Ctrl); the other half received
the antibiotics (Abx). At PD100, females of every group were mated with male mice of
the same genotype. The Ctrl or Abx treatments were administered to mothers (F0) during
gestation and lactation of offspring (F1). At PD30, F1 was weaned, and male NoTg and
3xTg mice were selected for analysis. F1 mice continued on either Ctrl or Abx treatment
until PD150. Liquid consumption was recorded in the first 30 days after weaning. Body
weights were measured weekly, from PD1 to PD150 (Figure 9).

4.3. Fecal Samples Collection for Microbiota Analysis

At gestational days 18–19 (GD18–19), fresh fecal samples were collected in F0-mother
NoTg and 3xTg-AD mice to evaluate the effect of Ctrl or Abx treatment over gut micro-
biota abundance or diversity during gestation. To observe BGM abundance, or diversity,
vertically transmitted from F0 receiving Ctrl or Abx treatment, fecal samples of F1 NoTg
and 3xTg mice were collected at PD30; with the same purposes, fecal samples of F1 were
collected in the early symptomatic stage of AD, at PD150. Fresh fecal pellets were collected
and stored until their DNA microbiota profile analysis, as previously reported [10].

4.4. DNA Extraction, Library Preparation, and 16S rRNA Gene Amplicon Sequencing

DNA extraction was carried out from 2–3 fecal pellets at the Laboratorio Estatal de
Salud Pública del Estado de México, ISEM, Toluca de Lerdo, Estado de México. DNA
extraction was carried out from 2–3 fecal pellets using the Zybio-EXM 3000 automatic
nucleic acid extraction platform and nucleic acid extraction kit Cat. B-200-8 (Zybio Inc.,
Chongqing, China) (Cat: B200-8). The cartridges provided with the kit were centrifuged at
3000 rpm; subsequently, the fecal pellets from mice, 15 µL of proteinase K, and 500 µL of
lysis buffer were added to each well. Once all the samples were loaded, the cartridges and
rod covers were placed in the Zybio-EXM300® instrument, and the Zybio B-200 program
was used for DNA extraction. When the DNA extraction process was completed, DNA
samples were aliquoted into microtubes and stored at −20 ◦C. DNA concentration was
measured (260/280 abs) using a NanoDrop 2000 spectrophotometer (Thermo Scientific,
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Wilmington, MA, USA), and DNA quality was evaluated by electrophoresis in 0.5% agarose
gel. The average concentration of samples was 87.82 ± 64.47 ng/µL. The amplification of
the V3 hypervariable region of the 16S rRNA gene was amplified by PCR in a final volume
of 50 µL, using the V3-341 reverse primer (0.2 µM) containing a different barcode per sample
(1–100), and 1–10 ng of total DNA per reaction was used as a template. The information
about Golay barcode, adapters, and primers utilized was reported in Corona-Cervantes
et al. (2020) [55]. PCR master mix preparations and library preparation were accomplished
according to Bello-Medina et al., 2021 [10]. In brief, the PCR condition was 95 ◦C for 5 min,
followed by 30 cycles at 94 ◦C for 15 s, 62 ◦C for 15 s, and 72 ◦C for 15 s; and a 10 min
extension at 72 ◦C using a GeneAmp PCR System 2700 Thermocycler (Applied Biosystems,
San Francisco, CA, USA). For the library preparation, each of the 1–100 barcoded amplicons
was quantified by gel densitometry and pooled. The mixture was purified using E-Gel iBase
Power System (Invitrogen, Waltham, MA, USA), and the library’s size and concentration
were checked using the Agilent 2100 Bioanalyzer system and High Sensitivity DNA Kit
(Agilent Scientific Instruments, Santa Clara, CA, USA). High-throughput sequencing of the
∼281 bp single-end reads of the V3 region of the 16S rRNA genewere sequenced using Ion
OneTouch ES 2, Ion PGM Template OT2 200 Kit v2 DL (Life Technologies, Carlsbad, CA,
USA), Ion 318 Chip Kit v2, and Ion Torrent PGM System as previously described [89].

The sequence and corresponding mapping files for all samples used in this study
were deposited in the NCBI BioSample repository (accession number: PRJNA000000).
https://www.ncbi.nlm.nih.gov/sra/PRJNA000000 accessed on 25 November 2021.
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Antibiotic treatment or water only continued during gestation and lactation. Weaning of F1 offspring
occurred at PD30. F1 males received the same treatment as F0 but from gestational day (GD) 18–19 to
PD150. Body weights were measured during this time. Fluid consumption was measured during
the first 30 days of treatment. The novel object localization (NOL) task was performed on PD150.
NOL consists of three sessions: habituation, training, and retention tests. After the NOL task,
the mice were immediately euthanized, and their brains were processed for β-amyloid and Tau
immunohistochemistry analysis in the HIP. Fecal samples were collected in F0 at GD18–19, in F1 at
PD30 and PD150 for 16S rDNA gene sequencing analyses of bacterial gut microbiota (BGM).
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4.5. Filtering and Taxonomic Classification

Sequencing reads were filtered by the Torrent Suite™ Software 5.4: Life Technologies
Corporation Carlsbad, CA, USA (PGM software) to remove low-quality and polyclonal
sequences. Filtered data were analyzed using FastQC (v0.11.9) software and trimmed to
197 nucleotides using Trimmomatic (v0.38) software [90]; as a result, the demultiplexed
sequence files (FASTQ) were obtained and then converted into a single concatenated
FASTA file. The sequencing summary is shown in Supplementary Table S1. Demultiplexed
sequences were used as input files in QIIME2 (Quantitative Insights into Microbial Ecology)
v2.08 scripts [91]. DNA sequences were denoised and processed into amplicon sequence
variants (ASVs) using DADA2 plugin. Taxonomy was assigned to ASVs using the q2-
feature-classifier against-Green Genes database v13.8 [92].

4.6. Determination of Bacterial Abundance and Diversity

The Quantitative Insights into Microbial Ecology software (QIIME2) (v.2.08) [91] was
used for the characterization of relative microbial abundance and beta diversity. For
alpha-diversity analysis, indexes were determined using phyloseq [93] and plotted using
ggplot2 packages in R environment (v4.0.3) (R Foundation for Statistical Computing,
Vienna, Austria). For alpha diversity analyses, we used the Chao1 index (bacterial richness
estimator) and the community diversity Simpson (dominance) and Shannon (evenness)
indexes. In the case of beta diversity, the dissimilarity based on ASV abundance was
estimated using weighted UniFrac distance metric to compare the bacterial community
similarity, and three-dimensional scatter plots were generated using principal coordinate
analysis (PCoA) with QIIME2 emperor. Significant differences in the relative abundance
of bacterial taxa were detected by the Linear discriminant analysis effect size program
(LEfSe) [94] using the Galaxy web platform (Afgan et al. 2016). The effect size of each taxon
between all groups was estimated with LDA scores ≥ 2.5 and p > 0.05 [94].

4.7. Novel Object Localization Task

The apparatus used was an open acrylic box (33 cm× 33 cm× 33 cm) with black walls.
The box was cleaned with 7% acetic acid (v/v). The floor of the box was covered with a
1 cm layer of sawdust that was replaced between sessions. In the walls of the experimental
room, there were four visual cues within the visual field of mice. The objects used were
rectangular boxes of 2.8 cm × 6.5 cm; these objects were called familiar object localization 1
(Fam1) and familiar object localization 2 (Fam2) or novel object localization (Nov). These
objects were attached with Velcro® to the box floor and were cleaned after each trial with
70% alcohol solution (v/v). A video camera was positioned above the box, and each trial
was video recorded for post-training and post-retention analysis.

The F1 NoTg-Ctrl, NoTg-Abx, 3xTg-Ctrl, and 3xTg-Abx mice at PD150 were han-
dled for 5 min every day for three consecutive days. The novel object localization task
(NOL) consisted of three sessions: habituation, training, and retention tests. During the
habituation, the mice could freely explore the open box, without objects, for 5 min; in this
session, some motor activity parameters were evaluated such as speed, distance traveled,
and resting time. Twenty-four hours after habituation, in the training session, the mice
were placed in the open box, which contained the two sample objects (Fam1 and Fam2),
for 10 min. The retention test took place 24 h after the training session. Mice were placed
in the open box with one familiar object in the same place it had been during training
(Fam), and the other familiar object in a novel location (Nov) (Figure 9). The results were
expressed both as total exploration time per object and preference percentage of familiar
object localization or novel object localization for training and retention test, respectively.

4.8. Immunohistochemistry for β-Amyloid and Tau

After the NOL retention test, the mice were anesthetized and euthanized (n = 4–5
mice per group); then, they were transcardially perfused with 4% paraformaldehyde in
0.1 M phosphate buffer via the ascending aorta. Brains were removed and post-fixed
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overnight in the same solution. They were cryoprotected with 30% sucrose in phosphate
buffer for 5 days. Four frozen sagittal sections of 30 µm from the left hemisphere that
contained the subiculum, CA1, and CA3 of the HIP (lateral with respect Bregma, from 0.72 to
1.80 mm [95]) were cut with a Leica cryostat and placed on slides. Immunohistochemistry
was carried out as reported by Bello-Medina et al. (2021) [10]. The histopathological
markers of AD used in this study were: total Aβ (anti-BAM-10, 1:500; Sigma-Aldrich, St
Louis, MO, USA), Aβ1-42 (Aβ1-42, 1:500; ThermoFisher Scientific, Waltham, MA, USA),
total Tau protein (Tau499, 1:500; donated by Dr. Wischik from the University of Aberdeen,
UK), and phosphorylated Tau in Thr231 (pTau231, 1:500; Abcam, Cambridge, MA, USA).
The secondary antibody used for each primary antibody was Alexa-Fluor 488 coupled to
goat anti-mouse or anti-rabbit antibody (1:500; Life Technologies, Cambridge, MA, USA).
The nuclei were counterstained with DAPI (1:5000; Sigma-Aldrich, St Louis, MO, USA).
The stained sections were covered with fluorescence mounting medium (Fluoromount-G,
Electron Microscopy Sciences, Hatfield, PA, USA).

The subiculum, CA1, and CA3 single mosaic images used in the analyses were obtained
with a 40×/1.25 apochromatic objective lens, a filter set for Alexa 488 and DAPI detection,
and the MosaiX module for the Apotome system (Zeiss, CDMX, Mexico). Analysis of the
total Aβ, Aβ1-42, total Tau protein, and pTau231 area ratio in the subiculum, CA1, and CA3
was performed on the single optical plain images using ImageJ software. The procedure
was carried out as described previously [10,96] (Supplementary Figure S2). The results
were expressed as the area ratio (area that is occupied for total Aβ, Aβ1-42, total Tau
protein, and pTau231 in the total area of subiculum, CA1, and CA3 of the HIP of NoTg or
3xTg mice that received Ctrl or Abx treatment).

4.9. Correlation Analyses

Correlations between BGM composition (ASV abundances) and mouse metadata
parameters of the NOL task (preference percentage of familiar object localization (training)
or novel object localization (retention test)) and histological measure (area occupied for total
Aβ or Aβ1-42 in each region of HIP) were calculated using Spearman rank correlation in R
environment using the microbiome R package (R). Correlations between ASVs and host
parameters were considered significant when p < 0.05. These correlations were calculated
for F1 3xTg mice at PD150 including both treatment groups.

4.10. Metagenome Prediction of the BGM

We performed a computational approach to predict the functional composition of
a metagenome from the 16S rRNA profile of BGM using Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States (PICRUSt) [97].

4.11. Statistical Analysis

The consumption of Ctrl or Abx treatments in F1 NoTg or 3xTg mice at PD30 to PD60
was estimated as the mean of liquid consumption by all mice that were housed in the
same home-cage. We performed the Kolmogorov–Smirnov test to prove the data normality
parametric assumption. For body weight of F1 NoTg or 3xTg mice, which was registered for
23 weeks, a repeated measures three-way ANOVA was used, where factor 1 was genotype
(NoTg or 3xTg), factor 2 was treatment (Ctrl or Abx), and factor 3 was age (23 weeks). The
motor activity data analysis was performed with a two-way ANOVA, where factor 1 was
genotype (NoTg or 3xTg) and factor 2 was treatment (Ctrl or Abx). The NOL performance
analysis with exploration time measures was made with a three-way ANOVA, where factor
1 was genotype (NoTg or 3xTg), factor 2 was treatment (Ctrl or Abx), and within-subject
factor 3 was object localization (Fam1 vs. Fam2 in training or Fam vs. Nov in retention test).
For preference percentage of familiar object localization (training) or NOL (retention test) a
two-way ANOVA was performed, where factor 1 was genotype (NoTg or 3xTg) and factor
2 was treatment (Ctrl or Abx).
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For the total Aβ, Aβ1-42, total Tau protein, and pTau231 immunohistochemical analy-
sis, we applied a two-way ANOVA, where factor 1 was genotype (NoTg or 3xTg) and factor
2 was treatment (Ctrl or Abx) for each HIP area (Subiculum, CA1 or CA3). We used the post
hoc Bonferroni when appropriate. A p-value < 0.05 was considered statistically significant.

Statistical analyses of BGM data were performed using SPSS statistics V 28.0.0 (IBM,
New York, NY, USA) to compare the alpha-diversity indexes among groups, and GraphPad
Prism software v 9.0 to compare relative abundance across groups. Non-parametric Mann–
Whitney U test was used to calculate the significance between two groups, considering a
p-value < 0.05 as statistically significant. A PERMANOVA analysis was used for category
comparison of distance matrices (UniFrac). Behavioral and histological data were analyzed
for association with bacterial relative abundance, and bacterial diversity using Spearman
and Pearson correlation. Pearson correlation analysis was performed in GraphPad Prism
v.9.0.0 (San Diego, CA, USA) to identify the correlation of bacterial diversity (Shannon index)
with the measures of behavioral and histological data. p < 0.05 was considered significant.

To determine significant differences in BGM abundance and metabolic pathways,
Statistical Analysis of Taxonomic and Function software (STAMP, v2.1.3) was used. A
Kruskal–Wallis H test and Tukey-Kramer post hoc test with Benjamini-Hochberg FDR
multiple test correction were used to estimate the false discovery rate (FDR) and filter the
data considering a q-value < 0.05.
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