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Abstract: The objective of this study was to determine the trace element composition and the toxic
metal residues in Galician cow’s milk cheese produced in different systems (artisan, industrial, and
organic). Fourteen elements (As, Cd, Co, Cr, Cu, Fe, Hg, I, Mn, Mo, Ni, Pb, Se, and Zn) were
determined in 58 representative samples of Galician cheeses by inductively coupled plasma mass
spectrometry. The toxic elements were present at low concentrations, similar to those reported for
other unpolluted geographical areas. The essential elements were also within the normal range in
cheeses. There were no statistically significant differences between smoked and unsmoked cheeses
for any of the elements. Chemometric analyses (principal component analysis and cluster analysis)
revealed that the industrial cheeses produced in Galicia using the milk from intensive dairy farms
were different, in terms of elemental content, from artisan and organic cheeses, in which the elemental
contents were similar.

Keywords: cheese; essential trace and toxic elements; chemometric analysis; ICP-MS; Galicia

1. Introduction

Cheese has long formed part of the human diet. In ancient times, cheese was primarily
a concentrated form of milk with the advantages of high protein and fat contents that
made it a nutritious and energetic food. It also has the advantage of a longer storage
duration than fresh milk. Today, the main reasons for cheese consumption are mainly
associated with its manifold uses in the kitchen. In fact, technological advances have
led to a multitude of different types of cheese being available on the market that vary in
flavour, raw material, texture, and other organoleptic properties. Moreover, cheese is a rich
source of essential nutrients such as proteins, amino acids, bioactive peptides, fat, and fatty
acids. In fact, the conjugated linoleic acid and sphingolipids present in cheese can exert
anti-carcinogenic activity [1]. In addition, cheese is a good source of vitamins, minerals,
and elements such as calcium. So, cheese consumption helps maintain strong bones and
teeth, but also has positive effects on blood pressure and can help with weight loss when
included in a low-energy diet.

The nutritional and organoleptic properties of cheese are highly dependent on the
raw material used (mainly the milk) but also on the manufacturing process. The fatty
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acid profile of cheese is known to be closely related to dairy feed (with grazing of cows
having a strong influence [2]), and several sensorial properties are also closely linked
to the manufacturing process (raw vs. pasteurized milk [3]). However, information
regarding the influence of the trace element concentrations and toxic metal residues on
the type of milk and the manufacturing processes of cheese is scarce. Recent studies have
indicated important differences in the mineral profile of the raw milk depending on the
dairy management process. For example, it has been reported that organic milk contains
less iodine than conventional milk [4–6] due to the lack of routine mineral supplementation
in feed and the less frequent practice of dipping teats with iodine-based disinfectants in
organic farming systems [7]. Differences in industrial and artisan manufacturing processes
may also influence the concentrations of elements in the cheeses. The concentrations of
some elements can be increased by the release of metals from containers and tools, with
which milk and intermediate products come into contact [8,9]. For example, the direct and
prolonged contact between acidic food and stainless-steel equipment during manufacturing
processes can lead to significant amounts of nickel (Ni) and chromium (Cr) leaching into
the product [10].

Galicia (NW Spain) has a long tradition of cheese-making and is the leading manu-
facturer of cow’s-milk cheeses in Spain, with approximately 40% (more than 250 million L
per month) of the total Spanish cow’s milk production being generated in the region [11].
Galician cheeses represent one quarter (more than 5.4 million kg) of the total annual pro-
duction of cow’s-milk cheeses in Spain. Although there are several recognized Protected
Denominations of Origin (PDOs) for cheeses, all Galician cheeses are soft or semi-soft
cheeses mainly produced from rennet curd with a short ripening time (7–60 days), giving
them quite similar organoleptic characteristics. In the past, Galician cheeses were generally
elaborated in artisanal processes using raw milk from pastured cattle [12], but nowadays
most are produced by an industrial manufacturing process using milk from intensive pro-
duction systems. However, there is still a market for handmade artisan cheeses (produced
directly on farms at a familiar scale and highly appreciated by consumers), which are sold
at local markets and in delicatessen stores. The production of organic artisan cheese in
Galicia has grown continuously in the past few years, maintaining traditional practices but
incorporating organic regulations (prohibiting or minimizing the use of chemicals such as
fertilizers or mineral supplements) [13]. Artisan and organic cheeses are produced using
raw milk from pasture-fed cows, which gives the cheeses their particular organoleptic
characteristics as well as a heart-healthy fat profile. Although not previously studied,
artisan cheeses made from milk from pasture-fed cows may have characteristic mineral
profiles different from those of cheese made under industrialized manufacturing processes
with milk from more technologically-based farms where cows are fed intensive diets with
mineral supplements.

The objective of this study was to evaluate the trace element composition and the
toxic metal residues in Galician cow’s milk cheese in relation to the production sys-
tem/manufacturing process (artisan, industrial, and organic) used.

2. Material and Methods
2.1. Sample Collection

Fifty-eight representative samples of Galician cheeses were analysed in this study. The
European Union applies quality schemes with geographical indications and including tra-
ditional specialties (such as PDO) to promote and protect the quality of certain agricultural
products and foodstuffs. In the case at hand, all samples were whole cheeses belonging to
one of the following PDOs: Arzúa-Ulloa, Tetilla, and San Simon da Costa. From January–
February 2019, representative samples of industrial (n = 30) and organic (n = 10) Galician
cow’s-milk cheeses were obtained from local supermarkets and delicatessen stores, while
artisan (n = 18) samples were purchased directly from producers. Most of the samples
were made from pressed white curd, except 10 samples of the industrial San Simon da
Costa PDO cheese, which undergoes a smoking process after elaboration [14]. The samples,
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packed in closed polyethylene bags, were immediately refrigerated, transported to the
laboratory, and stored at −20 ◦C until analysis.

2.2. Sample Preparation

For determination of essential elements and toxic metals, 1 g of a homogenate of vari-
ous subsamples of the cheese were acid digested in 5 mL of 69% concentrated nitric acid
(TMA, Hiperpure, PanReac, Barcelona, Spain) and 2 mL of 33% w/v hydrogen peroxide
(PanReac, Barcelona, Spain) in a microwave-assisted digestion system (Ethos Plus, Mile-
stone, Sorisole, Italy). Digested samples were transferred to polypropylene sample tubes
and diluted with Milli-Q ultrapure water to yield a final volume of 15 mL. Additional pro-
cessing was required for determination of iodine (I) by treating the samples after the high
temperature alkaline extraction procedure [15] with a mixture of tetramethylammonium
hydroxide 25% (w/v) in water.

2.3. Sample Analysis

The concentrations of the essential elements cobalt (Co), Cr, copper (Cu), I, iron (Fe),
manganese (Mn), molybdenum (Mo), Ni, selenium (Se), and zinc (Zn) as well as the
toxic metals arsenic (As), cadmium (Cd), lead (Pb), and mercury (Hg) were determined
by inductively coupled plasma mass spectrometry (ICP-MS, VG Elemental PlasmaQuad
SOption equipped with a micromist low-flow nebulizer, Agilent Technologies, Tokyo,
Japan), following previously established operational conditions [4,6]. All of the samples
were analysed in triplicate, and the concentrations of essential elements and toxic metals in
the samples are expressed as µg/kg wet weight (w/w).

2.4. Analytical Quality Programme

An analytical quality control programme was applied throughout the study by in-
cluding blank samples and certified reference material (CRM) with the samples during
analysis (Table 1). The blank values were subtracted from the sample readings, and the
limits of detection of the method were calculated as 3 times the standard deviation of the
reagent blanks (9 samples). The limits of quantification, expressed as a concentration in
the cheese, were calculated based on the sample weight and the dilution. In all samples,
mineral concentrations were above the limits of quantification except for Hg, residues of
which were negligible in all samples. Analytical recovery, determined by analysis of CRM
NIST SRM−1549 (Non-Fat Milk Powder) together with the samples, showed an acceptable
level of agreement between the measured and certified values (Table 1).

Table 1. Results of the analytical quality control programme applied during determination of the
essential trace and toxic elements in cheese by ICP-MS in the present study.

Element
Detection Limit

(mg/L)

NIST-1549

Certified Level
(Mean ± SD; mg/kg)

Level Determined
(Mean ± SD; mg/kg) % Recovery

As 0.020 × 10−3 (0.0019) * 0.0019 ± 0.0004 102.1
Cd 0.007 × 10−3 0.0005 ± 0.0002 0.0005 ± 0.0001 100.9
Co 0.004 × 10−3 (0.0041) 0.0041 ± 0.0009 98.4
Cr 0.009 × 10−3 0.0026 ± 0.0007 0.0025 ± 0.0002 94.6
Cu 0.006 × 10−3 0.700 ± 0.100 0.661 ± 0.028 94.4
Fe 0.132 × 10−3 1.78 ± 0.10 1.93 ± 0.46 110.9
I 0.251 × 10−3 3.38 ± 0.02 3.56 ± 0.32 105.0

Mn 0.023 × 10−3 0.26 ± 0.06 0.24 ± 0.03 91.4
Mo 0.006 × 10−3 (0.34) 0.325 ± 0.011 95.8
Ni 0.018 × 10−3 - -
Pb 0.002 × 10−3 0.019 ± 0.003 0.019 ± 0.002 98.1
Se 0.217 × 10−3 0.11 ± 0.01 0.12 ± 0.01 108.1
Zn 0.038 × 10−3 46.1 ± 2.2 44.3 ± 2.4 96.2

* in brackets indicative values.
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2.5. Statistical and Chemometric Analysis

An X58×13 matrix was constructed for analysis of the data, with the rows corresponding
to the 58 cheese samples and the columns to the contents of the 13 essential elements and
toxic metals determined by ICP-MS. Data normality was checked using the Kolmogorov–
Smirnov test. The data were not normally distributed and were therefore log-transformed
before analysis. The potential influence of the smoking procedure on the trace and toxic
element concentrations in the industrial San Simon da Costa cheese against the other
industrial samples from other origins was evaluated by the Student’s t-test. Differences in
the concentrations of essential elements and toxic metals in artisan, industrial, and organic
cheese were evaluated by one-way Anova and post-hoc Tukey tests. All of the statistical
analyses were performed using IBM SPSS for Windows v.27 (IBM Corporation, Armonk,
NY, USA).

Chemometric analysis of the data was carried out to test the potential influence of
the cheese manufacturing process (artisan, industrial, and organic) on the essential and
toxic elemental contents. Two unsupervised display chemometric techniques, Principal
Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA), were used for this
purpose. PCA was applied first to visualize the 13-dimensional data matrices in a reduced
dimension, thereby preserving the maximum data variance [16]. HCA (usually applied
in combination with PCA) was then performed to establish clusters of similar samples (or
variables) based on the Euclidean distance between them as a similarity measure. The
final result produced by HCA is a graphical tree diagram called a dendrogram, which is a
two-dimensional plot of the sample similarities in the 13-dimensional space of the variables.
For both PCA and HCA, original variables were autoscaled prior to multivariate analysis
to prevent any influence of the different sizes of mineral variables in the chemometric
study. The autoscaling procedure (each value was substituted by a new value obtained by
subtracting the mean of the variable and dividing it by the standard deviation) produced
new variables of the same size, with zero mean and unit variance [16]. All chemometric
analyses were carried out using the software package Statgraphics Centurion XVI v.16.1.15
(Statistical Graphics Corporation, Rockville, MD, USA).

3. Results and Discussion
3.1. Trace Elements and Toxic Metals Content in Cheese Samples

As described in the Section 2.1, in some parts of Galicia, the cheese undergoes a
smoking process. Therefore, two different types of industrial Galician cheeses are available:
cheeses made from pressed white curd, and cheeses that are smoked after being aged.
Therefore, the first step of the data analysis was to evaluate whether the smoking process
influences the elemental content of the samples. The concentrations of essential and toxic
metals in smoked and unsmoked industrial cheese are compared in Table 2. No statistically
significant differences between smoked and unsmoked cheeses were found for any element.
Thus, (i) the potential increase in the metal content in the product due to smoking remains
in the rind (not generally eaten) and does not migrate to the part of the cheese that is eaten,
and (ii) the absence of significant differences in the metal content implies that both types of
cheese belonged to the industrial group, and they were subsequently considered a single
group. Therefore, for subsequent statistical and chemometric analyses, the three groups
established—artisan, industrial, and organic—were considered as described above.

The results of a univariate study of the concentrations of essential elements and
toxic metals in Galician cheese in relation to the manufacturing process are presented as
Box and Whisker plots (Figure 1). Overall, toxic metal residues were low and similar to
those described elsewhere (Table 3), corresponding to geographical areas with low level
of environmental exposure. Essential element concentrations were also within the normal
range for cheeses. Moreno-Rojas and coworkers [17] analysed 50 varieties of cheeses made
in Spain and reported average levels of toxic metals similar to those determined in the
present study. Nevertheless, cheeses made from cow’s milk from polluted regions had
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higher levels of Pb or As [18,19], whereas in all of these studies the Cd levels were generally
low and similar to those in unpolluted areas [19].
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Galician cheese (expressed as µg/kg wet weight) according to the type of manufacturing process
(artisan, industrial, or organic). Different letters indicate statistically significant differences between
groups (p < 0.05).
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Table 2. Concentrations of essential trace and toxic elements (expressed as mean ± standard er-
ror in µg/kg wet weight) in smoked (San Simon da Costa) and unsmoked (Arzúa-Ulloa, Tetilla)
industrial cheeses.

Element Smoked Unsmoked p-Value

As 4.61 ± 0.74 4.16 ± 0.42 0.568
Cd 2.49 ± 0.79 2.07 ± 0.38 0.590
Co 3.30 ± 0.21 4.75 ± 0.53 0.073
Cr 89.4 ± 31.0 101.4 ± 15.7 0.701
Cu 426 ± 19 561 ± 84 0.272
Fe 4196 ± 933 4178 ± 376 0.983
I 156 ± 18 209 ± 23 0.149

Mn 510 ± 26 719 ± 161 0.374
Mo 135 ± 14 140 ± 10 0.764
Ni 29.7 ± 1.9 58.1 ± 11.0 0.079
Pb 10.0 ± 1.7 13.3 ± 2.4 0.369
Se 558 ± 48 514 ± 26 0.383
Zn 56,611 ± 2504 56,737 ± 1740 0.967

Statistically significant differences between the cheeses were found regarding most of
the main toxic and essential elements, depending on the type of manufacturing process
(Figure 1). Overall, two main patterns were observed. On the one hand, the industrial
cheese contained significantly higher levels (p < 0.05) of the essential trace elements that are
routinely supplemented in intensive dairy farming: Cu, Se, and Zn [20,21]. Although there
were no statistically significant differences in the Cr concentrations between the industrial
cheeses and the artisan and organic cheeses, a tendency for a slightly high Cr concentration
was detected in the industrial products. This finding can be explained by the contact
between the milk/raw cheese dough and stainless-steel equipment (with a Cr content up
to 20%) during the industrial manufacturing process [10]. On the other hand, the artisan
cheeses contained significantly higher concentrations of toxic metals (e.g., Cd and Pb), com-
pared to the industrial and organic cheeses. In addition, the concentrations of Fe and Mo
were also significantly higher in the artisan cheeses than in the other cheeses. This finding
may be related to the ingestion of soil by cows during grazing. Soil ingestion constitutes
an important route of exposure in cattle to contaminants that are not geochemically or
biologically mobile [22].

In fact, in organic and non-intensive grazing cattle, soil ingestion during grazing
strongly influences the trace element status of the milk [6]. The different patterns in the
organic and artisan cheese, despite the similar livestock production systems (based on
pastures), may be related to a lower exposure to toxic metals in this production system. The
use of chemicals has been shown to represent the main source of exposure to toxic metals in
animals, and in organic farming the use of chemicals is strictly limited [13]. In conventional
agricultural systems, traces of Cd in phosphate fertilizers are known to represent one of the
main sources of Cd exposure [46].
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Table 3. Concentrations of essential trace and toxic elements (expressed in µg/kg wet weight) in cheese reported in previous studies.

Country Type of Cheese Co Cu Cr Fe Mn Mo Ni Se Zn As Cd Hg Pb Ref

Italy White cheese - - 331 - - - 347 - - - 180 - 750 [23]
Turkey Kaşar cheese - 700 - 4200 - - - - 37,700 - 1.8 - 86.0 [24]
Turkey Herby cheese 1300 3100 3300 40,800 - - 2400 - - - 100 - 5200 [25]
Turkey White cheese - - - - - - - 160 - 30 120 - 920 [26]

Kaşar cheese - - - - - - - 280 - 20 30 - 1100
Tulum cheese - - - - - - - 430 - 70 50 - 610

Lor cheese - - - - - - - ND - 70 20 - 450
Spain * various cheeses - - - - - - 117.3 - - - 4.70 16.10 32.77 [17]

Saudí Arabia White cheese - 160 - 7630 500 - - - 7190 - 140 - 470 [27]
France * Comté cheese - 13,520 - - - - - - 48,140 - 1,3 - 47 [28]
Hungary Trappista cheese 1 - 455 314 7258 367 - 929 - 23,890 ND ND - 126 [29]

Trappista cheese 2 - 695 528 7979 418 - 903 - 19,246 ND ND - 149
Turkey * White cheese 40 280 90 - 30 - 120 170 8910 - 40 - 140 [9]
Lebanon White cheese 27,200 480 1.1 2400 180 50 70 120 21,500 7.0 0.14 1.006 20.7 [30]

Egypt Fresh cheese - 3250 - - - - - - - - 240 32 610 [31]
Egypt Cheese - 87 - 3930 - - - - 8590 - 90 - 430 [32]
Spain * Genestoso cheese - 2050 - 3960 450 - - - 21,240 - - - - [33]

South Korea Cheese - - - - - - - - - - 870 - 5640 [34]
Italy Asiago cheese - 1760 - 1480 - - - 830 26,840 - - - - [35]
Iran Cheese - 428.0 - - - - - 1.68 586.0 - 1.25 - 14.5 [36]

México *,‡ Oaxaca cheese - 20 10 - - - 30 - 180 170 - - 50 [18]
Ranchero cheese - 20 20 - - - 10 - 740 160 - - 110

Curd cheese - 20 30 - - - 2 - 690 70 - - 20
Brasil Coalho cheese - 5900 11,000 9000 3100 - - - 43,000 - - - - [37]

Minas padrão cheese - 6100 1300 10,000 2200 - - - 40,000 - - - -
Minas frescal cheese - 6700 1200 8000 2300 - - - 39,000 - - - -

Italy Cheese - 1070 50 2230 - - - - 5240 - 2 40 70 [38]
Romania * Ripened cheese 1120 - - - 710 - - - 70,640 90 - - - [39]

Greece Graviera Cheese 80.0 800.0 650.0 - - 100.0 430.0 110.0 - 25.0 5.2 - 30.0 [40]
Greece Cheese - 270.0 27.8 2090 389.0 - 78.9 125.0 16,000 - 0.150 0.34 3.171 [41]

Slovak Republic * Oštiepok Cheese - 10,000 1000 14,100 700 80 - 440 23,200 - - - - [42]
Slovak Republic White cottage cheese 30 110 170 1750 680 - 90 - 1800 - - - - [43]

Romania * Cheese - 2300 - - - - - - 3200 - 3.3 - 240 [44]
Denmark * Blue cheese - - - 2680 160 - - 110 27,300 - 2 - 13 [45]
Georgia ‡ Imeruli cheese 13 1.261 35 69,090 896 289 11 1.003 75,860 - 2 - 121 [19]

Sulguni cheese 30 2.463 790 101,100 2.348 401 26 3060 124,800 - 7 - 258
* Dry matter; 1—non-polluted green area; 2—Highway area; ND—non detected; ‡—polluted area.
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3.2. Chemometric Analysis

Multivariate chemometric techniques were used in an attempt to identify situations
in which more than a single factor is involved. The main advantage of using these tech-
niques is that a more realistic picture of the chemical problem is obtained as opposed
to when each variable is studied separately [47]. In addition, the multivariate approach
provides useful information about the relationships between samples, between variables,
and between variables and samples. Thus, in the present work, two previously described
display multivariate chemometric techniques, PCA and HCA, were used to explore the
latent sample-variable structures and relations in the data set. A principal component
analysis was conducted on the X58×13 matrix after autoscaling. The visualization of the
score-plot of the samples (see Figure 2a) in the space defined by the first three principal com-
ponents (accounting for 50.5% of total data variance) yielded interesting results regarding
the different groups of cheese. As can be seen in the figure, industrial samples constituted
a homogeneous group, separate from the artisan samples, which also included organic
samples as a subgroup. This finding can be explained by considering that industrial cheeses
are generally elaborated following technological procedures that tend to homogenize the
characteristics of the product. By contrast, in the group of artisan cheeses, the production
system used does not apply standardized procedures and in each case is carried out follow-
ing the traditional processing system in the area, which explains the higher heterogeneity in
this group. The inclusion of the organic group in the artisan cluster was also not surprising.
In Galicia, artisan cheeses are generally produced on small, family-managed farms using
milk produced in a pasture-based livestock system. Thus, artisan production is very similar
to organic production because the use of mineral-supplemented feed and other chemicals
is very limited on these small farms (for economic reasons) and the production procedures
are comparable to those used by organic-certified producers. From an examination of the
samples in the PCA-biplot, in which the samples and variables are represented together in
the principal components space (Figure 2b), it can be concluded that Cd, Pb, and Mo are
clearly associated with the artisan group, while the remaining elements are more closely
associated with industrial cheeses, except for I, which interestingly appears in the same area
of the PC-space where the organic cheeses are located. This is a surprising finding because
organic milk is generally low in I [4,5]; therefore, it might be expected that the organic
cheeses produced from this milk would also be low in I. However, when the I levels were
examined in greater detail (See Figure 1), it was found that (i) the mean I contents were
similar, increasing from the organic to the industrial and the artisan groups, and (ii) the
variability in the I content was high for artisan and organic samples, but low for industrially
produced cheeses. The explanation for this finding is also related to the production process:
both artisan and organic producers add iodized salt to the cheeses. Iodized salt is widely
available and commonly consumed in Galicia as part of an iodine prophylaxis policy aimed
at preventing iodine deficiency disorders, including goiters, previously endemic in the re-
gion. On the other hand, industrial cheeses are produced under established manufacturing
protocols using common, limited amounts of salt. Comparable levels of I, ranging from 132
to 468 µg/kg, have been reported for organic cheese produced in Norway [48].

The second step in the chemometric study was to apply HCA to the X-matrix after
autoscaling. In this case, the similarity/distance between the samples (or variables) was
calculated using the Euclidean distance, while the Ward method was used to establish
the clusters. The result obtained when the samples are clustered under the mentioned
conditions is shown in Figure 3. Two main clusters of samples were revealed. From the left,
the first cluster (A) comprises most of the industrial samples, while the second cluster (B)
includes artisan and organic samples. These results are consistent with those obtained by
PCA and confirm the group arrangement of cheese samples based on the metal contents.
To determine whether the relationships between the metals are similar for the industrial
and for the artisan plus organic samples, HCA was applied separately to both groups
for the variables (using the same distance measurement and agglomerative procedure
previously described). The dendrograms obtained are shown in Figure 4a,b. According to
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the clusters obtained, very different patterns of relationships between variables for both
groups were observed. In the industrial samples (Figure 4a), made with milk from intensive
farm systems, three main clusters were identified. The first cluster (A), including elements
such as I, Se, Cd, and Cr, is related to the hygiene-management practices in the intensive
milk production system and to the industrial cheese elaboration process.
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The first subcluster in this variable-group comprises Se and I. Selenium treatments
are commonly used in intensive dairy systems to increase the fertility of the cows, as well
as to minimize placental retention and the incidence of mastitis and metritis [49]. On the
other hand, iodine-based disinfectants such as non-rinsing detergents and antiseptics are
commonly applied to contact surfaces to eliminate pathogenic microorganisms that can
cause diseases leading to economic losses in the livestock and food industries. Washing
and dipping the teats before milking affects the iodine content of milk and therefore the
cheese [50]. The presence of Cd and Cr in the other subcluster is associated with the use of
stainless-steel equipment in the industrial fabrication of cheese [51]. Cluster B included
Cu, Zn, and Mn, all of which are associated with feeding as they are all routinely added
to the concentrate feed in the dairy industry [20,21]. The elements in clusters C (Co and
Mo) and D (Fe and Pb), which are well separated from clusters A and B, indicate that these
groups are associated with the soil [21]. Thus, there are three factors involved in the metal
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contents of the industrial cheeses: the management of intensive milk production and the
industrial elaboration of cheese (cluster A), feeding practices (cluster B), and soil influence
(clusters C/D).
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The artisan-organic group of cheese (Figure 4b) showed a completely different pattern
of metal contents. In this case, Cr and Cd appeared linked in subcluster A1 with a high level
of similarity to Fe and Pb, which originate from the soil. Thus, for the artisan-organic group,
the levels of Cr and Cd were not associated with the industrial elaboration of the cheese,
but with cows ingesting soil during grazing. In these production systems, in which mineral
supplements are not added to the diets (organic farms) and minerally supplemented
concentrate feed is only occasionally used (pasture-managed farms), the consumption of
soil during grazing represents the main source of exposure to trace elements [21], which
occur in soil at much higher concentrations (up to four orders of magnitude) than in
vegetables [52]. The inclusion of Zn and Mo (subcluster A2) in the same cluster also
contributes to this explanation. Cluster B includes several elements that are presumably
related to feed (I, Se, Cu, and Mn).

Although artisan-organic cheese is elaborated using milk from pasture-fed cows
(which are not routinely administered mineral supplementations), the occasional use of
minerally supplemented concentrate as complementary feed during the winter in the
small family dairy farms that produce artisan cheese may explain our findings. In this
case, Se and I are included within the “feed” group as both elements are included in the
mineral premixtures, but unlike in intensive dairy farming, they are not used in hygiene-
management practices. Finally, we identified a third cluster, C, including elements typically
associated with the soil (Co, As, and Ni). We do not know why these elements appear
separately from Fe or Cr, which are clearly associated with the soil and with which they
have been found to be closely related in previous organic farming studies conducted by
our research group [6,21,52]. It is possible that some difference in the grazing management
between the organic and small conventional farms producing artisan cheese may explain
this separation.
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4. Conclusions

Galician cheeses were found to have a low level of toxic metal residues and normal
levels of essential trace elements. The smoking process does not affect the elemental
content of the cheeses. The chemometric analysis revealed the following: (i) the industrial
cheeses produced in Galicia using milk from intensive dairy farms are different, in terms
of their elemental contents, from artisanal and organic cheeses. (ii) The artisanal and
organic cheeses are similar in terms of their element profiles; therefore, both groups were
superimposed in the multidimensional space of the variables. Thus, the artisanal cheeses
are similar to organically produced cheese, with respect to their elemental content. Finally,
(iii) the relationships between different elements in the industrially produced cheeses can
be explained by the influence of the type of milk production, the technological processes of
the cheese production, the livestock diet, and the soil. By contrast, in the case of artisan
and organic cheese, relationships between variables were limited to the influence of the soil
and to a lesser extent the diet.
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