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Cell-free protein synthesis (CFPS) is an in vitro process that enables diverse applications in
research, biomanufacturing, point-of-care diagnostics, therapeutics, and education using
minimal laboratory equipment and reagents. One of the major limitations of CFPS
implementation is its sensitivity to plasmid type. Specifically, plasmid templates based
on commonly used vector backbones such as the pET series of bacterial expression
vectors result in the inferior production of proteins. To overcome this limitation, we have
evaluated the effect of expression cassette elements present in the pET30 vector on
protein production across three different CFPS systems: NEBExpress, PURExpress, and
CFAI-based E. coli extracts. Through the systematic elimination of genetic elements within
the pET30 vector, we have identified elements that are responsible for the poor
performance of pET30 vectors in the various CFPS systems. As a result, we
demonstrate that through the removal of the lac operator (lacO) and N-terminal tags
included in the vector backbone sequence, a pET vector can support high titers of protein
expression when using extract-based CFPS systems. This work provides two key
advances for the research community: 1) identification of vector sequence elements
that affect robust production of proteins; 2) evaluation of expression across three unique
CFPS systems including CFAI extracts, NEBexpress, and PURExpress. We anticipate that
this work will improve access to CFPS by enabling researchers to choose the correct
expression backbone within the context of their preferred expression system.
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INTRODUCTION

Cell-free protein synthesis (CFPS) provides an on-demand protein expression platform that is
compatible with circular plasmids as well as linear DNA and RNA templates (Jewett and Swartz,
2004; Gregorio et al., 2019; Asahara et al., 2021; McSweeney and Styczynski, 2021; Batista et al.,
2022). The use of CFPS bypasses the need to maintain living cells, therefore, all cellular energy
and machinery can be directed toward protein synthesis. The open nature of the cell-free
platform allows users greater control of the reaction conditions than in vivo expression
platforms. CFPS also enables the expression of cytotoxic and complex proteins that may
otherwise be difficult to express in living cells (Jewett and Swartz, 2004; Pardee et al., 2016;
Dopp et al., 2019; Garenne et al., 2019; Jin et al., 2019; Kay and Jewett, 2020). Recently,
improvements in the upstream and downstream processing of cell lysates from the widely
adopted E. coli platform have led to more consistent results and an increased shelf life of the
reaction mixtures (Smith et al., 2014; Kwon and Jewett, 2015; Cole et al., 2020; Gregorio et al.,
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2020; Levine et al., 2020). Due to these benefits, CFPS systems
are enabling a variety of academic research efforts,
biotechnology innovations, and large scale
biomanufacturing (Pardee et al., 2016; Huang et al., 2018;
Khambhati et al., 2019; Kightlinger et al., 2019; Choi et al.,
2020; Liu et al., 2020; Silverman et al., 2020; Williams et al.,
2020; Burrington et al., 2021a; Brookwell et al., 2021; Si et al.,
2021).

Barriers to access have reduced significantly as CFPS systems
have become commercially available in the form of kits derived
from lysates of a variety of chassis organisms, as well as
reconstituted systems (Shimizu et al., 2005). For this study, the
New England Biolab’s NEBExpress and NEB PURExpress kits
were used alongside our in-house E. coli lysate-based CFAI
system to assess the effects that distinct vector elements have
on protein synthesis (Levine et al., 2020; Smith et al., 2021; Mullin
et al., 2022). Both the NEBExpress and CFAI systems utilize crude
E. coli extracts. In contrast, the NEB PURExpress system is
reconstituted with purified components of the E. coli
translation machinery. The purified systems are an important
part of the CFPS biotechnology portfolio since they provide
protein expression conditions in which protease and nuclease
activity is minimized (Shimizu et al., 2001) to preserve nucleic
acid templates and protein products.

The CFPS community has systematically reduced many of the
bottlenecks that limited the broad utility of CFPS ushering the
biotechnology’s renaissance over the last 20 years. However,
compatibility of DNA templates in the CFPS system continues
to remain a limit for the robust production of target proteins
(Romantseva and Strychalski, 2020). In the E. coli–based CFPS
platform, commonly used pET series expression vectors have
been observed to result in significantly lower protein titers and
yields when compared to the alternate vectors such as pJL1
(Zhang et al., 2018; Colant et al., 2021). The pJL1 vector
(Addgene #69496 and #102634) is derived from the pY71
vector, which was a simplified version of the pK7 plasmid.
This plasmid lineage has been successfully utilized for CFPS
and has set the benchmarks for CFPS applications for over a
decade (Swartz et al., 2004; Bundy and Swartz, 2010). The
importance of expression vectors has also been demonstrated
in Streptomyces-based cell-free systems (Xu et al., 2022). In vivo
studies in E. coli have identified features within the pET series of
expression vectors that hinder protein expression yields (Shilling
et al., 2020). The in vivo study determined that an incomplete T7
promoter found in pET28a decreased sfGFP production. This
truncated T7 promoter was also identified in 88 of the 103 pET
expression vectors. Such efforts are needed for in vitro expression
given the precedence for variation in sequence elements found in
expression vectors being consequential for expression yields. We
first established that the vector used in this study, pET30, contains
the complete T7 promoter. The goal of this study was to examine
additional features of the pET expression vector series that may
have an impact on protein yields in CFPS systems. We assessed
the effects of the pET30 lacO and the N-terminal tags (6x poly-
histidine tag and S tag) on sfGFP expression. Four versions of the
pET30 vector were constructed with and without lacO and
N-terminal His-tag. The expression of sfGFP across three

CFPS expression systems was then determined through
fluorescence evaluate the impact of these sequence elements.

MATERIALS AND METHODS

Strains and Growth Conditions
E. coli strains BL21(DE3) and MC1061 were used in this study.
Cultures were aerobically grown at 37°C in Luria Bertaini (LB)
broth or plates. Kanamycin (30 μg/ml) was added to the media for
cultures containing pET30-derived vectors and pJL1-sfGFP. The
BL21(DE3) strain was used to prepare CFAI-based CFPS extracts
as previously described (Levine et al., 2020; Smith et al., 2021;
Mullin et al., 2022). The CFAI media auto-induces T7 RNAP
expression during cell growth, and cells are harvested at high
ODs. The MC1061 strain was used as the host for cloning
variations of the pET30 expression plasmids. All
transformations were performed via electroporation with 40 μl
of electrocompetent cells and approximately 30 ng of DNA using
the BTX Electro Cell Manipulator 600 (Harvard Apparatus Inc.;
2.45 kV, 129Ω). Immediately after electroporation, cells were
incubated with 500 μl SOC recovery medium for 1 h at 37°C,
plated on LB-kanamycin plates, and incubated at 37°C for
18–24 h.

Molecular Techniques
The polymerase chain reactions (PCR) were performed in 20 µl
volumes with Phusion Flash High-Fidelity PCR 2X Master Mix
(Thermo Scientific, Rockford, IL, United States) containing 0.2 ng
of template DNA and a final primer concentration of 0.1 µM. The
vector and inserts used to construct the pET30 variations were
amplified with forward and reverse primers noted in Table 1. The
thermocycling parameters included a 1-min denaturation at 98°C
followed by 30 cycles of 10 s at 98°C, 30 s at various annealing
temperatures, and 15 s per kb of expected product at 72°C. The
reaction ended with a final 5-min extension step at 72°C and hold
at 4°C.

Gibson assembly was performed using 17 fmoles each of the
amplified insert and vector fragments in a 6 µl reaction
containing Taq ligase (4 U/µl), T5 exonuclease (0.02 U/µl), and
Phusion DNA polymerase (0.025 U/µl) purchased from New
England Biolabs (Ipswich, MA, United States). Each reaction
was incubated 15 min at 50°C in 1X Gibson buffer (125 mM Tris-
HCl pH 7.5, 6.25% PEG-8000 (w/v), 12.5 mM MgCl2, 12.5 mM
DTT, 2.5 mM dNTPs, and 1.25 mM NAD).

Cell-free protein synthesis reactions using in-house CFAI-based
cell extracts were performed as described (Levine et al., 2020).
Reactions using the PURExpress® and NEBExpress® kits (New
England Biotech, Ipswich, MA, United States) were performed
according to manufacturer’s instructions. All CFPS reactions were
run in triplicate using sfGFP as the reporter protein.

Quantification of Reporter Protein sfGFP
Fluorescence intensities of sfGFP from each CFPS reaction were
measured in triplicate. Each measurement consisted of a solution
of 48 µl of 0.05 M HEPES at pH 7.2 and 2 µl of the sfGFP CFPS
reaction solution in a black 96 well plate. Each 50 µl solution’s
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fluorescence was then measured at an excitation wavelength of
485 nm and an emission wavelength of 528 nm. The quantity of
sfGFP was then calculated using a previously developed standard
curve (Levine et al., 2019).

RESULTS

To systematically determine the effect of each constituent of the pET
vector on CFPS, four vectors were constructed: pET30-T7-lacO-His/
S-sfGFP (Addgene #180754), pET30-T7-lacO-sfGFP (Addgene
#180756), pET30-T7-His/S-sfGFP (Addgene #180755), and
pET30-T7-sfGFP (Addgene #180757). Graphic representations of
the expression cassettes in each of the four plasmids are shown in
Figure 1. As seen in Figure 1B, the gene encoding sfGFP is located
downstream from both lacO and the N-terminal tags, and
transcription is controlled by the T7 promoter. The effect on cell-
free expression was measured as a function of removing the pET30
encoded N-terminal His & S tags (pET30-lacO-sfGFP), the lacO
(pET30-His/S-sfGFP), or both N-terminal tags and the lacO
sequences (pET30-T7-sfGFP). For this assessment, sfGFP
expression from these plasmids were compared to the preferred
pJL1-sfGFP reporter plasmid, which is also driven by the T7
promoter but does not include lacO or N-terminal His & S tags
in the expression cassette. An alignment of the most relevant
sequences that differ between the plasmids is provided in
Supplementary Figure S1.

In the CFAI-based CFPS system, removing lacO (pET30-T7-His/
S-sfGFP), theN-terminal tags (pET30-T7-lacO-sfGFP), or both lacO
and the N-terminal tags (pET30-T7-sfGFP) resulted in increased
sfGFP expression (Figure 2A). The removal of lacO alone (pET30-
T7-His/S-sfGFP) had a greater effect on improving sfGFP expression
compared to the removal of the N-terminal tags alone (pET30-T7-
lacO-sfGFP). For the NEBExpress system, there was an increase in

sfGFP expression when lacO (pET30-T7-His/S-sfGFP), the
N-terminal tags (pET30-T7-lacO-sfGFP), or the combination of
both lacO and theN-terminal tags (pET30-T7-sfGFP)were removed
from the pET30 vector (Figure 2B). Similar to the CFAI-based CFPS
system, the removal of lacO alone (pET30-T7-His/S-sfGFP) had a
greater impact on improving sfGFP expression compared to the
removal of N-terminal tags alone (pET30-T7-lacO-sfGFP).

As observed with extract-based CFPS systems, sfGFP
expression could also be improved for the NEB PURExpress
system upon removing elements upstream of the reporter gene.
The PURExpress system was less sensitive to the lacO element,
lacking the repressor is a likely advantage of the purified system.
sfGFP expression increased notably upon removal of the
N-terminal tags (pET30-T7-lacO-sfGFP) and when both lacO
and the N-terminal tags were removed (pET30-T7-sfGFP)
(Figure 2C).

Overall, removing both lacO and the N-terminal tags
enhanced the expression of sfGFP; however, the individual
effects of lacO and the N-terminal tags differed between the
three CFPS systems. In general, the removal of lacO alone had a
more substantial impact on sfGFP fluorescence and expression in
the extract-based CFAI and NEB Express systems whereas, in the
NEB PURExpress CFPS system, the removal of the N-terminal
tags had the greatest effect. Consistent with prior observations,
fluorescence data also revealed much higher maximum yields of
sfGFP through the CFAI-based CFPS system (>1,000 μg/ml) than
in the NEB Express (~800 μg/ml) and NEB PURExpress
(~200 μg/ml) CFPS systems (Burrington et al., 2021b).

DISCUSSION

The choice of expression vectors plays a critical role in CFPS as
vectors may contain elements that negatively impact protein

TABLE 1 | Primers used to construct pET30 expression vectors. Primers for amplification of insert and vector backbones used in Gibson assembly to construct pET30-T7-
sfGFP, pET30-lacO-sfGFP, pET30-His-sfGFP, and pET30-lacO-His-sfGFP.

Primer sequences Tm Annealing

pET30-T7-sfGFP
Insert: T7-Pro-Gib-F ccgcgaaattaatacgactcactatagg 59°C 63°C
Insert: T7-Term-Gib-R ctttcagcaaaaaacccctcaag 56°C
Vector: T7-Term-Gib-F cttgaggggttttttgctgaaag 56°C 63°C
Vector: T7-Pro-Gib-R cctatagtgagtcgtattaatttcgcgg 59°C

pET30-T7-lacO-sfGFP
Insert: RBS-sfGFP-F ctttaagaaggagatatacatatgagcaaaggtgaagaactg 62°C 55°C
Insert: T7-Term-Gib-R ctttcagcaaaaaacccctcaag 56°C
Vector: T7-Term-Gib-F cttgaggggttttttgctgaaag 56°C 63°C
Vector: pET-RBS-long-R catatgtatatctccttcttaaagttaaacaaaattatttctagagg 58°C

pET30-T7-His/S-sfGFP
Insert: pET-RBS-F gtttaactttaagaaggagatatacatatg 52°C 58°C
Insert: T7-Term-Gib-R ctttcagcaaaaaacccctcaag 56°C
Vector: T7-Term-Gib-F cttgaggggttttttgctgaaag 56°C 58°C
Vector: pET-RBS-long-R catatgtatatctccttcttaaagttaaacaaaattatttctagagg 58°C

pET30-T7-lacO-His/S-sfGFP
Insert: N-tag-sfGFP-F cacatggacagcccagatctcatgagcaaaggtgaagaactg 69°C 63°C
Insert: T7-Term-Gib-R ctttcagcaaaaaacccctcaag 56°C
Vector: T7-Term-Gib-F cttgaggggttttttgctgaaag 56°C 61°C
Vector: pET-No-Cut-DIC-R agatctgggctgtccatgtg 58°C
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expression. When implementing pET vectors in CFPS, the
removal of lacO and the N-terminal tags resulted in increased
sfGFP production across all three expression systems tested. The
removal of lacO appears to play a more significant role in sfGFP
expression in the lysate-based CFAI and the NEB Express CFPS
systems. This is likely due to the presence of lactose operon
repressor present in the E. coli cell extracts and absent in the
reconstituted PURExpress system. As the pET30 plasmids
include a lacI expression cassette, residual E. coli RNA
polymerase in the extracts may also lead to expression of
supplemental LacI repressor directly from the vector. When
lacO was present in the pET30 expression vector (pET30-T7-
lacO-sfGFP and pET30-T7-lacO-His/S-sfGFP), there was a larger
decrease in sfGFP yield in the CFAI system (Figure 2A)
compared to the decrease in the NEB Express CFPS system
(Figure 2B). These differences may be due to the nuanced
methods in extract preparation between the two systems.
According to NEB, the NEBExpress CFPS system is supplied
with an optimized quantity of wild-type T7 RNA polymerase,
which may produce mRNA transcripts more efficiently in the

presence of the lac repressor. The NEBExpress system is
generated from an E. coli strain which has a single copy of the
lacI gene, which presumably expresses low levels of the Lac
repressor protein. Optimized quantities of DNA template are
therefore expected to exceed the number of Lac repressor
molecules. Increasing DNA template quantities may be one
possible solution to the Lac-based repression. The benefits
observed from the removal of the lacO sequence may also be
due to additional, more nuanced factors such as mRNA structure
and stability, and possible impacts on translation initiation.While
these and other factors are worth further study, the results of this
work provide practical and actionable set of insights for
researchers to either sub-clone a gene of interest into a CFPS-
compatible vector, or selectively eliminate regions that may
adversely impact CFPS expression from their preferred vector.

Purification is a typical goal of recombinant protein
expression, so purification tags are often integrated into
frequently used expression vectors. The presence of
N-terminal His and S tags suppressed protein expression in all

FIGURE 1 | Schematic of the expression vectors studied. (A) pJL1-
sfGFP represents the reference vector, (B) the pET30-T7-lacO-His/S-sfGFP
cassette contains the T7 promoter (T7 pro) followed by lacO and a N-terminal
purification tags (His and S tags) included in the pET30 vector backbone.
Modifications of the pET30 expression cassette included the deletion of (C)
the N-terminal His/S-tags, (D) lacO, and (E) both lacO and the N-terminal tags
to assess the effects on sfGFP expression. Similar to pET30-T7-sfGFP, the
pJL1-T7-sfGFP cassette includes the same T7 promoter but not the lacO nor
the N-terminal His-tag. All templates used in this study were in their circular
plasmid forms. While the backbone sequences are not displayed here,
pET30a includes the lacI gene that is not present in the pJL1 backbone.

FIGURE 2 | sfGFP expression from the CFAI-based, NEB Express, and
NEB PURExpress CFPS systems. The sfGFP yields from (A) CFAI-based, (B)
NEBExpress, and (C) NEB PURExpress CFPS systems determined by
fluorescence. Data are presented as mean ± s.d. (n = 3).
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three CFPS systems to varying extents. Investigating the interplay
between N-terminal tags and ribosome binding site (RBS)
sequences may also be warranted (Salis et al., 2009; Zhang
et al., 2021). To evaluate the importance of the RBS, we
utilized the extremely useful tool De Novo DNA (www.
denovodna.com) (Espah Borujeni et al., 2014; Espah Borujeni
and Salis, 2016; Espah Borujeni et al., 2017). Notably, the RBS
calculations do not correlate with the sfGFP expressions observed
in our vectors, highlighting the importance of other molecular
mechanisms must be at play for optimal expression in CFPS.
Another consideration is that the presence of the His-tag may
deplete the pool of L-histidine in the CFPS reactions, which could
be further studied by either supplementing L-histidine to the
reaction, or evaluating additional constructs in which the His-tag
is moved to the C-terminus rather than removed. Given the
importance of purification tags and the need to utilize them at the
N-terminus, it will be important to further examine the effects of
additional affinity tags. By investigating such effects, there may be
an ideal purification tag that can be used to provide optimal
protein expression in CFPS systems within the user’s expression
vector of choice. When possible, a C-terminal tag may be
preferred, but due to the context dependencies of biomolecular
systems, these data provide evidence that users should evaluate a
variety of construct designs that vary in the type and location of
purification tags to achieve optimal protein expression. This work
demonstrates that vector elements have substantial effects on
CFPS yields. Furthermore, the effects of a given element are
dependent on the context of the CFPS system in which the vector
will be utilized. Our results nullify the hypothesis that pET vectors
result in inferior protein expression due to their significantly
larger size and provides further support for the role of specific
elements that interfere with expression. Based on our findings, we
are optimistic that researchers utilizing CFPS for protein

expression will achieve improved yields by pairing an
optimized vector with their preferred expression system.
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