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BACKGROUND: We performed an integrative genomic and transcriptomic profiling to identify molecular subtypes and prognostic
markers with special focus on immune-related pathways.
METHODS: Totally, 50 Chinese patients were subjected to targeted next-generation sequencing and transcriptomic sequencing.
RESULTS: Two distinct subgroups were identified as immune (22.0%) and non-immune (78.0%) based on the immune-pathway
related hierarchical clustering. Surprisingly, patients with immune subtype had a significantly worse survival. The prognostic
capacity was validated in external cohorts. The immune group had higher expression of genes involved in pro-inflammation and
checkpoints. PD-1 signalling pathway was enriched in the immune subtype. Besides, the immune cluster presented enriched
expression of genes involved in epithelial-mesenchymal transition, angiogenesis and PI3K-AKT-mTOR signalling, while the non-
immune subtype had higher expression of metabolic pathways. The immune subtype had a higher mutation rate of PIK3CA though
significance was not achieved. Lastly, we established a prognostic immune signature for overall survival. Interestingly, the immune
signature could also be applied to renal clear cell carcinoma, but not to other histologic subtype of ovarian cancer.
CONCLUSIONS: An immune subtype of OCCC was identified with poor survival and enrichment of PD-1 and PI3K-AKT-mTOR
signalling. We constructed and validated a robust prognostic immune signature of OCCC patients.
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BACKGROUND
Ovarian clear cell carcinoma (OCCC), as s histologic subtype of
epithelial ovarian cancer, has distinctive clinical and biological
behaviour. It has a variable geographical distribution with the
highest prevalence in Asian women [1]. In the past seven years,
we tried to describe the biological behaviour and clinicopatho-
logical characteristics of Chinese OCCC patients [2–9]. OCCC
represents a great challenge and unmet need given its disease
aggressiveness and chemotherapy resistance [10, 11]. Novel
biological agents are urgently needed. Endeavours have been
made to clarify the molecular features of OCCC to explore
therapeutic targets from both genomic and transcriptomic levels
[12–16]. Genomic landscape of OCCC has been characterised in a
number of sequencing studies with modest sample sizes [13–15].
Driver mutations in ARID1A, PIK3CA, and deregulated PI3K/AKT/
mTOR and RAS/RAF/REK pathways are more commonly reported
in OCCC [13–15]. Gene expression studies reveal up-regulation of
hepatocyte nuclear factor 1-beta and oxidative stress-related
genes [17, 18]. A recent study has identified two transcriptomic

subtypes named as epithelial- and mesenchymal-like with
different prognosis [16].
In spite of these efforts, there are still no effective targeted

treatments for OCCC currently. Genomic studies have presented
mutational similarities between ovarian and renal clear cell
carcinoma, where the anti-angiogenic agent sunitinib is approved
in clinical setting [19]. However, in recently published GOG 254
trial, sunitinib, a multi-kinase inhibitor targeting vascular endothe-
lial growth factor receptor (VEGF-R), showed minimal activity in
the second- and third-line treatment in OCCC as a single agent
[20]. In another phase II trial of pembrolizumab (anti-PD-1
antibody) for recurrent ovarian cancer (KEYNOTE-100), the
response rate of clear cell carcinoma (N= 19) was 15.8%
compared to 8% for the entire cohort (N= 300) [21]. Immu-
notherapy might be promising in OCCC and further results are
awaited including durvalumab (NCT03405454), a combination
treatment of nivolumab and ipilimumab (NCT03355976).
In the present study, we conducted genomic and transcriptomic

analyses in a well-annotated cohort of Chinese OCCC patients to
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explore possible prognostic biomarkers and different subtypes,
which might shed light on subtype-tailored treatment. Consider-
ing the promising role of immunotherapy, we specifically looked
for a defined immune gene expression signature in transcriptomic
analysis to develop immune classifiers and candidate biomarkers
of immune treatment.

METHODS
Study population and datasets
A total of 50 archived tumours were collected and sequenced from Fudan
University Shanghai Cancer Center after obtaining the institutional review
board approval (050432-4-1212B) from 2014 to 2018. In our institution, all
the patients are asked whether they are willing to donate their tumour for
research purpose and sign the informed consent. In the current study, the
hematoxylin & eosin-stained slides were reviewed by an experienced
gynecology-dedicated pathologist to confirm the diagnosis. Mixed
histology was excluded. Clinicopathologic information and survival
outcomes were abstracted from medical records. The following data was
extracted: the age at diagnosis, date and type of primary surgery,
International Federation of Gynecology and Obstetrics (FIGO) stage at
initial diagnosis, residual disease, platinum-free interval (the time interval
from completion of the last platinum-based chemotherapy to disease
recurrence), time of disease progression or recurrence, and tumour status
at last contact. Patients were considered as platinum-sensitive if the
platinum-free interval was more than 6 months. Progression-free survival
(PFS) and overall survival (OS) was defined as the time interval from the
date of the primary surgery to the date of first recurrence and death or last
contact, respectively.
We retrospectively analysed the gene expression profiles and clinical

parameters of ovarian cancer patients from five public cohorts, including
three microarray datasets and two RNA-Seq dataset from The Cancer
Genome Atlas (TCGA). Only patients with relevant clinical information were
included. The OCCC datasets from our institution was used as the training
set, and we extracted genome-wide gene expression microarray data using
OCCC tissues from GSE73614 [22] and GSE65986 [12] as validation
datasets. Moreover, another four datasets from different platforms were
used as independent validation sets including TCGA-KIRC, TCGA-OV
(ovarian high-grade serous cancer), GSE63885 [23] (ovarian serous cancer)
and GSE73614 (ovarian endometrioid cancer). In microarray analysis, probe
IDs were mapped to gene symbols according to the corresponding
annotation file, and expression measurements of all probes related to a
same gene were averaged to obtain a single value.

Genomic sequencing
The formalin-fixed paraffin-embedded (FFPE) tumour samples and
peripheral blood were obtained from 50 patients. The capture-based
targeted sequencing was performed at Burning Rock Biotech laboratory
(Guangzhou, China), which is a College of American Pathologists (CAP)-
accredited and Clinical Laboratory Improvement Amendments (CLIA)-
certified clinical laboratory.

DNA extraction. The QIAamp Circulating Nucleic Acid Kit (Qiagen, Hilden,
Germany) and the QIAamp DNA FFPE Tissue Kit (Qiagen, UK) were used to
extract normal DNA from blood and tumour DNA from FFPE tumour
samples, respectively, according to the manufacturer’s instructions. The
Qubit 2.0 fluorometer and the Qubit dsDNA HS Assay Kit (Life
Technologies, Carlsbad, USA) were used to measure DNA concentration.

Next-generation sequencing (NGS) library construction and sequencing.
DNA shearing was performed using the M220 Focused-ultrasonicator
(Covaris, USA), followed by end repair, phosphorylation and adaptor
ligation. Fragments with size of 200–400 bp were selected by the
Agencourt AMPure XP beads (Beckman Coulter, USA), followed by
hybridisation with capture probes baits, hybrid selection with magnetic
beads and PCR amplification. Target capture was performed with the
OncoScreen Plus panel (Burning Rock Biotech, China) consisting of 520
cancer related genes (Supplementary Table S1), spanning 1.6 MB of human
genome. The whole exons of 312 genes and critical exons, introns and
promoter regions of the remaining 208 genes were captured. The
commonly mutant genes in OCCC [24] were covered in the 520-gene
panel. DNA quality and fragment size were assessed by Bioanalyzer 2100
(Agilent, USA). The indexed samples were sequenced on an Illumina
NextSeq 500 paired-end system (Illumina, Inc., USA).

Sequence analysis. The paired-end reads were mapped to the human
genome (hg19) by a Burrows-Wheeler aligner v.0.7.10 [25]. Local alignment
optimisation, variant calling, and annotation were performed with the
Genome Analysis Toolkit (GATK) v.3.2 [26] and VarScan v.2.4.3 [27]. DNA
translocation analysis was performed with Factera v.1.4.3 [28]. The variants
were filtered with the VarScan filter pipeline, and loci with depths of less
than 100 were filtered out. Germline mutations were also filtered out by
sequencing matched white blood cells from the samples. Base-calling in
plasma and tissue samples required at least eight supporting reads for
single nucleotide variations (SNV) and five supporting reads for insertion-
deletion variations (INDEL), respectively. Variants with population frequen-
cies of over 0.1% on the Exome Aggregation Consortium (ExAC), 1000
Genomes, dbSNP, and ESP6500SI-V2 databases were grouped as single-
nucleotide polymorphisms (SNPs) and excluded from further analysis. The
remaining variants were annotated with ANNOVAR [29] (2016–02–01
release) and SnpEff v.3.6 [30]. The tumour mutation burden (TMB) was
defined as the number of somatic mutations excluding copy number
variations (CNV), fusions and large genome rearrangement (LGR) per mega
base of genome examined. To be more specific, the mutations counted
include missense, synonymous, frameshift, splice site and indel mutations
whereas the genomic regions examined include all coding sequences
extending 20 bp into the introns. The kinase domains of EGFR and ALK
genes were excluded for TMB calculation. Thus, the total examined regions
were 1.26 M for 520-gene panel. The 520-gene panel based TMB was
proved be positively correlated with whole-exome sequencing derived
TMB [31].

RNA sequencing
RNA isolation and RNA-seq. Total FFPE RNAs were isolated by RNAstorm
FFPE RNA Isolation Kit (Cell Data Sciences, USA). Total RNAs were treated
with DNase I (NEB) to remove DNA before constructing the RNA-seq
libraries. Strand-specific RNA-seq libraries were prepared using the SMART
cDNA synthesis technology (Clontech, USA). The cDNA was pre-amplified
and the ribosomal and mitochondrial cDNA were depleted by CRISPR/Cas9
technology. Purified dsDNA was further subjected to 13 cycles of PCR
amplification. The libraries were quality controlled with Qubit (Thermo
Fisher Scientific, USA) and Qsep100 (BiOptic, China) and sequenced by the
Illumina sequencing platform (Nova) on a 150 bp paired-end run.

Processing RNA-seq data. FastQC (Babraham Bioinformatics Institute) was
used to check the sequencing quality, and high-quality reads were
mapped to human reference genome (hg38) along with the gene
annotation data (genecode v29) from the Genecode database using STAR
(v2.5.3a) [32]. Raw read counts per gene were obtained using featureCount
[33]. Transcripts per million (TPM) values were calculated with normal-
isation on a total number of counted reads.

Identification of immune clusters and integrative analysis of molecular
features. We downloaded 17 immune-related pathways from the
ImmPort database (https://immport.niaid.nih.gov). Protein-coding gene
expression profiles were transferred to immune-related pathways expres-
sion levels using the single sample gene set enrichment analysis GSEA
(ssGSEA) tool, and ssGSEA scores were z-score normalised. Clustering was
performed using R heatmap package for ssGSEA z-score matrix (clustering
method= average). The xCell algorithm [34] was used to calculate 64 cell
types score using transcriptomic data. Differential expression analysis was
performed between immune and non-immune group, and then GSEA was
executed against hallmarks and reactome signature gene set from MSigDB
database v6.2 database with dataset ranked from LogFC (http://software.
broadinstitute.org/gsea/msigdb). The immune-related genes for display
were obtained from a previous study [35].

Construction and validation of the prognostic model of OCCC. To build the
prognostic model of OCCC patients based on the protein-coding gene
expression profiles, differential expression analysis between immune
group and non-immune group was performed. Genes with P value < 0.05
and logFC > 1.5 were identified as differentially expressed genes (DEGs).
Then we used a Lasso-regularised Cox proportional hazard model with the
glmnet package (version 2.0–5) [36] to select and sort the statistically
significant clinical features. We performed a tenfold cross-validation on the
training set to calculate the weight of LASSO penalty (denoted as lambda).
The lambda=−2 was used for feature selection. The following formula
based on a combination of Lasso-cox coefficient and gene expression was
used to calculate the risk score: Model: Risk Score=BiSi where k, βi, Si
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represent the number of signature genes, the coefficient index, and scaled
gene expression level, respectively. Univariate Cox analysis and forest
visualisation were performed by R package survival and ezcox (https://
github.com/ShixiangWang/ezcox). For survival analyses, patients were
dichotomised into two groups: low versus high-risk score by median value.
Next, the Kaplan–Meier curve and log-rank test was used for survival
analysis.

Other analysis. Principal component analysis was performed by the R
package factoextra. Time-to-event distributions were estimated using the
Kaplan–Meier (KM) method and compared using the log-rank test. Volcano
plots were plotted using R package ggpubr. The Wilcox test was used to
compare various experimental groups. P values < 0.05 were considered
statistically significant.

RESULTS
Patient characteristics
A total of 50 patients from our institution were included as the
training set (Table 1). Age of the patients ranged from 26 to 79
years and the median age was 52 years. Of all, 51.0% (25/49) were
at stage I, 20.4% (10/49) were at stage II, 24.5% (12/49) were at
stage III, and 4.1% (2/49) were at stage IV. Concerning platinum
response, 22.4% (11/49) patients were platinum-resistant and
77.6% (38/49) were platinum-sensitive, respectively. During the
study period, recurrence and death was observed in 53.0% (26/49)
and 36.7% (18/49) of the patients, respectively.
We further extracted sample annotated as OCCC from public

database: GSE73614 (Caucasian, n= 37) [22] and GSE65986
(Japanese, n= 25) [12]. In the GSE73614 cohort, the median age
of the patients was 64 years old with a range from 41 to 88.
Regarding tumour stage, 35.0% were at stage I, 19% were at stage
II, 41% were at stage III, and 2% were at stage IV. For survival
analysis, only OS information was available for the cohort. In the
GSE65986 cohort, the majority of the patients (80%) presented

with early stage (I+II) disease. Therefore, only five (20%) patients
had disease recurrence, which leads to immature survival data.

Two subtypes identified by transcriptomic analysis of OCCC
We performed immune-pathway related hierarchical clustering
and identified two distinct subgroups (Fig. 1a). One subgroup had
a significantly higher expression of the 15 immune-related
pathways than the other (Fig. 1a, b). Thus, the two subgroups
were designated as the immune (22.0%, 11/50) and non-immune
(78.0%, 39/50), respectively. We compared the two subtypes in
terms of clinical features (Table 1). The median age of the patients
with immune and non-immune subtype was 50 and 52 years old,
respectively. However, no significance was achieved. Similarly,
patients with immune subtype tended to be platinum-resistant
compared to those with non-immune subtype (45.5% vs. 15.8%),
albeit with no significance. The two groups were quite compar-
able concerning tumour stage and residual disease after debulk-
ing surgery. From the Alluvial diagram (Fig. 1c), we can clearly see
that the patients in the immune group had a higher recurrence
rate and shorter survival than those in the non-immune group.
Again, the Kaplan–Meier curves (Fig. 1d, e) illustrated that the
immune subtype was related to worse survival including both PFS
(P < 0.001) and OS (P= 0.037).
We further evaluated the prognostic capacity of the subtype

classification in the two independent external cohorts (GSE73614,
GSE65986) (Supplementary Fig. S1). Patients with immune
subtype tended to have worse OS in both populations, though
significance was not achieved (Supplementary Fig. S1A, B). Given
the small sample sizes and outcome events, we amalgamated the
two cohorts to increase the statistical power and found that the
two OS curves were significantly separated (Supplementary
Fig. S1C). More interestingly, the prognostic capacity of immune/
non-immune subtype was further validated in renal clear cell
carcinoma in the TCGA data (TCGA: KIRC) (Supplementary Fig. S2A).
On the contrary, the classification could not be reproduced in
patients with ovarian endometrioid (Supplementary Fig. S2B) or
high-grade serous carcinoma (Supplementary Fig. S2C).
We sought to apply the previous epithelial- vs. mesenchymal-

like subtype classification to our dataset according to the previous
report [16]. We found that eight of eleven patients with immune
subtype were classified as mesenchymal-like (Fig. 1a). Univariate
and multivariate Cox regression analyses were performed to
compare the prognostic impact of the two classifications
(Supplementary Table S2). The results revealed that patients with
epithelial subtype had significantly better PFS than those with
mesenchymal counterpart. However, statistic significance was not
achieved concerning OS, though tendency was noted.

The two subsets displayed different immune profiles and
signalling pathways
Using transcriptomic data, we next calculated the 64 cell types
score by the xCell algorithm to explore the relationship between
immune subgroup and immune cell infiltration. We found that the
immune group had a significantly higher level of immune cells
including CD8+ T cells, regulatory T cell (Treg), Macrophages M1,
monocyte and dendritic cells (DC) (Fig. 2a). Aside from this, we
noted that the immune-related genes involving CD4, cytotoxic T
lymphocyte (CTL), helper T cell/ cytotoxic T cell 1 and Treg (TGF-β1
and FOXP3) were significantly upregulated in the immune cluster
(Fig. 2b). Besides, the immune subtype showed enriched
expression of genes involved in pro-inflammation (IL-18, PTGS2,
TNF), metabolism (NOS2) and checkpoints (PD-1, PD-L1, LAG3,
CTLA4) with statistic significance (Fig. 2b). As a representative,
Fig. 2c shows the GSEA plot showing the PD-1 signalling pathway
enrichment in the immune subtype compared to the non-immune
counterpart. By pre-ranked GSEA using ‘Hallmark’ gene sets, we
displayed that the two subtypes showed apparently different
patterns of pathway enrichment (Fig. 2d). The immune cluster

Table 1. Patient characteristics.

N(%) Immune
(n= 11)

Non-immune
(n= 39)

P valuea

Age (median 51.5, mean 50.6)

Age >=52 25 (50.0%) 3 22 0.088

Age <52 25 (50.0%) 8 17

Personal history of cancer

Yes 10 (20.0%) 3 7 0.798

No 40 (80.0%) 8 32

Family history of cancer

Yes 11 (22.0%) 3 8 0.947

No 39 (78.0%) 8 31

FIGO stage

Stage I 25 (51.0%) 3 22 0.136

Stage II+
III+ IV

24 (49.0%) 7 17

Residual disease

No residual
disease

41 (83.7%) 8 33 0.725

With
residual
disease

8 (16.3%) 2 6

Platinum-response

Platinum
sensitive

38 (77.6%) 6 32 0.096

Platinum
resistant

11 (22.4%) 5 6

aChi-square test.
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presented enriched expression of genes involved in apoptosis,
epithelial-mesenchymal transition, angiogenesis, PI3K-AKT-mTOR
and KRAS signalling. In contrast, the non-immune subtype had
higher expression of metabolic pathways, including fatty acid,
glucose, xenobiotic metabolism, and oxidative phosphorylation.
Based on these, we postulated that the patients with immune
subtype might be potential candidates for immunotherapy.

Genomic landscape of OCCC and significantly mutated genes
in the two immune subtypes
A total of 563 somatic mutations were detected, spanning 236
genes in 50 patients. Figure 3a displays the distribution of gene
alterations in the cohort. In line with previous studies, the most
common mutant genes were ARID1A (50%) and PIK3CA (52%).
Mutations were also frequently observed in other genes including
TP53 (18%), ATM (18%), SMARCA4 (14%) and PRKDC (14%).
We proceed to investigate the tumour mutation burden (TMB)

in OCCC. The entire cohort has low mutation burden (average
4.36), which is not surprising. We did notice one case with quite
high TMB (73.78) in the immune subgroup. However, no
significant difference was observed between the two subgroups
(Fig. 3b). We further compared the genomic alterations based on
immune subtypes. Interestingly, we observed that patients with
the immune subtype had a higher mutation rate of PIK3CA (72.7%
vs. 46.2%, Fig. 3a), although significance was not achieved (P=
0.11, Pearson Chi-square). Besides, the PI3K-AKT pathway did
enrich in the immune subtype (Fig. 3c). No other correlation was
observed between genomic alterations and immune classification.

Construction and validation of a prognostic immune signature
for OCCC patients
In the last step, we tried to construct a prognostic immune
signature for OCCC patients based on our cohort (Fig. 4). Firstly,
differential expression analysis was performed between immune
and non-immune group. By Lasso Cox regression analysis, a total
of 15 genes remained with individual coefficients and led to
immune score (Fig. 4b). The immune score and FIGO stage proved
to be independent prognostic factors for overall survival (Fig. 4c).
What’s more, the immune score was even more robust than stage,
with hazard ratio of 0.11 and 0.24, respectively. Patients with
higher immune scores showed worse overall survival in both the
training cohort (data from our institution) (Fig. 4d) and the
validation cohort (GSE73614, GSE65986) (Fig. 4e). Interestingly, the
immune classification is also an independent prognostic factor in
renal clear cell carcinoma based on the TCGA data (Fig. 4f).
However, the classification could not be applied to other
histologic subtype of ovarian cancer including serous and
endometrioid histology (Fig. 4g, h, i). To sum up, a prognostic
immune signature was established and validated for OCCC
patients and it might be peculiar to clear cell histology and
merits further study.

DISCUSSIONS
The current study is, to the best of our knowledge, one of the few
publications that integrates genomic and transcriptomic analysis
in ovarian clear cell carcinoma patients with a relatively large
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sample size. Transcriptomic analysis of immune pathway reveals
an immune subtype, representing 22% of OCCC, with enrichment
of PD-1 and PI3K signalling. Surprisingly, the immune subtype is
associated with significantly poor survival. Integration with
genomic analysis shows that the immune subtype patients had
a higher mutation rate of PIK3CA albeit with no significance. When
we compared the clinicopathological features of the two groups,
we noted that there was a trend to younger age and platinum
resistance in immune group. However, significance was not
achieved. Cautions should be taken in interpretation given the
relatively small sample size. For now, we couldn’t deny the
possible relationship, which merits further study. Lastly, a 15-gene
immune score signature was constructed as prognostic model for
OCCC patients based on our own data and further validated in
public repository. It is worth mentioning that the signature could
be applied to renal clear cell carcinoma but not other histologic
subtype of ovarian cancer.
Our first question was a simple but clinically important one,

namely could we find any biological prognostic biomarkers
inherent to the tumour? In a previous study, two transcriptomic
subtypes (epithelial-like and mesenchymal-like) were identified by
unsupervised gene expression analysis in OCCC [16]. The
mesenchymal-like group was associated with advanced-stage,
higher-enrichment of immune-related pathway and poor survival,
while the epithelial-like was related to early-stage tumour, a
higher frequency of SWI/SNF complex mutations and favourable
outcome [16]. However, the study was limited by completeness,
accuracy and quality of the samples collected given that most
data were curated and re-analysed from public database [16]. In
contrast, our transcriptomic classification (immune/non-immune),

generated from our own data, was not correlated with tumour
stage. In other words, we might speculate that the immune/non-
immune subtype might be the inherent feature of tumour and
independent of stage. In both studies, we did notice that the
subtype with enrichment of immune-related pathways had worse
survival. In addition, our immune signature was reproducible in
external ovarian and renal clear cell carcinoma cohorts, while not
in other histologic subtype of ovarian carcinoma. Using TCGA
dataset, Iglesia and colleagues assessed the immune cell
infiltration and overall survival across 11 tumour types, including
ovarian cancer [37]. They concluded that heterogeneous immune
infiltrates were present in different cancers and typically portend a
good survival [37]. However, the statistic significance was not
achieved in their study for ovarian cancer comprising of different
histologic subtypes [37]. In a recent publication, the immune cell
infiltrations (CD3+, FOXP3+, CD8+ T cells, CD20+ B cells) and
expressions of PD-1, PD-L1 and IDO1 were evaluated in a cohort of
162 OCCC tumours on a tissue microarray by multiplex
immunohistochemistry [38]. They found that increased infiltra-
tions of CD8+ T and macrophage were related to poor survival,
while high expressions of PD-L1 and IDO-1 were associated with
good survival [38]. Actually, our work extends but not contradicts
the study. We clarified the immune cell components, immune-
related genes and pathways based on transcriptomic analysis.
However, the specific underlying mechanism remains to be
elucidated why the immune subtype portends grave survival in
OCCC. We tried to get some hint from the coexistence of PIK3CA
mutation and enrichment of PD-1 signalling in OCCC. In breast
cancer, the PI3K pathway alterations might also be related to the
high immune status [39]. In the exploratory analyses of a clinical
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trial of breast cancer, high CD8 infiltration was related to
unfavourable survival and PI3K pathway alterations was correlated
to the tumour microenvironment [40]. Activation of PIK3CA leads
to formation of breast tumours with immune cell infiltration, as
well as gene expression linked to Treg cell signalling and
activation of targetable immune checkpoint pathways [41].
The second question of great concern was that could gene

expression molecular subtypes provide any therapeutic hint for
future study? There are no specific targeted treatments for OCCC,
although many candidate targets have been identified [11]. Based
on our study, we identified a high-risk immune subset, represent-
ing 22% of OCCC, with unfavourable survival. The immune
subtype was characterised by high expression of PD-1 signalling,
angiogenesis and PI3K/AKT/mTOR pathway. Interestingly, previous

studies suggested that targeting PI3K/AKT/mTOR signalling could
inhibit tumour progression by augmenting tumour immunosur-
veillance, preventing activation of immunosuppressive signalling
and activating anti-tumour immunity [42, 43]. In addition, PI3K/
AKT/mTOR signalling plays an important role in regulating
angiogenesis and epithelial-mesenchymal transition [44, 45].
Therefore, further studies are warranted to elucidate the role of
PI3K/AKT/mTOR signalling networks on immune regulation and
tumour progression in OCCC. Recently, three phase II clinical trials
focusing on persistent and recurrent OCCC patients showed that
VEGF-R inhibitors (sunitinib [20], cabozantinib [46] and ENMD-
2076 [47]) had minimal activity as a single agent. Therefore, we
generated two hypotheses for future studies: (i) single-agent
VEGF-R inhibitors might be more effective in the immune subset
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as single agent considering the transcriptomic analysis; (ii) the
combination treatment might be more promising, including but
no restricted in PI3K pathway targeted therapy, anti-angiogenesis
agent, and checkpoint inhibitors. On the other hand, immune
therapy seemed promising in OCCC despite that only small cases
were included in previous trials. Two major questions remain to be
answered. Firstly, is immunotherapy really effective in recurrent
OCCC patients? If yes, as a single agent or in combination?
Secondly, is there any predictive biomarkers for immunotherapy in
OCCC patients? We tried to answer the latter question in detail.
The well-established biomarkers for immunotherapy are PD-L1
expression, microsatellite instability (MSI) and mismatch repair
deficiency (dMMR) and TMB [48]. From our study, we observed
that immune subtype had higher mutation rate of PIK3CA. We
wondered whether patients with PIK3CA mutation, which is one of
the most common mutant genes in OCCC, might be predictive
biomarkers for PD-1 inhibitor combination therapy. In the recent
secondary analysis of the CLAP trial, the PIK3CA mutation was
found to be a novel predictive biomarker in cervical cancer
patients treated with combination therapy of PD-1 and VEGF-R
inhibitor [49]. Similarly, the RTK/Ras/PI3K/AKT pathway alterations
might be potential biomarkers for immunotherapy in diffuse
gliomas [50].To better answer the above questions, we genuinely
hope to initiate prospective clinical trials to further explore the
role of immune cluster as a predictive marker for immunotherapy
and/or other biologic agents.
The present study has several limitations. Firstly, given disease

rarity, we only include 50 cases. The sample size might be
relatively large as compared to other single-institutional study
focusing on OCCC. However, the sample size largely limits the
statistical power for subgroup analyses and cautions should be
taken when interpreting the results. Secondly, the limited scope of
multi-gene panels might affect the ability to evaluate overall
mutation burden and patterns, signatures that might be relevant
for neo-antigen formation. Thirdly, some clinicopathological
information was missing due to the retrospective study design.
Fourthly, the clinical relevance and predictive role of PIK3CA
mutation in immunotherapy lack functional validation in pre-
clinical or clinical models. Lastly, we only included platinum-
response in the study and no statistical association between
immune subtype and platinum sensitivity was found given the
current small sample size. In the near future, we hope to initiate a
prospective clinical trial to further explore the role of immune
cluster as a predictive marker for immunotherapy and/or other
biologic agents.

CONCLUSIONS
By integrative genomic and transcriptomic analysis, we delineated
two different OCCC molecular subtypes with different functions
and prognosis. The immune subset was enriched in PD-1 and
PI3K-AKT-mTOR signalling. A robust prognostic immune signature
of OCCC patients was constructed based on our data and
reproducible in public repositories. The predictive role of
immune/non-immune classification to target therapy merits and
awaits further prospective studies.
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