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Abstract

Antibiotic resistance is increasing in pathogenic microbial populations and is

thus a major threat to public health. The fate of a resistance mutation in patho-

gen populations is determined in part by its fitness. Mutations that suffer little or

no fitness cost are more likely to persist in the absence of antibiotic treatment. In

this review, we performed a meta-analysis to investigate the fitness costs associ-

ated with single mutational events that confer resistance. Generally, these muta-

tions were costly, although several drug classes and species of bacteria on average

did not show a cost. Further investigations into the rate and fitness values of

compensatory mutations that alleviate the costs of resistance will help us to better

understand both the emergence and management of antibiotic resistance in clini-

cal settings.

Introduction

The initial optimism accompanying the introduction of

antibiotics to control infection over 60 years ago has been

steadily worn down by continuing reports of antimicrobial

resistance (AMR) among nearly all human-associated

pathogens (Palumbi 2001; Perron et al. 2006). AMR

already represents a major burden on healthcare systems

around the world. Estimates of the economic burden of

AMR are estimated to be at least 1.5 billion euros annually

in Europe (World Health Organization 2012) and on the

order of $200 million annually in Canada alone (Conly

2002), and these costs are expected to get worse with time.

Widespread therapeutic and prophylactic use of antibiot-

ics in health care and agriculture constitutes a strong and

persistent selective pressure favoring the evolution of anti-

biotic-resistant strains, a phenomenon characterized by

Hall (2004) as ‘use it and lose it’. For this reason, research

has been increasingly focused on eliminating, or at least

controlling, AMR once it has evolved. The most common

strategy is to stop using antibiotics, the assumption being

that mutations conferring resistance impose a large fitness

cost in the absence of the drug. Note that fitness is taken

here to be the rate of replication under prevailing environ-

mental conditions and can be measured through competi-

tive fitness trials or as the growth rate of the strain or

population being considered. Sensitive genotypes that do

not pay a cost of resistance should therefore replace resis-

tant strains at a rate proportional to the magnitude of the

cost imposed by resistance (Levin et al. 1997; Johnsen et al.

2009).

Resistance mutations may be expected to impart a fitness

cost because they target important biological functions in

the cell (Table 1). For example, resistance to fluoroquinol-

ones in pseudomonads can cause impaired motility (Stick-

land et al. 2010), and resistance to aminoglycosides can

alter the structure of the ribosome (Springer et al. 2001;

Holberger and Hayes 2009) and so interfere with basic cel-

lular functions.

Clinical and epidemiological evidence on the effective-

ness of stopping antibiotic treatment as a strategy for

reducing resistance is both limited and mixed. Clinical

studies have shown that in some cases, resistant bacteria

remained abundant in the population (Enne et al. 2001;

Sundqvist et al. 2010) or even increased in frequency (Ara-

son et al. 2002) despite the absence of drug, while in others

the proportion of resistant bacteria within the population

declined (Seppala et al. 1997; Austin et al. 1999; Bergman

et al. 2004; Gottesman et al. 2009), as expected. In epide-

miological studies, reducing the use of antibiotics often

leads to a reduction in the frequency of resistant strains,

but it rarely succeeds in eliminating them altogether (Sal-

yers and Amabile-Cuevas 1997; Andersson 2003; Enne

2010; Johnsen et al. 2011).

© 2014 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative

Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

273

Evolutionary Applications ISSN 1752-4571

Evolutionary Applications



Evidently, the strategy of stopping the use of a drug once

resistance has evolved is not always effective at eliminating

resistance. The question is why? Three hypotheses could

account for the persistence of AMR strains in the absence

of antibiotic (Box 1; Andersson 2003; Andersson and

Hughes 2010). First, genetic linkage between the resistance

gene(s) of interest and selected loci may lead to genetic co-

selection (Borrell et al. 2013) and prevent the elimination

of resistance. Many instances of persistence in multidrug-

resistant strains or plasmid-mediated resistance are likely

due to this mechanism. Second, the fitness costs incurred

by resistance mutations may be compensated by second-

site mutations that increase fitness without compromising

resistance. Such compensatory evolution has been observed

in both in vitro (Levin et al. 2000), in vivo (Bj€orkman et al.

2000), and in clinical studies (Bj€orkholm et al. 2001; Na-

gaev et al. 2001; Gagneux et al. 2006; Comas et al. 2011).

Third, the pleiotropic costs of resistance among mutations

may be so highly variable as to sometimes include ‘no-cost’

mutations (Sander et al. 2002; Ramadhan and Hegedus

2005), those that have fitness indistinguishable from (or

even greater than) their antibiotic-sensitive ancestor in the

absence of antibiotic. This last hypothesis has proven chal-

lenging to evaluate because we know very little about varia-

tion in costs of resistance among different genetic targets.

Previous work has shown that costs of resistance among

single-step, chromosomal mutations can be highly variable

(Kassen and Bataillon 2006), and the literature contains a

number of reports of putatively cost-free mutations,

including streptomycin resistance in the rpsL locus of

Mycobacterium smegmatis (Sander et al. 2002), isoniazid

resistance in katG of Mycobacterium tuberculosis using a

mouse model (Pym et al. 2002) and quinolone resistance

in gyrA and parC of Streptococcus pneumoniae (Gillespie

et al. 2002).

Box 1: Mechanisms of gaining and maintaining antibi-
otic resistance

Prokaryotic microbes can gain resistance de novo by adaptive

evolution or via horizontal gene transfer of resistance cas-

settes between microbes. Resistance can be maintained, in

the absence of antibiotic selection, in three ways. Resistance

mutations may incur no fitness costs and thus remain in the

population in the absence of antibiotic selection pressure.

Alternately, costs of resistance can be compensated via sec-

ond-site mutations that restore organismal fitness in the

absence of antibiotic selection. Finally, genetic co-selection

can occur whereby there is a genetic linkage between a resis-

tance-conferring gene and either other selected genetic

markers or other selected resistance mutations to different

antibiotics, thereby enabling nonselected resistance to remain

within the population.

To explore the nature of the variation in fitness costs

among resistance mutations in more detail, we collate data

from the literature on the fitness effects of single chromo-

Table 1. Antibiotics included in this meta-analysis

Antibiotic class

Examples of antibiotics

(included in this study) Mode of action (Target) Mechanisms of resistance

Known genes involved

in mutations conferring

resistance

Alpha-pyrone Myxopyronin RNA replication: inhibits bacterial

RNA polymerase (RNAP)

Altered target rpoB, rpoC

Aminoglycoside Amikacin, streptomycin,

spectinomycin

Protein synthesis: binds to 30S

subunit bacterial ribosome

inhibiting translation

Drug efflux, altered target,

enzymatic inhibition of drug

rpsL, rrs, rrl, rpsE

Coumarin Coumermycin, novobiocin DNA replication: inhibits DNA

gyrase and topoisomerase IV enzyme

Drug efflux, altered target gyrB

Dihydrofolate

reductase

inhibitor

Trimethoprim DNA replication: blocks the folate

coenzyme biosynthetic pathway,

essential for providing monomers

for DNA synthesis

Decrease thymidine

requirement, altered target

dfrA

Fusidane Fusidic acid Protein synthesis: prevents the turnover

of elongation factor G from the ribosome

Drug efflux, mutations

in elongation factor G

fusA

Macrolide Clarithromycin,

erythromycin,

tylosin

Protein synthesis: binds to 50S subunit

bacterial ribosome inhibiting translation

Drug efflux, altered

drug target,

inactivation of drug

23S rRNA genes

Quinolone Ciprofloxacin, nalidixic

acid, norfloxacin

DNA replication: inhibits bacterial

DNA gyrase and topoisomerase IV enzyme

Drug efflux, altered target gyrA, gyrB, parC,

parE, grlA

Rifamycin Rifampicin RNA replication: binds to RNA polymerase Altered target rpoB

Andersson and Hughes (2010); Bryskier (2005); Davies and Davies (2010); Walsh (2003).
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somal mutational events that confer antibiotic resistance

from a wide range of pathogenic bacterial species. Our

objective is to examine the prevalence of so-called ‘no-cost’

resistance mutations with the aim of evaluating whether

these could make a substantial contribution to the persis-

tence of AMR (Box 2). We focus on studies that measure

fitness directly through competitive assays between a strain

with a resistance mutation and the isogenic strain lacking

that mutation. This method is preferred over alternatives

such as the measurement of population growth rates in

pure culture because it is an integrated measure involving

all phases of the growth cycle and can capture aspects of

competition such as toxin production that may not be

reflected in pure culture assays.

Box 2: Glossary

Compensatory mutation: A second-site mutation that occurs

after a mutation that confers resistance, which lessens or alle-

viates the fitness costs associated with resistance.

Cross-resistance: The propensity of a genetic change that

confers resistance to one drug also to affect resistance to a dif-

ferent drug (by either increasing or decreasing resistance).

Epistasis: When the fitness effect of a mutation is modu-

lated by its interactions with other genes or mutations in the

genome.

Genetic co-selection: The occurrence of genetic linkage

between the resistance-conferring gene and other selected

genetic markers. Thus, even though a nonselected resistance

gene might confer a cost, it could remain in the population

because of its genetic linkage to a second marker.

Genetic plasticity: The alterable nature of prokaryotic ge-

nomes that enables the fluid exchange of DNA from one

microorganism to another.

Horizontal gene transfer: The acquisition of a gene by a

means other than direct inheritance from a parent cell (vertical

transfer). Common in many bacteria and archaea, mecha-

nisms of horizontal gene transfer include transformation, con-

jugation, and transduction.

Minimum inhibitory concentration: The lowest concentra-

tion of an antibiotic that will inhibit the visible growth of a

microorganism after overnight incubation.

Relative fitness: the capability of a genotype or individual to

survive and reproduce in comparison with a second genotype

or individual.

Previous work has highlighted the potential importance

of no-cost resistance mutations, and the variation in costs

of resistance more generally, in pathogenic bacteria

(Andersson 2003, 2006; Andersson and Hughes 2010). To

our knowledge, no formal meta-analysis on the relative

costs of antibiotic resistance mutations has been per-

formed. In this article, we analyze 179 mutations (121

unique), comprising eight bacterial species and 16 antibiot-

ics, and address the following questions: Are certain antibi-

otics or species more likely to be associated with no-cost

resistance? If so, why? Is there a correlation between the

magnitude of the fitness cost and the level of resistance

conferred by a given mutation? If higher levels of resistance

require a cell to devote more resources to detoxifying or

eliminating a drug or involve mutations of greater pheno-

typic effect, we might expect a negative relationship

between MIC and fitness. However, this hypothesis has

rarely been tested directly. Answering these questions pro-

vides a glimpse into some of the most basic patterns associ-

ated with resistance mutations and their effects on fitness, a

subject that has received surprisingly little direct attention

in the literature.

Methods

We identified suitable studies to include in our data set by

searching the online database Web of Science with the key-

words ‘antibiotic resistance’ + ‘fitness cost’ published as of

November 2013. Additional studies were found by search-

ing the reference sections of these articles. Many studies

could not be included because fitness was measured as the

growth rate of each strain rather than via competitive fit-

ness assays.

The principle behind a competitive fitness assay is that a

fitter type will outcompete a less fit type when co-cultured

in the same set of growth conditions. The rate at which one

type excludes the other is a measure of its fitness. Estimat-

ing competitive fitness requires monitoring the change in

relative frequencies of otherwise isogenic sensitive and

resistant strains over time. Different research groups use

slightly different methods to calculate fitness, so here we

have recalculated all fitness estimates in terms of the Mal-

thusian growth parameter to facilitate direct comparisons

(see Box 3).

To be included in our database, an article had to satisfy

strict selection criteria: (i) data needed to include an esti-

mate of both mean and variance of competitive fitness, (ii)

competitive fitness had to be measured via in vitro assays,

(iii) resistance had to be conferred by a single mutational

event, and (iv) the study needed to be performed in bacte-

ria. We thus rejected many studies that did not include the

relevant measures. Altogether, 24 studies were included in

the analysis comprising 16 antibiotics (Table S1) from eight

antibiotic classes. These studies further included a total of

eight bacterial species (Table S2) including Escherichia coli,

a ubiquitous Gram-negative bacterium, and S. pneumo-

niae, an important Gram-positive opportunistic pathogen.

Four papers were excluded because replicate measures of

fitness were not provided, making it impossible to estimate

the variance in fitness (Billington et al. 1999; Binet and

Maurelli 2005; Enne et al. 2005; Nessar et al. 2011). Four

further papers were excluded because competitive fitness
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was calculated in vivo, which is not a comparable metric to

relative fitness calculated in vitro because it lacks a measure

of generation time (Nagaev et al. 2001; Gustafsson et al.

2003; Luo et al. 2005; Luangtongkum et al. 2012). Two

papers were excluded because relative fitness measures were

illustrated graphically, without providing the numerical

measures necessary for the meta-analysis (Bj€orkholm et al.

2001; Huitric et al. 2010).

Box 3: Estimation of competitive fitness

Competitive assays provide the ‘gold standard’ for measuring

fitness. In its simplest form, a competition experiment allows

for the estimation of fitness for a focal strain (either a single

genotype or a population) relative to a defined, typically ‘wild-

type’ competitor, in a given laboratory environment. The focal

strain and the wild-type competitor need to be readily distin-

guishable, for example, via a phenotypic marker (lacZ+ vs

lacZ�, or alternative fluorescent markers) or by genotyping.

To estimate the costs of antibiotic resistance, the competition

environment should be antibiotic-free and is typically a stan-

dard laboratory medium such as Lysogeny Broth (LB). The

focal strain and the wild type are competed together for a fixed

period of time, often 24 h, and samples taken at the beginning

and end of the competition allow the researcher to determine

the number of focal and wild-type cells in the population. Fit-

ness of the focal strain can then be inferred from the change in

its relative abundance: If the focal strain suffers a fitness cost,

then its frequency will decrease.

Several formulae have been proposed for estimating the

selection coefficient on a genotype, s, from competition data

(where relative fitness is given by 1 + s). Lenski et al. (1991)

consider fitness in terms of a Malthusian growth model, where

the growth parameter for a strain is the number of doublings

that it experiences over a given period of time. As such, the

selection coefficient on the focal strain is defined as follows:

sl ¼ No. of doublings of focal strain

No. of doublings of wild - type
� 1

Note that sl is a unit less parameter.

Alternatively, Dykhuizen and Hartl (1983) estimate the

selection coefficient as

sd ¼ ðln ðn1f =n1iÞ � ln ðn2f =n2iÞÞ
No. of generations

where n1f and n1i are the number of cells of the focal strain at
the end and the beginning of the assay, and n2f and n2i are the
number of cells of the wild-type strain at the end and the
beginning of the assay. Note that sd has units generations

�1.

Both estimates of fitness are widespread in the literature,

and we see no principled reason to prefer one to the other. In

the context of the current meta-analysis, and more broadly, it

is important to know the relationship between these two fit-

ness estimators: To what extent do they agree in terms of the

magnitudes of s? As such, we simulated pair-wise competitions

using a simple growth model, in which each genotype grows

according to a Poisson process. Samples were drawn from the

simulated competition experiments, and sl and sd were esti-

mated from the same data.

Notably, the magnitude of sl is systematically larger than the

magnitude of sd. Figure 1 shows the relationship between sl
and sd for a set of simulations where growth rates of the com-

peting strains varied from 0 to 0.25, with the initial frequency

of the focal strain set to 0.5 and competition carried out over

six generations. Note that there is a tight linear relationship

between sl and sd, with sl exceeding sd by a factor of about 1.7.

The slope of the regression line appears to be insensitive to

starting frequency and is weakly affected by the number of

generations of competition: So long as the competition experi-

ment proceeds for four or more generations, sl exceeds sd by a

factor of 1.7.

Given that competitive fitness is quantified fairly easily

in bacteria and is such an inclusive fitness measure, it

was surprising to us that more studies have not employed

this method. Many other studies investigating costs of

resistance used growth rate as a proxy for fitness, which,

as outlined above, incorporates only a single component

of bacterial fitness. Including growth rate studies would

have increased the sample size of our meta-analysis; how-

ever, the inclusion of such data would reduce the clarity

of the analysis because measures of growth rate and com-

petitive fitness are poorly correlated. To examine this

relationship in more detail for our data set, we examined
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Figure 1 Estimation of selection coefficients using the Lenski and

Dykhuisen estimators. Competition experiments were simulated for

two strains, with the wild-type strain doubling in each time unit, and

the growth rate of the focal strain reduced compared to wild type by

0 to 0.25. Competition lasted six generations, starting with a 50:50

ratio of the two strains and an initial population size of 1 million. Each

data point represents the mean values of s for 100 simulations. For

each replicate, an average of 100 individuals were sampled and used

to calculate sl (y-axis) and sd (x-axis). The dashed line represents a 1:1

relationship, and the solid line gives the linear regression of sl on sd.
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35 mutations that supplied estimates of competitive fit-

ness and for which we could compute a relative doubling

time (Gillespie et al. 2002; Hurdle et al. 2004; Mariam

et al. 2004). The data included 35 different antibiotic

resistance mutations from three different bacterial species

and four different antibiotics. In these studies, competi-

tive fitness and relative doubling time were not correlated

(r2 = 0.00734, P = 0.619). We encourage future studies

investigating costs of resistance mutations to use compet-

itive assays to measure the relative fitness of resistant and

sensitive strains.

For the purposes of this study, we focused on resis-

tance caused by single mutational events. The rationale

behind this is simple: We need to be confident that resis-

tance, and any associated fitness cost, is due to that

mutation only and not other, co-occurring mutations. In

our study, the vast majority of these mutations are single

nucleotide polymorphisms (SNPs) although three small

(3, 9, or 13 nucleotides, respectively) deletions were also

included. All are chromosomal mutations because our

interest is in the effects of these mutations on the fitness

of the bacterial genotype itself, not the fitness of a plas-

mid on which the mutation arises. Thus, we excluded

studies that examined resistance gained by plasmids, hor-

izontal gene transfer, those examining multidrug resis-

tance, and studies which examined the fitness costs of

multiple resistance mutations (Hurdle et al. 2004) within

the same genetic background.

We report measures of drug resistance as the fold-

increase in minimum inhibitory concentration (MIC) rela-

tive to the drug-sensitive ancestor. If absolute drug concen-

tration was reported, then these data were converted to

fold-increase in MIC by dividing the concentration of drug

required to inhibit growth in the resistant strain by the

concentration of drug required to inhibit growth in the

sensitive ancestor. If MICs were reported as a greater than

value, the numerical value itself was recorded.

We analyzed the data set using a random effects meta-

analysis, using the metagen function within the meta pack-

age of R (R Development Core Team 2013; Schwarzer

2013). A random effects model is more appropriate than a

fixed effects model as we cannot be certain that all studies

included in our meta-analysis have equal variances. A rela-

tive fitness value >1 indicates the mutation is both resistant

and beneficial relative to the isogenic strain lacking the

mutation; values <1 indicate the resistant mutation is

costly. We evaluated the statistical significance of our fit-

ness estimates by examining the 95% confidence intervals

of the mean relative fitness. If these did not overlap with

one, the fitness estimate was considered significant. Q-sta-

tistics were used to examine the heterogeneity of relative

fitness values among groups. Each mutational event confer-

ring resistance is taken to be a single unit of analysis, the

rationale being that single mutational events occur inde-

pendently of each other and often in different genetic back-

grounds.

Results

Are there costs of resistance?

We found a significant fitness cost of resistance mutations

(mean fitness = 0.880, z = 129.3, P < 0.0001). The data

exhibited significant total heterogeneity in their response

(Qtotal = 22 966, P < 0.0001), indicating the presence of

further explanatory variables within the data set.

To describe the data in more detail, we plotted the stan-

dard error of mean fitness against mean fitness for all

mutations in our collection (Figure S1). A linear regression

testing for funnel plot asymmetry is significant

(t177 = �4.48, P < 0.001), indicating bias in the data

toward, in this case, costly mutations. The most parsimoni-

ous interpretation is that resistance mutations are often

genuinely costly. It seems unlikely that this result represents

a publication bias because, if anything, the observation of

no-cost mutations is the more novel result. Notably, there

is also substantial variation in costs of resistance with at

least some mutations exhibiting little or no cost.

Variation in costs of resistance

Variation in costs of resistance can arise either because

some mutations are costly and others are not, irrespective

of the genetic background in which they occur, or because

a given mutation is not costly in some genetic backgrounds

but is costly in others. We investigated these alternatives by

repeating our analysis with drug class, drug, or species as

explanatory factors. A main effect of species indicates that

the fitness effect of a given mutation depends on the

genetic background in which it occurs while main effects of

either drug or drug class indicate that the mutations them-

selves differ in their costs, independent of genetic back-

ground. We found evidence to support both explanations.

There was a significant difference in the fitness costs of

resistance mutations between drug classes (Figure S2,

Qbetween = 144, P < 0.0001), between different drugs

(Fig. 2, Qbetween = 282, P < 0.0001), and between different

bacterial species (Fig. 3, Qbetween = 75.5, P < 0.0001). The

mean relative fitness of resistance mutations associated

with each of these different subgroups can be seen in

Figs 2, 3, and S2, respectively. This result must be inter-

preted with caution, however, because the data set is

severely unbalanced. Most resistance mutations are unique

to a particular species and drug. Some of the variation is

likely attributable to a lack of data, for example, there are

only four resistance mutations associated with fusidic acid
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(Table S1), while other sources of variation might be

because there is only a single drug–bacterium comparison

for a given species, for example, all eleven mutations mea-

sured for M. tuberculosis confer resistance to rifampicin

(Table S2). Nevertheless, our data suggest that costs of

resistance can be highly variable and can depend on the

class of drug used, the mutation itself, and the species

within which that resistance mutation occurs.

Notably, some mutations appear to be either genuinely

cost-free or the costs are so small they cannot be detected

in these assays. In our data set, these putatively ‘no-cost’

mutations are associated with resistance to fusidanes and

dihydrofolate reductase inhibitors (Fig. 2, Figure S2). Of

note, the mean fitness of mutations conferring resistance to

the dihydrofolate reductase inhibitor trimethoprim was >1
(Fig. 2), indicating that these resistance mutations are ben-

eficial in the absence of drug. Additionally, resistance

mutations in two species, Enterococcus faecium and Borrelia

burgorferi, showed no evidence for a cost of resistance on

average while those recovered from all other species were

on average costly (Fig. 3). The average fitness of each spe-

cies and antibiotic comparison yielded no clear patterns in

costs of resistance (Fig. 4).

The sparseness of our data set precludes us from doing a

fully factorial analysis of mutations, drugs, and species.

However, we can perform such an analysis for a subset of

our data, namely the resistance mutations associated with

quinolone and rifamycin drug classes for both Staphylococ-

cus aureus and E. coli (Table S3). The simplest meta-analy-

sis shows a significant fitness cost of resistance mutations

(mean fitness = 0.874, z = 64.4, P < 0.0001), with signifi-

cant heterogeneity (Qtotal = 11592, P < 0.0001). The fully

factorial linear model that treats species and drug class as

fixed effects revealed a significant interaction between drug

Rifampicin

Olfloxacin

Norfloxacin

Nalidixic acid

Ciprofloxacin

Tylosin

Erthyromycin

Clarithromycin

Fusidic acid

Trimethorprim

Novobiocin

Coumermycin

Streptomycin

Amikacin

Spectinomycin

Myxopyronin

0.5 0.6 0.7 0.8 0.9 1.0 1.1
Fitness

Figure 2 The mean relative fitness and 95% confidence intervals of

antibiotic resistance mutations associated with a given antibiotic,

grouped by class of antibiotic (from top to bottom alpha-pyrone, ami-

noglycoside, coumarin, dihydrofolate reductase inhibitor, fusidane,

macrolide, quinolone and rifamycin). A fitness value of <1 indicates a

fitness cost in the absence of the antibiotic.

B. burgdorferi
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E. coli

E. faecium

M. smegmatis

M. tuberculosis

S. aureus

S. pneumoniae

0.5 0.6 0.7 0.8 0.9 1.0 1.1
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Figure 3 The mean relative fitness and 95% confidence intervals of

antibiotic resistance mutations associated with a given species. A fitness

value of <1 indicates a fitness cost in the absence of the antibiotic.
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Figure 4 Species–antibiotic comparisons of the mean relative fitness of

resistance mutations in the absence of the antibiotic. Numbers indicate

antibiotic class: 1 – alpha-pyrone, 2 – aminoglycoside, 3 – coumarin, 4 –

dihydrofolate reductase inhibitor (DHRI), 5 – fusidane, 6 – macrolide,

7 – quinolone and 8 – rifamycin.
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class and species (F3,80 = 14.5, P < 0.0001), but no signifi-

cant differences associated with the main effect of species

or drug class. While this result is based on a limited data

set, it does lend support to the idea that the fitness effect of

resistance mutations in the absence of drugs depends on

both the drug class and the genetic background in which

those mutations appear.

The cell wall is an important target of mutations that

confer antibiotic resistance, and thus intuitively, it seems

possible that there may be a difference in fitness costs asso-

ciated with antibiotic resistance between Gram-positive,

which has a much thicker layer of peptidoglycan in their

cell wall, and Gram-negative bacteria, which has a much

thinner cell wall. Gram-positive bacteria had a significantly

greater fitness costs associated with resistance mutations

(mean fitness = 0.822) when compared with Gram-nega-

tive bacteria (mean fitness = 0.973, t156 = �5.19,

P < 0.0001). Again, caution must be used in interpreting

this result because there were a greater number of Gram-

negative than Gram-positive bacteria in our data set.

The relationship between MIC and cost of resistance

We regressed MIC against relative fitness to test the predic-

tion that high levels of resistance impose greater fitness

costs than lower levels of resistance (Fig. 5). The relative

fitness of a resistance mutation is negatively correlated with

the fold-increase in MIC conferred by the mutation (Fig. 5,

t126 = �6.21, P < 0.0001), with fold-increase in MIC

accounting for 22.8% of the variation in fitness

(F1,126 = 38.6, P < 0.0001). A subset of data was used for

this analysis because seven studies did not measure MIC

(Schrag and Perott 1996; Criswell et al. 2006; Gagneux

et al. 2006; Balsalobre and de la Campa 2008; Hao et al.

2009; Trindade et al. 2009; Borrell et al. 2013). Although it

would be of interest to perform separate regressions for

each class of antibiotic to see if the correlation holds across

different mechanisms of action, for many of the drug clas-

ses, sample sizes are too small to permit reliable regression

coefficients to be estimated.

Discussion

Using meta-analysis, we have found that most resistance

mutations in bacteria confer a fitness cost. This result is not

surprising as many antibiotics target important cellular

processes and resistance to them either disrupts those pro-

cesses or imposes large energetic burdens that reduce com-

petitive ability against sensitive strains. However, we have

also found that there is substantial variation in fitness costs

among species and drugs. This variation is large enough to

include, occasionally, what might be classified as no-cost

resistance mutations. This class of resistance mutation is

not common, at least in our data set, and the actual cost

associated with a particular mutation can depend on the

genotype in which the mutation occurs. Costs will also

likely depend on the environment in which the genotype is

growing due to variation in resource identity and abun-

dance, as well as the general level of stress imposed on the

cell. We cannot examine this hypothesis in more detail,

unfortunately, as the appropriate data are not available.

Furthermore, we know little about how well measures of

costs in vitro correlate to those incurred in vivo. Neverthe-

less based on the available data we do have, we conclude

that no-cost resistance mutations are likely not major con-

tributors to persistent drug resistance in the absence of

antibiotic.

Can we move from a phenomenological description of

the variation in costs to a more mechanistic interpretation?

Why, for example, are resistance mutations costly in some

situations and not in others? Clearly, epistasis can play a

role. In an evolutionary context, epistasis refers to a situa-

tion in which the fitness effect of a mutation depends on its

genetic background. For example, ciprofloxacin resistance

in Campylobacter jejuni is often via mutations in gyrA,

which encodes a DNA gyrase. In one case, a resistance

mutation (C257T) that showed a fitness benefit in one

strain of C. jejuni was costly in another strain (Luo et al.

2005). Environment can also be important. The fitness esti-

mates we examined here are all obtained in vitro and may

not always reflect key aspects of fitness in vivo. Indeed, at

least two resistance mutations in fusA that each confer

resistance to fusidic acid in Salmonella typhimurium

(Macvanin et al. 2003, 2004) and two mutations in rpoB
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Figure 5 The level of resistance conferred by a mutation is negatively

correlated with its’ fitness in the absence of the antibiotic (r2 = 0.228).

Different symbols are associated with different classes of antibiotic.
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(S464P and S531L) conferring rifampicin resistance in

S. aureus show evidence that fitness costs change depend-

ing on whether it is measured in vitro or in vivo (Yu et al.

2005; Gagneux et al. 2006).

Further generalizations are difficult because our data set

is quite sparse. Most of the fitness estimates for a given

mutation are gathered in single environments, which

makes generalization difficult. Moreover, the fitness cost of

the same resistance mutation is rarely assayed in more than

one strain, let alone more than one species. Thus, our abil-

ity to draw strong inferences on the causes of such varia-

tion in costs of resistance remains limited.

Nevertheless, at least two results appear noteworthy and

warrant further investigation. The first is that there is fairly

good evidence that mutations that confer larger MICs are

more costly. This result is in line with previous studies that

found a similar relationship between MIC and growth rate

(Ender et al. 2004; Hurdle et al. 2004). It has also been

shown that the first mutations that arise and confer resis-

tance to ciprofloxacin in Pseudomonas aeruginosa are gen-

erally costly (Wong et al. 2012). This relationship can be

understood very generally in terms of Fisher’s geometric

model of adaptation: Mutations of large effect for one phe-

notype (MIC) have pleiotropic effects on other phenotypes,

the result being that an individual is knocked off a local fit-

ness peak. More mechanistically, the causes of pleiotropy

due to resistance mutations stem either from the fact that

dealing with high levels of toxin in the environment is an

energetically costly process that takes resources away from

other cellular functions, or because resistance is gained via

mutations that alter or disrupt enzyme function and the

production of essential proteins.

The second notable result is that the presence of a

thicker cell wall, one of the defining features of Gram-

positive bacteria, is associated with larger fitness costs.

While this result must be interpreted with caution

because it is based on few data points, it is interesting

that it holds for many different kinds of resistance muta-

tion, including those that confer resistance through both

small molecule efflux and target binding. It thus appears

to be a very general result although the biological reason

for this remains unclear. One, rather simplistic, sugges-

tion is that the presence of a cell wall imposes an addi-

tional energetic burden on toxin clearance that Gram-

negative bacteria do not have to deal with.

The main clinical implication of this work is that no-cost

mutations are probably not a common reason why antibi-

otic resistance persists in the absence of drug use. Rather, it

seems much more likely that persistence is due either to

co-selection of genetically linked mutations or because the

fitness cost of resistance mutations is often compensated by

mutations elsewhere in the genome. Indeed, previous work

suggests that compensatory mutations can arise within a

few generations following the emergence of resistance

(Bj€orkman et al. 2000; Maisnier-Patin et al. 2002; Kugel-

berg et al. 2005; Paulander et al. 2007; Bataillon et al.

2011; Sousa et al. 2012; Wong et al. 2012; de Vos et al.

2013). Furthermore, the presence of additional resistance

mutations can compensate for the cost of an initial resis-

tance mutation, a form of positive epistasis for fitness

(Trindade et al. 2009).

That said there is some evidence that resistance muta-

tions with low or no fitness costs can be prevalent in clini-

cal populations. For example, the spectrum of mutations in

rpoB that cause rifampicin resistance in clinical isolates of

M. tuberculosis and S. aureus is biased in favor of low-cost

mutations (O’Sullivan et al. 2005; O’Neill et al. 2006). The

K424R substitution in the 30S ribosomal protein S12 also

does not exhibit a fitness cost associated with resistance in

both S. typhimurium and M. smegmatis, and this same

mutation is also primarily responsible for resistance to

streptomycin in clinical isolates of M. tuberculosis (B€ottger

et al. 1998; Sander et al. 2002). Other mutations in rpoB

can be costly, as evidenced by the fact that putative com-

pensatory mutations in rpoA and rpoC are routinely iso-

lated alongside some resistance-causing rpoB mutations

(Comas et al. 2011). Thus, while no-cost mutations may

not be a general explanation for why antibiotic resistance

persists in the absence of drug, it may be important in spe-

cific cases.

Taken together, these observations suggest that no-cost

mutations cannot be automatically dismissed as an expla-

nation for why antibiotic resistance persists in clinical

settings even after the offending drug is removed from

use. Whether costs of resistance are an effective guide to

predicting the prevalence of resistance following reduced

drug prescription remains an open question. Enne (2010)

investigated this question directly and found mixed

results, with reduced prescriptions leading to reduced

prevalence in some cases but not others. Notably, in two

cases where our results indicate a significant cost of resis-

tance for a given bacterial species, Enne also found that

prevalence was reduced following prescription reduction

of penicillin for S. pneumoniae (Austin et al. 1999) and

quinolones for E. coli (Gottesman et al. 2009), lending

some support to the predictive ability of costs of resis-

tance from individual mutations. However, other exam-

ples show contrasting results. For example, persistent

quinolone resistant E. coli was found in a remote com-

munity where quinolones were not prescribed (Pallecchi

et al. 2012), suggesting co-selection. It has been suggested

that, in the case of quinolone resistance in this species,

co-selection could occur because resistance can be plas-

mid-mediated (Wang et al. 2003).

The take-home message here is that there may not be

any simple connection between the cost of resistance for
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individual mutations and clinical prevalence of resistance.

Given the variety of factors that can modulate costs – epis-

tasis between the resistance mutation and genetic back-

ground or even other resistance mutations, the

environment, the occurrence of compensatory mutations,

and genetic linkage between the resistance mutation and

other mutations under selection – this should not be sur-

prising. The evolution of costs of resistance and its connec-

tion to clinical treatment is a more complex issue than was

initially thought. Future work should focus on disentan-

gling the contributions of these various factors, in particu-

lar compensatory mutations that seem to evolve very

quickly alongside costly resistance mutations, to the persis-

tence of antibiotic-resistant strains in clinical and environ-

mental settings.
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