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Non-invasive plasma glycomic and metabolic
biomarkers of post-treatment control of HIV
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Non-invasive biomarkers that predict HIV remission after antiretroviral therapy (ART)

interruption are urgently needed. Such biomarkers can improve the safety of analytic treat-

ment interruption (ATI) and provide mechanistic insights into the host pathways involved in

post-ART HIV control. Here we report plasma glycomic and metabolic signatures of time-to-

viral-rebound and probability-of-viral-remission using samples from two independent

cohorts. These samples include a large number of post-treatment controllers, a rare popu-

lation demonstrating sustained virologic suppression after ART-cessation. These signatures

remain significant after adjusting for key demographic and clinical confounders. We also

report mechanistic links between some of these biomarkers and HIV latency reactivation

and/or myeloid inflammation in vitro. Finally, machine learning algorithms, based on selected

sets of these biomarkers, predict time-to-viral-rebound with 74% capacity and probability-of-

viral-remission with 97.5% capacity. In summary, we report non-invasive plasma biomarkers,

with potential functional significance, that predict both the duration and probability of HIV

remission after treatment interruption.
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Several therapeutic strategies are being tested in clinical trials
to reduce the size of HIV reservoirs to a point where vir-
ologic control can be achieved without antiretroviral ther-

apy (ART)1. The success of these strategies depends on the
capacity to determine if potential interventions have made a
meaningful impact on the HIV reservoir, i.e., if they have
extended the likely period of ART-free remission following
treatment discontinuation. Because the impact of interventions
on the total body burden of HIV cannot be measured with cur-
rent technologies, HIV cure-focused clinical trials rely on an
analytic treatment interruption (ATI) as the only definitive
approach to evaluate the effectiveness of interventions2. However,
this approach is costly, cumbersome, and poses some risk to both
study participants and the community. These realities highlight
the urgent need for biomarkers that can predict time-to-viral-
rebound after treatment interruption and can be leveraged to
guide clinical decision making. Such biomarkers could improve
the safety of ATIs and accelerate the development of an HIV cure
by providing a means for selecting only the most promising
therapies for testing by ATIs3. These biomarkers also could
provide mechanistic insights into the molecular and biochemical
pathways involved in post-ART control of HIV.

In the last few years, a small number of immunophenotypic
and virologic measurements have been associated with time-to-
viral-rebound. For example, levels of exhaustion markers on
CD4+ T cells, measured pre-ART, correlated with time-to-
rebound4. However, when assessed during ART these measures
fail as biomarkers4. Levels of cell-associated HIV DNA5 and
RNA6,7, as well as features of plasmacytoid dendritic cells8,
during ART, correlate with viral rebound after ART cessation;
however, the correlations are generally weak or modest. Thus, as
of now, there are no sufficiently reliable or validated biomarkers
that can be leveraged to guide clinical decision making.

Whereas the majority of HIV-infected individuals experience
rapid viral rebound after ART interruption6, a rare population of
individuals, termed post-treatment controllers (PTCs), demon-
strate sustained virologic suppression for several months to years
after ART cessation9. The mechanisms underlying viral control in
these individuals are not completely understood. Nonetheless,
they represent a clinically relevant model for viral control post-
ART10. The existence of individuals with this phenotype
raises the question: is it possible to define a set of biomarkers that
can predict the probability-of-viral-rebound after a potentially
successful intervention (i.e., biomarkers that can predict the
likelihood of achieving a PTC phenotype after ART cessation)?
These biomarkers could also provide critical insights into the
mechanisms that underlie this clinically relevant and desirable
phenotype.

We have been taking advantage of work in the emerging fields
of glycomics and metabolomics to identify robust, host-specific
plasma biomarkers that can predict the duration and probability
of viral remission after treatment interruption. Plasma glyco-
proteins (including antibodies; immunoglobulin G (IgGs)) and
plasma metabolites enter the circulation from tissues through
active secretion or leakage. Therefore, their levels and
chemical characteristics can reflect the overall status of multiple
organs, making them excellent candidates for biomarker dis-
covery. Indeed, glycomic features in total plasma and on IgG have
been identified as biomarkers for inflammatory bowel
disease, cancer, and diabetes11–13. In addition, glycans on circu-
lating glycoproteins have functional significance, as glycans play
essential roles in mediating immunological functions,
including antibody-dependent cell-mediated cytotoxicity (ADCC)
and pro- and anti-inflammatory activities14–16. Similarly,
plasma metabolites have been investigated as diagnostic and
prognostic biomarkers in several diseases such as heart disease,

Alzheimer’s disease, and cancer17–19. Similar to plasma glycans,
plasma metabolites are biologically active molecules that can
regulate immunological responses, including inflammatory
responses20,21.

In a recent pilot study22, we identified several plasma glycomic
structures whose pre-ATI levels associate with delayed viral
rebound after ART discontinuation. These were the digalactosy-
lated glycans on bulk IgG, called G2, as well as fucose (total and
core) and N-Acetylglucosamine (GlcNac) on total plasma
glycoproteins22. However, that study only considered possible
glycomic biomarkers, and was a small pilot that did not address
the potentially confounding effects of age, sex, ethnicity, dura-
tion-on-ART, time of ART initiation (treatment at early vs.
chronic stage of infection), or pre-ATI CD4 count.

In this current study, we first extended our biomarker dis-
covery by performing metabolomic analyses on one of the two
cohorts used in the pilot22. This was a cohort of 24 HIV-infected,
ART-suppressed individuals who had participated in an open-
ended ATI study without concurrent immunomodulatory agents.
Our metabolomic analysis identified a select set of metabolites
whose pre-ATI levels associate with time-to-viral-rebound. These
metabolites belong to metabolic pathways known to impact
inflammatory responses. We confirmed the direct, functional
impact of some of these metabolites on latent HIV reactivation
and/or macrophage inflammation in vitro. We then profiled both
the plasma glycome and metabolome of a large cohort of 74 HIV-
infected, ART-suppressed individuals who underwent ATI during
several AIDS Clinical Trials Group (ACTG) clinical trials. This
cohort contains 27 PTCs and 47 post-treatment non-controllers
(NCs). Using this cohort, we confirmed that a set of plasma
glycans and metabolites were able to predict time-to-viral-
rebound and probability-of-viral-rebound, even after adjusting
for several potential demographic and clinical confounders.
Finally, using machine-learning models, we combined this set of
biomarkers into two multivariate models: a model that predicts
time-to-viral-rebound with 74% capacity; and a model that pre-
dicts probability-of-viral-rebound with 97.5% capacity. Together,
we identified non-invasive plasma biomarkers, with potential
functional significance, that predict duration and probability of
viral remission after treatment interruption.

Results
Characteristics of study cohorts. In this study, we employed two
ATI cohorts: (1) The Philadelphia cohort: a group of 24 HIV-
infected individuals on suppressive ART who underwent an open-
ended ATI22,23. This cohort had a wide distribution of viral
rebound times (14–119 days; median=28; Supplementary
Table 1)22. Importantly, this cohort underwent ATI without
concurrent immunomodulatory agents that might confound our
signatures at the initial phase of the study22,23. (2) The ACTG
cohort: a cohort that combined 74 participants from six ACTG
ATI studies (ACTG 37124, A502425, A506826, A517027, A518728,
and A519729), which tested the efficacy of different HIV vaccines
and/or immunotherapies. These six ATI studies included 600
participants and identified 27 PTCs among their participants. Our
ACTG cohort included all 27 PTCs and 47 matched non-
controllers (NCs) from the same studies. The definition of post-
treatment control was: remaining off ART for ≥24 weeks post-ATI
with viral load (VL) ≤ 400 copies for at least 2/3 of time points; no
ART in the plasma; and no evidence of spontaneous control pre-
ART. The 47 NCs rebounded before meeting PTC criteria30,31,
The PTC and NC groups within the ACTG cohort are matched
for sex, age, ethnicity, percent treated during early infection, ART
duration, and pre-ATI CD4 count (Table 1, Supplementary Fig. 1,
and Supplementary Table 2). Notably, the individuals in our
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ACTG cohort had participated in clinical trials where they had
received, or not, different HIV vaccines and/or
immunotherapies24–29. This important feature of this cohort
allows for identifying/validating markers that predict duration and
probability of viral remission independent of potential interven-
tions. Metabolic and glycomic analyses were performed on sam-
ples collected at one timepoint, shortly before the ATI.

Elevated pre-ATI levels of plasma markers of glutamate and
bile acid metabolism associate with a delayed viral rebound in
the Philadelphia Cohort. We first aimed to examine the utility of
plasma metabolites as biomarkers of time-to-HIV-rebound after
ART cessation. Towards this goal, we measured levels of plasma
metabolites from the Philadelphia cohort22,23. Using an untar-
geted mass spectrometry (MS)-based metabolomics analysis, we
identified a total of 179 metabolites in the plasma samples col-
lected immediately before the ATI. Then, we applied the Cox
proportional-hazards model to identify metabolomic signatures
of time-to-viral-rebound. As shown in Fig. 1a, higher pre-ATI
levels of 13 plasma metabolites were significantly associated with
a longer time-to-viral-rebound with P < 0.05 and false discovery
rate (FDR) < 20%. In contrast, higher pre-ATI levels of 12 plasma
metabolites were significantly associated with a shorter time-to-
viral-rebound. When participants were separated into low or high
groups, based on the median of each of the 25 metabolic markers,
the pre-ATI levels of 20 of 25 metabolites significantly indicated
hazards of viral-rebound over time using the Mantel–Cox test
(Fig. 1b and Supplementary Table 3).

We next sought to determine if the 25 metabolites that
associated with time-to-viral-rebound shared similar metabolic
pathways. Multi-analysis combining KEGG and the STRING
Interaction Network (focusing on metabolite-associated enzy-
matic interactions) revealed that most of the 13 metabolites
whose pre-ATI levels associated with a longer time-to-viral-
rebound belonged to two major metabolic pathways. Specifically,
five metabolites lay within the anti-inflammatory glutamate/
tricarboxylic acid (TCA) cycle pathway, and three were
intermediates within the primary bile acid biosynthesis pathway
(Fig. 1c). Confirmatory analysis on these 13 metabolites using the
MetaboAnalyst 3.0 pathway feature (http://www.metaboanalyst.
ca/) showed enrichment in glutamate metabolism (P= 0.00068)
and the bile acid biosynthesis pathway (P= 0.0399) (Fig. 1c and
Supplementary Table 4).

Elevated pre-ATI levels of plasma markers of pyruvate and
tryptophan metabolism associate with an accelerated viral
rebound in the Philadelphia Cohort. Multi-analysis of the 12
metabolites whose pre-ATI levels associated with shorter time-
to-viral-rebound showed four intermediates in the tryptophan
metabolism pathway and three that are central players in the
pro-inflammatory pyruvate pathway (Fig. 1d). These observa-
tions were confirmed for the 12 metabolites using MetaboA-
nalyst 3.0, which demonstrated enrichment in pyruvate
metabolism (P= 0.0065) (Fig. 1d and Supplementary Table 4).
The roles of key discovered metabolites within the glutamate,
bile acids, tryptophan, and pyruvate pathways are graphically
illustrated in Supplementary Fig. 2. These data reveal a pre-
viously undiscovered class of plasma metabolic biomarkers that
are associated with time-to-viral rebound post-ATI. They fur-
ther demonstrate that these biomarkers belong to a specific set
of metabolic pathways that may play a previously unrecognized
role in HIV control.

L-glutamic acid and pyruvate modulate latent HIV reactivation
and/or macrophage inflammation in vitro. Among the top
candidate metabolic biomarkers from Fig. 1 are L-glutamic acid
(glutamate metabolism) and pyruvic acid (pyruvate metabolism).
The higher pre-ATI levels of L-glutamic acid and pyruvic acid
were associated with a longer or a shorter time-to-viral-rebound,
respectively. These two metabolites can impact inflammation in
opposing directions. Glutamate controls the anti-inflammatory
TCA cycle through its conversion by glutamate dehydrogenase to
α-ketoglutarate32,33, whereas pyruvate is centrally positioned
within the pro-inflammatory glycolytic pathway34,35. We there-
fore sought to determine if these two metabolites had a direct,
functional impact on latent HIV transcription and/or myeloid
inflammation.

We first assessed the impact of each of these two metabolites
on latent HIV reactivation using the established “J-Lat” model
of HIV latency. J-Lat cells harbor a latent, transcriptionally
competent HIV provirus that encodes green fluorescent protein
(GFP) as an indicator of reactivation (Fig. 2a)36. There are
several clones of the J-Lat model with different characteristics,
including the type of stimulation to which they respond. For
example, the 5A8 clone is the only J-Lat clone responsive to
αCD3/αCD28 stimulation. We examined the impact of L-
glutamic acid and pyruvate on latent HIV reactivation using
two J-Lat clones, 5A8 and 10.6. L-glutamic acid significantly
inhibited the ability of phorbol-12-myristate-13-acetate
(PMA)/ionomycin or αCD3/αCD28 to reactivate latent HIV
in clone 5A8 without impacting viability, compared to stimuli
alone controls (Fig. 2b). L-glutamic acid also inhibited the
ability of PMA/ionomycin or TNFα to reactivate latent HIV in
clone 10.6 without impacting viability, compared to stimuli
alone controls (Fig. 2c). Finally, to test the impact of glutamine
in the RPMI media on our results, J-Lat 5A8 cells were cultured
in glutamine-free media and treated with L-glutamic acid at
different doses, in the presence or absence of PMA/I. As shown
in Supplementary Fig. 3, L-glutamic acid inhibited the ability of
PMA/I to reactivate the 5A8 J-Lat clone in a dose-dependent
manner in glutamine-free media. These data demonstrate that
a plasma metabolite, L-glutamic acid, can inhibit latent viral
reactivation, consistent with the observation that pre-ATI
levels of L-glutamic acid predicted a longer time-to-viral-
rebound.

Beyond the direct impact on latent viral reactivation, plasma
metabolites may exert effects on myeloid inflammation, and such
effects may underlie HIV control during ATI. This possibility was
tested by examining the effects of L-glutamic acid and pyruvate on

Table 1 Demographic and clinical characteristics of PTCs
and NCs from the ACTG cohort.

PTCs (N= 27) NCs (N= 47)

Male, n (%) 21 (78) 40 (85)
Age, years, median (IQR) 41 (8) 41 (10)
Early treated, n (%) 10 (37) 19 (40)
Years on ART, median (IQR) 4.2 (4.7) 3.4 (4.5)
Pre-ATI CD4 count
(cells/mm3), median (IQR)

885 (224) 846 (301.5)

Days to VL≥ 1000 copies/ml,
median (IQR)

111 (282) 27 (25.5)

Days to two consecutive VL≥
1000 copies/ml, median (IQR)

331 (278) 27 (27)

Ethnicity
Caucasian, n (%) 17 (63) 30 (64)
African American, n (%) 7 (26) 9 (19)
Hispanic, n (%) 3 (11) 8 (17)

PTCs post-treatment controllers, NCs post-treatment non-controllers, ART antiretroviral therapy,
IQR interquartile range, VL viral load.
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lipopolysaccharides (LPS)-mediated secretion of pro-
inflammatory cytokines from THP-1 derived macrophage-like
cells. These cells are characterized by high basal glycolytic activity,
which closely reflects the Warburg-like phenotype observed in
HIV-infected individuals37. They also exhibit similar inflamma-
tory responses as primary cells under similar in vitro
conditions38. Cells were treated with L-glutamic acid, pyruvate,
or appropriate controls for 2 h before stimulating with LPS and
IFNγ for 5 h (Fig. 2d). L-glutamic acid inhibited LPS/IFNγ-
mediated production of pro-inflammatory cytokines such as IL-6
and TNFα (Fig. 2e; other cytokines are shown in Supplementary
Fig. 4a). Consistently, L-glutamic acid also increased production
of anti-inflammatory IL-10 (Fig. 2e). Conversely, pyruvate
increased IL-6 and TNFα secretion (Fig. 2f; other cytokines are
shown in Supplementary Fig. 4b). These data demonstrate not
only that some metabolites associate with time-to-viral-rebound,
but also that there is a plausible, functionally significant link
between these metabolic biomarkers and viral control during and
following ATI.

Pre-ATI plasma glycomic and metabolic biomarkers associate
with time-to-viral-rebound in the ACTG Cohort. Our recent
pilot study showed that pre-ATI levels of a specific set of glycans
predicted a longer time-to-viral rebound after ART
discontinuation22. However, this small pilot study did not correct
for confounders such as age, sex, and nadir CD4 count on viral
rebound. We hypothesized that a set of plasma glycans and
metabolites we identified in that pilot study22, as well as in the
results shown in Fig. 1, can predict time-to-viral-rebound and/or
probability-of-viral-rebound, even after adjusting for potential
demographic and clinical confounders. For this analysis of a
larger validation cohort, we analyzed samples from the ACTG
cohort.

We analyzed the plasma metabolome of samples collected from
this cohort before ATI. A total of 226 metabolites were identified
using MS-based metabolomics analysis. In addition, we analyzed
the plasma glycome of the same samples by applying two
different glycomic technologies. First, we used capillary electro-
phoresis to identify the N-linked glycans of total plasma
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Fig. 1 Plasma metabolites associate with time-to-viral-rebound in the Philadelphia Cohort. a Cox proportional-hazards model of metabolites associated
with a longer (blue) or a shorter (red) time-to-viral rebound during Analytic Treatment Interruption (ATI). n= 24 biologically independent samples. Data
are presented as hazard ratios with 95% confidence intervals. Two-sided P value of each independent variable in the model was used. False Discovery Rate
(FDR) was calculated using Benjamini–Hochberg method to correct for multiple comparisons. b Two-sided Mantel–Cox test analysis of four selected
metabolites from a. Low pre-ATI levels = lower than group median; High pre-ATI levels = higher than group median. n= 24 biologically independent
samples. c Pathway analysis of the 13 metabolites (blue circles in a) whose pre-ATI levels are associated with a delayed viral rebound. Left image: a multi-
analysis approach combining KEGG and STRING Interaction Network. Right image: unbiased analysis using MetaboAnalyst 3.0 (http://www.
metaboanalyst.ca/) where the node color is based on P value, and the node radius is based on the pathway impact value. The pathway impact is
determined by normalizing the sum of matched metabolites to the sum of all metabolites in each pathway. d Pathway analysis of the 12 metabolites (red
circles in a) whose pre-ATI levels are associated with an accelerated viral rebound. Analysis was performed as in panel (c). Source data are provided as a
Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24077-w

4 NATURE COMMUNICATIONS |         (2021) 12:3922 | https://doi.org/10.1038/s41467-021-24077-w |www.nature.com/naturecommunications

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
www.nature.com/naturecommunications


glycoproteins (we identified 24 glycan structures, their names and
structures are listed in Supplementary Fig. 5) and of isolated
plasma IgG (we identified 22 glycan structures, their names and
structures are listed in Supplementary Fig. 6). Second, we used a
45-plex lectin microarray to identify total (N and O linked)
glycans on plasma glycoproteins. The lectin microarray enables
sensitive identification of multiple glycan structures by employing
a panel of 45 immobilized lectins (glycan-binding proteins) with
known glycan-binding specificity, resulting in a “glycan signa-
ture” for each sample (the 45 lectins and their glycan-binding
specificities are listed in Supplementary Table 5)39.

We used the Cox proportional-hazards model and a set of
highly stringent criteria to identify sets of glycans or metabolites
whose pre-ATI levels associate with either time to VL ≥ 1000
copies/ml (Fig. 3 top panel) or time to two consecutive VL ≥ 1000
copies/ml (Fig. 3 bottom panel). To ensure high stringency, we
only considered markers with a hazard ratio (HR) ≥ 2 or ≤0.5. We
also only included markers with FDR < 10%, or markers that had
emerged from the Philadelphia cohort (Fig. 1 and our previous
pilot study22). Importantly, we only included markers that
remained significant (P < 0.05) after adjusting for age, sex,
ethnicity, ART initiation (during early or chronic HIV infection),

ART duration, or pre-ATI CD4 count (Supplementary Table 6).
These combined strict criteria identified a plasma signature that
predicted shorter time-to-rebound to VL ≥ 1000 copies/ml,
comprising four glycan structures and one metabolite (Fig. 3
top panel, red). These five markers include the highly sialylated
plasma N-glycan structure A3G3S3, GalNAc-containing glycans
(also known as T-antigen; measured by binding to both MPA and
ACA lectins), and the metabolite pyruvic acid. We also identified
a signature that associated with a longer time-to-rebound to VL ≥
1000 copies/ml, comprising seven glycan structures and one
metabolite, notably the digalactosylated G2 glycan structure on
plasma bulk IgG, fucosylated glycans in plasma (binding to AAL
lectin), GlcNac glycans in plasma (binding to DSA, UDA, and
STL lectins), and the metabolite L-glutamic acid (Fig. 3 top panel,
blue).

Turning to markers that associated with time to two
consecutive VL ≥ 1000 copies/ml, and applying the same strict
criteria, we identified five glycomic markers whose pre-ATI levels
associate with shorter time-to-rebound post-ATI, including
A3G3S3 in plasma and T/Tn-antigens (binding to MPA, ACA,
and ABA lectins) (Fig. 3 bottom panel, red). We also identified
seven glycan structures and two metabolites whose pre-ATI levels
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Fig. 2 L-glutamic acid and pyruvate directly impact latent HIV reactivation and/or macrophage inflammation. a JLat 5A8 or 10.6 clones were stimulated
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(5 mM) or appropriate control. Bar graphs display mean ± SD values, and statistical comparisons were performed using two-tailed unpaired t-tests. d THP-
1 cells (n= 3 independent experiments) were differentiated into macrophage-like cells using PMA. Cells were then treated with L-glutamic acid (5 mM),
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a Source Data file.
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predicted a longer time-to-rebound, including G2 glycan
structure on bulk IgG, core fucosylated glycans (binding to
LCA lectin) in plasma, total fucosylated glycans (binding to AAL
lectin) in plasma, GlcNac glycans (binding to DSA, UDA, and
STL lectins) in plasma, and the metabolites oxoglutaric acid (α-
ketoglutaric acid) and L-glutamic acid (Fig. 3 bottom panel, blue).
The significance of several of these markers was also confirmed
using the Mantel–Cox test in an independent analysis (Fig. 4). In
sum, using stringent analysis criteria that also took into account
potential confounders, we identified plasma glycomic/metabolo-
mic signatures of time-to-viral-rebound after ART discontinua-
tion in this independent, heterogeneous cohort of individuals who
underwent ATI and received or not several different interventions
before ATI.

Levels of pre-ATI plasma glycomic and metabolic markers that
associate with time-to-viral-rebound are linked to levels of
total, intact, and defective cell-associated HIV DNA as well as
cell-associated HIV RNA in the blood. We next examined
whether the plasma glycans and metabolites (Fig. 3) that asso-
ciated with time-to-viral-rebound also reflected levels of vir-
ological markers of HIV persistence. We measured levels of
peripheral blood mononuclear cell (PBMC)-associated total HIV
DNA and HIV RNA by qPCR on a subset of 32 individuals from
the ACTG cohort. Pre-ATI levels of cell-associated HIV DNA
and RNA have been shown to correlate with time-to-viral-
rebound in several previous studies5–7. Indeed, in our cohort,
levels of cell-associated HIV DNA and RNA were lower in PTCs
compared to NCs and predicted time-to-viral-rebound using the

Cox proportional-hazards model (Supplementary Fig. 7). When
we examined the associations between these measures and our
glycomic and metabolic markers, we found that pre-ATI levels of
total fucose (binding to AAL lectin), which predicted delayed
viral rebound, showed a significant inverse correlation with pre-
ATI levels of cell-associated HIV DNA and RNA (Fig. 5a–c).
Similarly, pre-ATI levels of core fucose (binding to LCA lectin),
which also predicted delayed viral rebound, also showed an
inverse correlation with pre-ATI levels of cell-associated HIV
DNA and RNA (Fig. 5a). Furthermore, total levels of (GlcNAc)n
(binding to UDA and STL lectins), which predicted delayed viral
rebound, had an inverse correlation with levels of total HIV DNA
(Fig. 5a). Noteworthy, levels of pyruvic acid, whose pre-ATI levels
predicted accelerated viral rebound, had a significant positive
correlation with pre-ATI levels of cell-associated HIV DNA
(Fig. 5a, d).

The majority of HIV DNA harbor mutations and/or deletions,
rendering them defective40. Intact HIV proviruses can support
viral transcription and translation; however, recently, it was also
shown that some defective HIV proviruses can express viral RNA
and proteins41,42. We sought to examine the potential links
between our plasma markers and levels of intact and defective
HIV DNA. To do this, we took advantage of near-full length
sequencing data that were recently generated on a subset of 19
individuals from this cohort (10 PTCs and 9 NCs)31. Within
these 19 individuals, levels of intact, defective, and hypermutated
HIV DNA were lower in PTCs compared to NCs, and levels of
defective HIV DNA predicted time-to-viral-rebound using the
Cox proportional-hazards model (Supplementary Fig. 7). When

Fig. 3 Hazard ratios of plasma glycomic and metabolic markers that associated with time-to-viral-rebound in the ACTG Cohort. Cox proportional-
hazards model of glycomic and metabolic markers of time to (top panel) VL≥ 1000 copies/ml or (bottom panel) two constitutive VL≥ 1000 copies/ml
within the ACTG Cohort. Data are presented as hazard ratios with 95% confidence intervals. Two-sided P value of each independent variable in the model
was used. False Discovery Rate (FDR) was calculated using Benjamini–Hochberg method to correct for multiple comparisons. n= 74 biologically
independent samples. G= group (All= using data from all 74 participants and PTC= using data from only the 27 PTCs within the ACTG Cohort). HRs =
hazard ratios. Source data are provided as a Source Data file.
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we examined the associations between these measures and our
glycomic and metabolic markers, we found that pre-ATI levels of
L-glutamic acid, which predicted delayed viral rebound in both
the Philadelphia and ACTG cohorts, showed a significant inverse
correlation with pre-ATI levels of intact and defective (but not
hypermutated) cell-associated HIV DNA (Fig. 5a, e, f). In general,
there was a trend for negative correlations between the pre-ATI
levels of markers associated with a delayed viral rebound and the
size of HIV reservoir (Fig. 5a). On the other hand, there was a
trend for positive correlations between the pre-ATI levels of
markers associated with a faster viral rebound and the size of HIV
reservoir (Fig. 5a). These data provide more support for plausible
connections between our discovered plasma markers and HIV
persistence and control during ATI.

Multivariable Cox model, using Lasso technique with cross-
validation (CV), selected variables whose combination predicts
time-to-viral-rebound. As a single marker would be highly
unlikely to strongly predict these complex virological milestones,
we next sought to apply a machine-learning algorithm to identify
a smaller set of plasma biomarkers (from Fig. 3) that together can
predict time to VL ≥ 1000 copies/ml better than any of these
biomarkers individually. The analysis considered biomarkers, both
metabolites and/or glycan structures, that emerged as significant
from the ACTG cohort (Fig. 3) and used data from ACTG sam-
ples with complete data sets (n= 70; four samples did not have a
complete dataset). The machine-learning algorithm, Lasso (least
absolute shrinkage and selection operator) regularization, selected

seven markers from the 13 that associated with time to VL ≥ 1000
copies/ml (Fig. 3 top panel), whose predictive values are inde-
pendent, and which, when combined, enhance the predictive
ability of the signature compared to any marker alone (Supple-
mentary Table 7). Indeed, with the complete data from ACTG
samples, a multivariable Cox regression model using these seven
variables showed a concordance index (C-index) value of 74%
(95% confidence interval: 68–80%), which is significantly higher
than the C-index values obtained from Cox models using each
variable individually (P < 0.05; Supplementary Table 7). Notably,
these seven markers included four whose pre-ATI levels associated
with accelerated rebound: A3G3S3, T-antigen (MPA and ACA
lectins binding), and the metabolite pyruvic acid. The other three
markers associated with delayed rebound: total fucose (AAL lectin
binding), (GlcNAc)n (STL lectin binding), and the metabolite L-
glutamic acid (Supplementary Table 7). To be conservative, a
more robust estimate of the model’s performance was calculated
using a 5-fold cross-validated model in the ACTG cohort, which
resulted in an average C-index of 70.6% with a variance of 0.0004
(Supplementary Table 8). Together, these data suggest that the
multivariable model of combined plasma glycans and metabolites
markers warrant further exploration for its capacity to predict
time-to-viral-rebound in different settings.

Pre-ATI plasma glycomic and metabolic markers distinguish
PTCs from non-controllers (NCs). Examining the glycan
structures and metabolites obtained from the ACTG cohort, we
identified eight glycan structures whose pre-ATI levels were
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significantly different between PTCs and NCs with FDR < 0.1
(Fig. 6a–h). Among these eight glycans structures, three exhibited
lower levels in the plasma of PTCs compared to NCs (FDR <
0.02), including the disialylated glycans, A2, in total IgG glycans;
the highly sialylated glycans, A3G3S3, in plasma N-glycans; and
T-antigen (binding to ABA lectin) (Fig. 6a-c); and five glycans
were higher in PTCs compared to NCs (FDR ≤ 0.035). These were
total fucose (binding to AAL lectin), core fucose (binding to LCA
and PSA lectins), and (GlcNac)n (binding to STL and UDA
lectins (Fig. 6d–h).

Examining metabolites, we found that pre-ATI levels of α-
ketoglutaric acid and L-glutamic acid, both of which predicted
delayed viral rebound, were higher in the plasma of PTCs
compared to NCs (P < 0.01, Fig. 6i, j). Importantly, this set of 10
markers contains only those markers whose levels remained
different (P < 0.05) between PTCs and NCs after adjusting for

age, sex, ethnicity, ART initiation, ART duration, or pre-ATI
CD4 count (Supplementary Table 9). Together, these data
suggest that a selective set of plasma glycans and metabolites
can distinguish PTCs from NCs and may be used to predict the
probability of viral rebound (i.e., the likelihood of PTC
phenotype after ATI).

Multivariable logistic model, using CV Lasso technique,
selected variables whose combination predicts risk of viral
rebound. We next applied the Lasso regularization to select, from
among the ten markers in Fig. 6, a set of markers whose com-
bined predictive utility is better than the predictive utility of any
of these ten markers individually. The analysis used biomarkers
that emerged as significant from the ACTG cohort (Fig. 6) and
only those samples with complete data sets (n= 70). Lasso
selected seven markers from the ten identified as able to
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Fig. 5 Plasma glycomic and metabolic markers of time-to-viral-rebound associate with levels of PBMC-associated HIV DNA (total, intact, and
defective) and RNA in the ACTG Cohort. a Two-sided Spearman’s correlation heat-map showing associations between markers associated with time-to-
viral-rebound (in rows) and levels of cell-associated HIV DNA and RNA (measured by qPCR) or levels of intact, defective, and hypermutated HIV DNA
(measured by near-full length sequencing) (in columns). The size and color of circles represent the strength of the correlation, with blue shades represent
negative correlations and red shades represent positive correlations. Numbers inside the circles are nominal P values. b, c Inverse associations between
pre-ATI plasma levels of total fucose and levels of pre-ATI cell-associated (b) HIV DNA or (c) HIV RNA. d Positive association between pre-ATI plasma
levels of the metabolite pyruvic acid and levels of cell-associated HIV DNA. e, f Inverse associations between pre-ATI plasma levels of the metabolite
L-glutamic acid and levels of intact (e) or defective (f) HIV DNA. All correlations were done using two-sides Spearman’s rank correlation coefficient tests.
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data are provided as a Source Data file.
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distinguish PTCs from NCs whose predictive values are inde-
pendent and combing them enhances the predictive ability of the
signature compared to each of these markers alone (Supple-
mentary Table 10). Indeed, a multivariable logistic regression
model using these seven variables showed an area under the ROC
curve (AUC) value of 97.5% (Fig. 7a; 95% confidence interval:
94–100%), which is significantly higher than the AUC values
obtained from logistic models using each variable individually
(P < 0.05; Supplementary Table 10). A more robust estimate of
the model’s performance with a 5-fold cross-validated model in
the ACTG cohort shows an average AUC of 94.7% with a var-
iance of 0.0049 (Supplementary Table 8). These seven markers
included three whose pre-ATI levels are lower in PTCs compared
to NCs, namely A2, A3G3S3, and T-antigen (ABA lectin bind-
ing), and four whose pre-ATI levels were higher in PTCs com-
pared to NCs, namely total fucose (AAL lectin binding), core
fucose (LCA lectin binding), (GlcNAc)n (STL lectin binding), and
the metabolite L-glutamic acid (Supplementary Table 10).

Next, a risk score predicting NC was estimated for each
individual using the multivariable logistic model. We then
examined the ability of these risk scores to classify PTCs and
NCs from the ACTG cohort. As shown in Fig. 7b, the model
correctly classified 97.7% of NCs (sensitivity) and 85.2% of PTCs
(specificity) with an overall accuracy of 92.9%. This analysis
highlights the potential utility of this risk score, estimated from
the multivariable model and combining six plasma glycans and
one metabolite, to predict the risk of NC post-ATI. This
prediction can be used to select for ATI studies the individuals
who are likely to achieve the PTC phenotype during HIV cure-
focused clinical trials. In addition, the markers that are included

in this model might also serve as windows into the mechanisms
that contribute to the PTC phenotype.

Discussion
In this study, we identified pre-ATI plasma glycomic and meta-
bolomic biomarkers of both duration and probability of viral
remission after treatment interruption. We observed a significant
overlap between plasma markers that predicted time-to-viral
rebound and markers that predicted the probability of viral
rebound (i.e., predicted the PTC phenotype in comparison to the
NC phenotype). Specifically, pre-ATI plasma levels of the anti-
inflammatory L-glutamic acid, N-acetylglucosamine (GlcNac),
and fucose were associated with both a delayed rebound and a
higher likelihood to achieve viral remission. In contrast, pre-ATI
plasma levels of the highly sialylated A3G3S3 and GalNAc-
containing glycans (T/Tn-antigens) were associated with both an
accelerated rebound and a lower likelihood of achieving viral
remission. Notable differences included the digalactosylated G2
glycan on IgG glycome, whose pre-ATI levels were associated
with longer time-to-viral-rebound but not the probability of viral
rebound; and the disialylated IgG glycan, A2, whose pre-ATI
levels associated with a higher probability of viral rebound but
not with time-to-viral-rebound.

It is not surprising that a single marker cannot highly predict
these complicated virological milestones (time to and probability
of viral rebound). Therefore, we applied machine-learning algo-
rithms to select the smallest number of variables that, when
combined, maximizes the predictive utility of our signatures. The
variables selected by the CV Lasso technique, when used in
multivariate models, were able to predict time-to-viral rebound
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Fig. 6 Plasma glycomic and metabolic markers that distinguish post-treatment controllers (PTCs) from non-controllers (NCs). Pre-ATI levels of three
glycan structures are lower in PTCs compared to NCs: (a) the disialylated glycans, A2, in the IgG glycome, (b) the highly sialylated glycan structure
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using Cox models with a C-index of 74% and probability of viral
rebound using a logistic model with an AUC of 97.5%. The utility
of these multivariable models to be used in HIV cure-directed
clinical trials warrants further investigation. Upon further vali-
dation, and possibly combining with other markers, these models
could have a profound impact on the HIV cure field by mitigating
the risk of ATI during HIV cure-focused clinical trials and pro-
vide means for selecting only the most promising therapies and
most likely individuals to achieve viral remission to be tested
by ATIs.

Beyond their utility as biomarkers, these metabolic and gly-
comic signatures of viral rebound represent an opportunity to
better understand the host milieu preceding a viral rebound. The
likelihood of viral rebound and viral remission after ART cessa-
tion is likely a function of both the size of the inducible
replication-competent HIV reservoir and the host environment
that influences inflammatory and immunological responses2. The
ongoing efforts by many groups to understand the quantitative
and qualitative nature of the HIV reservoir are critical to
understanding the virological basis of viral rebound43,44. How-
ever, complementary studies are also needed to understand host
determinants of inflammatory and immunological states that may
impact post-treatment control of HIV. Our functional analyses
on two of these biomarkers (L-glutamic acid and pyruvic acid in
Fig. 2) suggest that our signatures have a potential functional
significance for post-ART control of HIV. These markers may
directly impact latent HIV reactivation or may indirectly condi-
tion the host environment with differential levels of inflammation
that might impact viral reactivation, cellular processes, and
immunological functions during ATI. The potential direct and
indirect functional significance of each of the key variables in our
models warrants further investigations as they can serve as win-
dows into the mechanisms that contribute to post-ART HIV
control.

Our data obtained from two independent cohorts suggest that
the bioactive plasma metabolites might not only predict the

duration and probability of viral remission but also actively
contribute to it. Our in vivo data showed that the pre-ATI levels
of L-glutamic acid predict a delayed viral rebound and a higher
probability of viral remission. Indeed, our in vitro validation
experiments showed that L-glutamic acid could directly suppress
HIV reactivation and suppress LPS and IFNγ-mediated inflam-
mation of myeloid cells. It has been argued that L-glutamic acid,
through its conversion to α-ketoglutarate, fuels the TCA cycle/
oxidative phosphorylation, which is typically regarded to be an
anti-inflammatory metabolic signature45. TCA cycle metabolites
may regulate immune processes through epigenetic modifications
such as DNA methylation46, which may directly impact proviral
reactivation. We also observed significant negative correlations
between pre-ATI levels of plasma L-glutamic acid and levels of
cell-associated intact and defective HIV DNA in the blood. This is
consistent with our in vivo and in vitro data on L-glutamic acid.
In contrast to L-glutamic acid, our in vivo data showed that ele-
vated pre-ATI levels of the pro-inflammatory pyruvic acid are
associated with an accelerated viral rebound. We also observed a
significant positive correlation between pre-ATI levels of plasma
pyruvic acid and total HIV DNA. Our in vitro data confirmed
these in vivo observations and showed that pyruvate could induce
a pro-inflammatory phenotype in myeloid cells upon stimulation.
Aerobic glycolysis, where pyruvate is converted into lactate,
drives pro-inflammatory M1-macrophage polarization47, in the
context of HIV infection38. This is consistent with our in vivo and
in vitro data on pyruvate. While no studies have evaluated the
impact of plasma metabolic alterations in ATI, one study
observed a glycolytic plasma profile in transient HIV elite con-
trollers (TECs) compared to persistent elite controllers (PECs)48.
Elite controllers are individuals who maintain undetectable levels
of viremia in the absence of ART. Moreover, glutamic acid was
shown to be elevated in PECs compared to TECs48, corre-
sponding to our observation that glutamate metabolism was
associated with delayed time to HIV rebound. The plasma
metabolite signatures we observed are likely a snapshot of the
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Fig. 7 A multivariable logistic model using Lasso selected variables predicts the probability of viral remission post-ATI. The machine-learning
algorithm, Lasso regularization, selected seven markers from the ten markers in Fig. 6. Analysis using this model demonstrates that when these seven
markers are combined, their predictive ability is better than the predictive ability of any marker individually (Supplementary Table 9). a Receiver operator
characteristic (ROC) curve showing the area under the curve (AUC) is 97.5% from the multivariable logistic regression model with seven variables. n= 70
biologically independent samples. b Coefficients from the multivariable logistic model were used to estimate risk score for each individual and then tested
for the ability of these scores to accurately classify post-treatment controllers (PTCs) and non-controllers (NCs) at an optimal cut-point. The model
correctly classified 97.7 of NCs (sensitivity), 85.2% of PTCs (specificity) with an overall accuracy of 92.9%. Squares represent individuals the model failed
to identify correctly. The center of the box showing median with the whiskers going from each quartile (25th and 75th percentiles) to the minimum and
maximum, respectively. n= 70 biologically independent samples. PVR probability of viral rebound score. Source data are provided as a Source Data file.
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global and intrinsic cellular metabolic flux that occurs during ATI
in HIV-infected individuals.

In addition to L-glutamic acid and pyruvic acid, other intri-
guing plasma metabolites emerged from the analysis of the Phi-
ladelphia cohort. Among the plasma markers associated with
delayed viral rebound is ethylmalonic acid. Ethylmalonic acid is
central in the metabolism of butyrate, a short-chain fatty acid
produced by the gut microbiota and known for its anti-
inflammatory effects49. Another group of metabolites, consist-
ing of indole-3-pyruvic acid, indole-3-lactic acid, 3-indoxyl sul-
fate, and 2-oxindole, characterized accelerated rebound and may
reflect a biochemical manifestation of dysbiosis of gut bacteria
resulting in tryptophan catabolism50. Indeed, the tryptophan
metabolic pathway was highlighted as one of the main metabolic
pathways associated with an accelerated viral rebound. Although
it was not mechanistically interrogated, a positive association
between plasma indoleamine 2,3-dioxygenase (IDO) activity (an
immunoregulatory enzyme that metabolizes tryptophan) and
total HIV DNA in peripheral blood has been established51.
Impaired intestinal barrier integrity is a classical feature of HIV
infection, characterized by dysbiosis and increased microbial by-
products that drive systemic and mucosal inflammation52.
Microbes with the capacity to catabolize tryptophan have been
linked to adverse HIV disease progression53, at least in part due
to induction of IDO1 that interferes with Th17/Treg balance in
the periphery and gut54. Our data highlight previously unrecog-
nized interactions between the gut microbiome, its metabolic
activity, and HIV persistence. Understanding these potential
multi-nodal complex relationships during ART and post-ATI
warrants further investigation.

Similar to metabolites, glycans on glycoproteins are bioactive
molecules and can play significant roles in mediating immuno-
logical functions. For example, antibody glycans can alter an
antibody’s Fc-mediated innate immune functions, including
ADCC and several pro- and anti-inflammatory activities14–16.
Among glycans on antibodies, the presence of core fucose results
in a weaker binding to Fcγ receptor IIIA and reduces ADCC55.
The same occurs with terminal sialic acid, which reduces
ADCC56. On the other hand, terminal galactose induces ADCC57.
In three independent geographically distinct cohorts, two studied
in our previous pilot study22 and the ACTG cohort studied in the
current study, we observed a significant association between pre-
ATI levels of the digalactosylated non-fucosylated non-sialylated
glycan, G2, and delayed viral rebound. G2 is the only IgG glycan
trait that is terminally galactosylated, non-fucosylated, and non-
sialylated (Supplementary Fig. 6) which is compatible with higher
ADCC activity. Similar to our pilot study22, we observed a link
between plasma levels of N-acetyl-glucosamine (GlcNAc) and
delayed viral rebound. GlcNAc has been reported to have an anti-
inflammatory impact during several inflammatory diseases by
modulating NFκB activity58. Investigating the potential direct
impact of these glycans on innate immune functions and
inflammation, and how this affects HIV control during ART,
warrants further investigations.

Glycoproteins can also be shed from cells in different organs;
therefore, their characteristics can reflect these cells’ functions.
Glycans on the cell surface are involved in signaling cascades
controlling several cellular processes59,60. It is not clear how the
higher pre-ATI levels of plasma fucose, which associate with both
delayed viral rebound (in our pilot study22 as well as the current
study) and higher likelihood for PTC status post-ATI, can directly
impact viral control during ATI. Nor is it clear how the higher
pre-ATI levels of plasma GalNAc-containing glycans (T/Tn
antigens), which associate with both an accelerated viral rebound
and a lower likelihood for PTC status, can directly impact viral
control during ATI. However, these higher levels might reflect

differential levels of these glycans on cells in different organs. For
example, T-antigens (tumor-associated antigen) and Tn antigen
are O-glycans that are truncated and have incomplete glycosyla-
tion, commonly present in cancerous cells, and have been used as
tumor markers61,62. These GalNAc-containing glycans expressed
on some normal immune cells (such as T cells) are ligands of the
macrophage galactose type lectin (MGL) that is expressed on
activated antigen-presenting cells (APCs). MGL interacts with
GalNAc-containing glycans on T cells to induce T cell
dysfunction63. Our data show that higher levels of these antigens
in plasma are associated with an accelerated rebound and a lower
likelihood of viral remission and raise the question of whether
these glycan levels reflect an immunosuppressive environment in
NCs and those who rebound fast. Future studies are needed to
examine the direct impact of these glycans on HIV control and/or
the potential meaning of their levels as reflections of cellular
functions in different tissues during ATI in HIV+ individuals.

We ensured the inclusion in our multivariate models of only
metabolic and glycomic markers whose significance was not
dependent on several demographic and clinical confounders such
as age, sex, ethnicity, ART initiation during early versus chronic
stages of HIV infection, duration of ART, and pre-ATI CD4
count, as all of these markers can influence HIV reservoir size
and/or our metabolic/glycomic signatures. However, other
potential confounders could impact our results, including ART
regimen, diet, co-morbidities, co-infections, and other medica-
tions. Investigating these other confounders as well as investi-
gating geographically distinct and pediatric cohorts should be the
subject of future studies. We examined the links between our
glycomic and metabolic signatures and levels of cell-associated
HIV DNA and RNA in the blood. It will also be important, in
future studies, to examine the potential links between these
plasma markers and both HIV reservoirs and host immunological
and inflammatory responses in blood and tissues (the main site
for HIV persistence). Despite these shortcomings, our study
identified a set of a non-invasive, previously unrecognized, class
of plasma molecules (glycans and metabolites) that could be used
as biomarkers of HIV remission. These signatures of viral
rebound were obtained using two independent cohorts of ATI
and after applying stringent criteria to avoid the potential impact
of several confounders. Our exploratory machine-learning algo-
rithms also identified a combination of these markers that can
enhance their predictive value. Our signatures, upon further
validation, have the potential to fill a major gap in the HIV cure
field through their usage as biomarkers of viral rebound during
HIV cure-focused clinical trials. In addition, these results may
open mechanistic avenues to better understand the fundamental
biological processes, including carbohydrate metabolism, that
may regulate HIV control during ART and post-ATI.

Methods
Study cohorts and ethics. Analyses were performed from banked plasma samples
of two different cohorts that underwent analytical treatment interruption (ATI): (1)
Philadelphia Cohort and (2) ACTG cohort. All analyses were performed on
samples collected shortly before ATI in both cohorts.

In the Philadelphia cohort22,23, 24 HIV-infected individuals on suppressive
ART underwent an open-ended ATI without concurrent immunomodulatory
agents22,23. Approval of this study protocol was obtained from the institutional
review board (IRB) of the Wistar Institute (IRB# 2303192-2). All participants
provided written consents to use their samples and indirect identifiers (e.g., age,
sex, ethnicity, and clinical data) for HIV-related research. Time-to-viral-rebound
was identified in this cohort as time to VL of 50 copies/ml. Demographic and
clinical data on this cohort is in Supplementary Table 1.

The ACTG cohort combined 74 HIV-infected ART-suppressed participants
who underwent ATI from six ACTG ATI studies (ACTG 37124, A502425, A506826,
A517027, A518728, and A519729). ACTG 371 was a single-arm prospective,
stratified trial of four-drug intentionally interrupted ART in acute or recent HIV
infection. A total of 121 patients were enrolled in this study in 15 ACTG sites. All
patients signed an informed consent approved by each institution IRB and the
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National Institute of Allergy and Infectious Diseases (NIAID)24. ACTG A5024 was
a partially blinded, randomized phase II trial conducted to test four interventional
arms involving continued ART plus ALVAC vCP1452 (or placebo) with or without
interleukin (IL)-2. Treatment interruption was then conducted to assess HIV
control. A total of 81 patients were enrolled in this study in 19 ACTG sites. The
study was approved by on-site IRBs25. ACTG A5068 was a prospective,
randomized, partially double-blinded study to investigate the effects of
immunization with an exogenous HIV vaccine and pulse exposure to the patient’s
unique viral epitopes on the dynamics of viral rebound after treatment
interruption. A total of 97 patients were enrolled in this study in 15 ACTG sites.
The study protocol was approved by local IRBs26. ACTG 5170 was a multicenter,
observational, prospective study of HIV-infected patients receiving ART who had
CD4 counts >350 cells/mm3 and underwent treatment interruptions without
interventions. A total of 167 patients were enrolled in this study in 26 ACTG sites.
The study was approved by IRBs at each site27. ACTG A5187 was a phase I/II,
randomized, placebo-controlled, double-blinded trial to evaluate the safety and
immunogenicity of an HIV-1 DNA vaccine (VRC-HVDNA 009-00-VP) in patients
treated with ART during acute/early HIV-1 infection. A total of 20 patients were
enrolled in this study in five ACTG sites. The study was approved by IRBs at each
site28. ACTG A5197 was a double-blinded study where participants were
randomized 2:1 to receive a replication-defective Ad5 vaccine containing HIV-1
gag insert or a placebo. A total of 114 patients were enrolled in this study in 26
ACTG sites. The study was approved by IRBs at each site29.

These six ATI studies from ACTG included 600 participants and identified 27
PTCs among their participants. Our ACTG cohort included all 27 PTCs and 47
matched non-controllers (NCs) from the same studies. The definition of post-
treatment control was: remaining off ART for ≥24 weeks post-ATI with VL ≤ 400
copies for at least 2/3 of time points; no ART in the plasma; and no evidence of
spontaneous control pre-ART. The 47 NCs rebounded before meeting PTC
criteria30,31, These two groups were matched for sex, age, % treated at the early
stage of HIV infection, ART duration, pre-ATI CD4 count, and ethnicity, as shown
in Table 1. Full demographic and clinical data on this cohort is in Supplementary
Table 2. All participants provided written consents to use their samples and
indirect identifiers (e.g., age, sex, ethnicity, and clinical data) for HIV-related
research.

Plasma untargeted metabolomics analysis. Metabolomics analysis was per-
formed as described previously64. Briefly, polar metabolites were extracted from
50 µl plasma samples with 500µl ice-cold 80% methanol, and deproteinated
supernatants were stored at −80 °C prior to analysis. A quality control (QC) sample
was generated by pooling equal volumes of all samples after extraction. LC-MS
analysis was performed on a Thermo Scientific Q-Exactive HF-X mass spectrometer
with HESI II probe and Vanquish Horizon UHPLC system. Hydrophilic interaction
liquid chromatography (HILIC) was performed at a flow rate of 0.2 ml/min on a
ZIC-pHILIC column (150 × 2.1 mm, 5 µm particle size, EMDMillipore) with a ZIC-
pHILIC guard column (20 × 2.1 mm, EMD Millipore) at 45 °C. Solvent A was
20mM ammonium carbonate, 0.1% ammonium hydroxide, pH 9.2, and solvent B
was acetonitrile. The gradient was 85% B for 2min, 85% B to 20% B over 15 min,
20% B to 85% B over 0.1min, and 85% B for 8.9 min. The autosampler was held at
4 °C. For each analysis, 4 µl of the sample was injected. The following parameters
were used for the MS analysis: sheath gas flow rate, 40; auxiliary gas flow rate, 10;
sweep gas flow rate, 2; auxiliary gas heater temperature, 350 °C; spray voltage, 3.5 kV
for positive mode and 3.2 kV for negative mode; capillary temperature, 325 °C; and
funnel RF level, 40. All samples were analyzed by full MS with polarity switching.
The QC sample was analyzed at the start of the sample sequence and after every
8–14 samples. The QC sample was also analyzed by data-dependent MS/MS with
separate runs for positive and negative ion modes. Full MS scans were acquired at
120,000 resolution with an automatic gain control (AGC) target of 1e6, maximum
injection time (IT) of 100ms, and scan range of 65–975m/z. Data-dependent MS/
MS scans were acquired for the top 10 highest intensity ions at 15,000 resolution
with an AGC target of 5e4, maximum IT of 50 ms, isolation width of 1.0m/z, and
stepped normalized collision energy (NCE) of 20, 40, 60.

Data analysis was performed using Compound Discoverer 3.1 (ThermoFisher
Scientific) with separate analyses for positive and negative polarities. Retention
time alignment used the adaptative curve model with 0.3 min maximum shift,
5 ppm mass tolerance, and 3 S/N threshold. Peak detection required less than
5 ppm mass error for extracted ion chromatograms with a 50,000 minimum peak
intensity. [M+H]+ 1 and [M-H]-1 were set as base ions with consideration for
other adducts. Peaks were required to have a width at half height less than 0.5 min
and a minimum of 5 scans. Components that had only a monoisotopic peak and no
further isotopes were not considered. The maximum element count for isotope
pattern modeling was C90H190N10Na2O15P3S5. Compounds were grouped
across samples with 5 ppm mass error and 0.3 min retention time shift. Peaks not
detected initially in a given sample were determined using the fill gaps algorithm
with 5 ppm mass error and 1.5 S/N threshold with real peak detection. The gap
function uses a priority system to determine missing values: (1) matching detected
ions based on expected m/z and retention time regardless of adduct assignment, (2)
re-detecting peaks at lower thresholds, (3) simulating peaks based on expected m/z,
and (4) imputing spectrum noise based on detection limit values. Compound
quantifications were corrected for instrument drift by QC areas using the cubic

spline regression model. Each compound was required to be detected in at least
40% of QC runs with a Relative Standard Deviation (RSD) less than 50%. RSD
values of the significant metabolites in both the Philadelphia and ACTG Cohorts
are shown in Supplementary Table 11. Metabolites were identified by accurate mass
(5 ppm mass error) and retention time (0.5 min shift) using a database generated
from pure standards or by accurate mass and MS2 spectra using the mzCloud
spectral database (mzCloud.org), specifically the ‘Endogenous Metabolites’ and
‘Steroids/Vitamins/Hormones’ compound classes and selecting the best matches
with HighChem HighRes identity search match factors of 50 or greater. Results
were manually processed to remove entries with apparent peak mis-integrations
and correct commonly misannotated metabolites. Positive and negative data sets of
identified compounds were merged, and the preferred polarity was selected for
compounds identified in both polarities. Compound quantifications were
normalized per volume plasma injected, which was equivalent for all samples.
Values from the ACTG study were further normalized to the summed area of
identified metabolites in each sample. For compounds identified multiple times at
different retention times, a single entry was selected with priority given to
standards database matches followed by greater mzCloud match factors and
peak areas.

In vitro examination of the impact of L-glutamic acid on latent HIV reacti-
vation. J-Lat cells were used as a model of HIV latency. J-Lat cells harbor latent,
transcriptionally competent HIV provirus that encodes green fluorescent protein
(GFP) as an indicator of viral reactivation36. Levels of latent HIV transcription after
stimulation can be measured using flow cytometry. L-glutamic acid was purchased
from Sigma (catalog# 49449-100G) and was dissolved in cell-culture compatible
HCl solution (Sigma catalog# H9892-100ML). J-Lat 5A8 clone was kindly provided
by Dr. Warner Greene (The Gladstone Institute of Virology and Immunology).
J-Lat clone 10.6 (catalog number 9849) was provided by the NIH AIDS Reagent
Program (Germantown, MD). Cells from different clones of J-Lat (5A8 and 10.6)
were cultured at 1 × 106 cells/ml in cultured in R10 media (complete RPMI
1640 medium supplemented with 10% fetal bovine serum (FBS, penicillin
(50 U/ml), and streptomycin (50 mg/ml) and were stimulated with PMA/iono-
mycin (16 nM/500 nM- Sigma catalog# P8139/ catalog# I0634-1MG, respectively)
or ImmunoCult Human CD3/CD28 T Cell Activator (Stem cell catalog# 10971), or
TNFα (10 ng/ml; Stem Cell catalog# 78068.1) in the presence of HCl solution as a
control. J-Lat cells were also treated with L-glutamic acid (5 mM) in the presence or
absence of the above stimulators. After 24 h, cells were stained with live/dead
marker (Thermo catalog# L34966), and GFP Mean Fluorescence intensity (MFI)
was measured by LSR II flow cytometer and FACSDiva software. To test the impact
of glutamine in the RPMI media on our results, J-Lat 5A8 cells were cultured in
glutamine-free media (Gibco, catalog # 21870076, supplemented with 10% FBS,
penicillin (50 U/ml), and streptomycin (50 mg/ml)) and treated with L-glutamic
acid (4, 5, or 6 mM) in the presence or absence of PMA/I (HCL solution was used
as a negative control). After 24 h, cells were stained with live/dead marker, and GFP
MFI was measured by LSR II flow cytometer and FACSDiva software. The gating
strategy for the J-Lat experiments is shown in Supplementary Fig. 8 using FlowJo
software (version 10.7.01).

In vitro examination of the impact of L-glutamic acid and pyruvate on myeloid
inflammation. THP-1 cell line (catalog number 9942) was provided by the NIH
AIDS Reagent Program (Germantown, MD). THP1 cells were plated in 24-well
plates at a density of 7×105 cells per well. To differentiate them into macrophage-
like, 100 nM of PMA (Sigma catalog# P8139) was added and incubated for 72 h.
After incubation, media was aspirated, and each well was gently washed twice with
R10 media. Cells were then rested for 24 h on R10 media without PMA. After 24 h,
cells were washed again with serum-free (no FBS) RPMI 1640 media and kept in
this media for the rest of the experiment. Macrophage-like THP1 cells were pre-
incubated with L-glutamic acid (5 mM) or Sodium Pyruvate solution (2 mM, Sigma
catalog# S8636-100ml) for 2 h before stimulating with Escherichia coli serotype
O127:B8 LPS (50 ng/ml; Sigma catalog# L3129-10MG) and IFNγ (10 ng/ml; R&D
Systems catalog# 285-IF-100, respectively). After 5 h of incubation with LPS/IFNγ,
culture supernatants were collected for cytokine quantitation. Supernatant levels of
IL-10, IL-12p70, IL-13, IL-1β, IL-2, IL-4, IL-6, and IL-8 were determined using U-
PLEX Proinflam Combo 1 (Meso Scale Diagnostic # K15049k-1) according to
manufacture. Levels of TNFα were quantified using DuoSet ELISA kits (R&D
Systems; Catalog# DY210-05).

IgG isolation. Bulk IgG was purified from 50 µl plasma using Pierce™ Protein G
Spin Plate (Thermo Fisher catalog# 45204). IgG purity was confirmed by SDS gel.

N-glycan analysis using capillary electrophoresis. For both plasma and bulk
IgG, N-glycans were released using peptide-N-glycosidase F (PNGase F) and
labeled with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) using the GlycanAssure
APTS Kit (Thermo Fisher cat. A33952), following the manufacturer’s protocol.
Labeled N-glycans were analyzed using the 3500 Genetic Analyzer capillary elec-
trophoresis system. IgG N-glycan samples were separated into 22 peaks and total
plasma N-glycans into 24 peaks. Relative abundance of N-glycan structures was
quantified by calculating the area under the curve of each glycan structure divided
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by the total glycans using the Applied Biosystems GlycanAssure Data Analysis
Software Version 2.0.

Glycan analysis using lectin array. To profile the plasma total glycome, we used
the lectin microarray as it enables analysis of multiple glycan structures; it employs
a panel of 45 immobilized lectins with known glycan-binding specificity. Plasma
proteins were labeled with Cy3 and hybridized to the lectin microarray. The
resulting chips were scanned for fluorescence intensity on each lectin-coated spot
using an evanescent-field fluorescence scanner GlycoStation Reader (Glyco-
Technica Ltd.), and data were normalized using the global normalization method.

Quantification of HIV DNA and CA-RNA. Cell-associated (CA)-RNA and DNA
were isolated from cryopreserved peripheral blood mononuclear cells (PBMCs)
using the AllPrep DNA/RNA Mini Kit (Qiagen). Unspliced CA-RNA and total
HIV DNA levels were quantified using a real-time PCR approach with primers/
probes targeting conserved regions of HIV LTR/gag as previously described
(Supplementary Table 12)6,65. The CA-RNA assay measures levels of unspliced
transcripts, which are late RNA products necessary for the creation of HIV
structural proteins and remains one of the most commonly used assay in HIV
curative studies66–68. Cell numbers were quantified by the real-time PCR mea-
surement of CCR5 copy numbers. Cellular integrity for RNA analysis was assessed
by the measurement of total extracted RNA and evaluation of the IPO-8 house-
keeping gene69.

Near-full-length HIV proviral sequencing. Single-genome, near-full-length pro-
viral sequences were obtained from a previously published dataset generated on a
subset of the ACTG cohort31. Briefly, limiting-dilution proviral amplification was
performed, and DNA was extracted from PBMCs using the QIAmp DNA Mini Kit
(Qiagen). Isolated DNA was amplified using limiting-dilution nested PCR ampli-
fication (Supplementary Table 12)31. PCR amplicons were sequenced using the
Illumina MiSeq platform. A continuous fragment of HIV-1 proviral DNA was
assembled, and the sequences were aligned to HXB2 to identify sequence defects
(e.g., internal deletions, premature stop codons, out-of-frame mutations, internal
inversions, and packaging signal defects). The sequences were also tested for
hypermutations using the Los Alamos HIV Sequence Database Hypermut program
to identify hypermutated sequences. Proviral sequences that lacked the above-
mentioned defects were classified as intact31.

Statistical analysis. For each of the studied biomarkers, data distribution was first
examined, and appropriate data transformation was made for further analysis. Data
from metabolic analysis were log2-transformed before analysis. Data from the lectin
array were log2-transformed in the Cox and logistic regression analyses (Figs. 3, 4
and 7, as well as Supplementary Tables 6, 7, 8, and 10). Original data from the
lectin array were used in the analysis for Fig. 6 and Supplementary Table 9. Two-
group t-tests or Mann-Whitney tests were used to determine the difference
between two groups. Spearman’s rank correlation coefficient was used to evaluate
correlations. For binary outcome (NCs vs. PTCs) or time-to-viral-rebound, logistic
or Cox regression models with or without adjusting for confounders were used to
assess the association between a biomarker and outcome, respectively. False dis-
covery rates (FDR) were calculated using Benjamini–Hochberg correction. To
explore biomarkers that could be predictors of clinical outcomes, specific sets of
biomarkers were identified among those with FDR < 0.1. Variables for the multi-
variable models were selected from the identified specific sets of biomarkers using
the Lasso technique with the cross-validation (CV) selection option by separating
data in 5-fold. Due to this exploratory study with a modest sample size, variables
selection was determined using 100 independent rounds runs of CV Lasso with
minimum tuning parameter lambda. The biomarkers that were selected 80 or more
times from 100 runs were used as a final set of predictors in our models. The
predictive ability of the final logistic and Cox models was assessed by AUC and C-
index. GraphPad Prism 7, Stata 16, and R were used for data analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that data supporting the findings of this study are available within
the paper and its supplementary information files. Source data are provided with this
paper. The metabolomics data generated in this study have been deposited in the NIH
Common Fund’s National Metabolomics Data Repository (NMDR) website, the
Metabolomics Workbench, https://www.metabolomicsworkbench.org where it has been
assigned Project ID PR001053. The data can be accessed directly via its Project DOI:
10.21228/M8KQ59 (https://doi.org/10.21228/m8kq59). Metabolomics Workbench is
supported by NIH grant U2C-DK119886. Source data are provided with this paper.
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