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The Warburg effect is a well-known phenomenon in cancer, but the glutamine

addiction in which cancer cells utilize glutamine as an alternative source of energy is

less well known. Recent efforts have focused on preventing cancer cell proliferation

associated with glutamine addiction by targeting glutaminase using the inhibitor BPTES

(bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide). In the current study, an

investigation of the BPTES induced changes in metabolism was made in two

human breast cancer cell lines, MCF7 (an estrogen receptor dependent cell line)

and MDA-MB231 (a triple negative cell line), relative to the non-cancerous cell line,

MCF10A. NMR spectroscopy combined with a recently established smart-isotope

tagging approach enabled quantitative analysis of 41 unique metabolites representing

numerous metabolite classes including carbohydrates, amino acids, carboxylic acids

and nucleotides. BPTES induced metabolism changes in the cancer cell lines were

especially pronounced under hypoxic conditions with up to 1/3 of the metabolites

altered significantly (p < 0.05) relative to untreated cells. The BPTES induced changes

were more pronounced for MCF7 cells, with 14 metabolites altered significantly (p <

0.05) compared to seven for MDA-MB231. Analyses of the results indicate that BPTES

affected numerous metabolic pathways including glycolysis, TCA cycle, nucleotide and

amino acid metabolism in cancer. The distinct metabolic responses to BPTES treatment

determined in the two breast cancer cell lines offer valuable metabolic information for the

exploration of the therapeutic responses to breast cancer.

Keywords: breast cancer, metabolomics, BPTES, MCF7, MDA-MB231, MCF10A, NMR, isotope tagging

INTRODUCTION

Breast cancer continues to have high incidence and is a major cause of death among women
worldwide (Torre et al., 2016) (https://gco.iarc.fr/). Investigations focused on understanding the
molecular origins and drivers of the disease have led to discovery of new gene expression patterns,
which correlate with disease subtypes as well as the therapeutic outcome for breast cancer (Sørlie
et al., 2001; van ’t Veer et al., 2003; Paik et al., 2004). A number of recent investigations have
focused on characterizing altered metabolism in cancer. In particular, the Warburg effect, which
refers to the high rate of glycolysis observed in cancer cells even in the presence of oxygen
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(Warburg, 1956) is being re-examined in light of findings
indicating a high dependence of cancer cells on glutamine. This
so-called glutamine addiction is one of the major characteristics
of the Warburg effect (DeBerardinis et al., 2007; Wise and
Thompson, 2010), and has been shown to be of significant
importance for mitochondrial metabolism, a major source of
energy, and a source of nitrogen and carbon for biosynthesis (Gao
et al., 2009; Wise and Thompson, 2010). Glutamine is converted
to glutamic acid in mitochondria by the enzyme glutaminase.
The glutamic acid thus formed fuels the TCA cycle through its
conversion to alpha-ketoglutarate.

Recently, glutamine addiction in cancer cells has attracted
major attention as a potential new therapeutic target for treating
numerous types of cancers including breast cancer (Wang et al.,
2010; Wise and Thompson, 2010; Katt and Cerione, 2014).
Investigations using human breast cancer cell lines have shown
that the oncogene, Myc, enhances the expression of glutaminase
and thus increases glutamine metabolism in mitochondria (Gao
et al., 2009; Wang et al., 2010). Inhibition of glutaminase is
therefore sought as an important goal for preventing cancer
cell proliferation, or killing cancer cells since the addiction may
indicate a cell survival mechanism. A number of drugs have
been developed as glutaminase inhibitors (Katt and Cerione,
2014); among these, BPTES (bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide) is an important inhibitor that has
been shown to be active in a variety of cancer cells. An advantage
of BPTES is that it exhibits superior performance compared to
the other related inhibitors (Katt and Cerione, 2014).

A number of investigations have focused on the
understanding of the mechanism of inhibition of glutaminase
activity by BPTES (Robinson et al., 2007; Hartwick and Curthoys,
2012; Thangavelu et al., 2012). Metabolomics offers a promising
avenue for understanding the effect of overexpression of
glutaminase or its inhibition, as the field has been very useful
in identifying therapeutic targets and a number of disease
biomarkers (Nagana Gowda and Raftery, 2013). To date, only
a very few metabolite profiling studies have investigated the
metabolism of glutamine-addicted cells or the effect of BPTES on
metabolism. One such study investigated cancer cell metabolism
under normoxic and hypoxic conditions with or without BPTES
using a human lymphoma cell line. In this study, it was shown
that increased levels of TCA cycle metabolites were observed
under hypoxic conditions and glutaminase inhibition by BPTES
caused cell death (Le et al., 2012). More recently, based on global
metabolite profiling of tumors as well as numerous human
breast cancer cell lines including MCF7 and MDA-MB231,
glutaminase overexpression was shown to elevate the levels of 2-
hydroxyglutarate, which potentially serves as an oncometabolite
biomarker for some types of breast cancer (Terunuma et al.,
2014). However, currently, there are no investigations focused
on altered metabolism induced by BPTES in breast cancer.

In the current study, focused on better understanding BPTES-
induced metabolic changes in breast cancer, we have investigated
metabolite profiles of two human breast cancer cell lines,
MCF7 and MDA-MB231 along with a non-cancerous cell line,
MCF10A, combining 1H 1D NMR and isotope tagged 1H-15N
2D NMR spectroscopy (Tayyari et al., 2013). Isotope tagging

improves the resolution of NMR experiments for improved
metabolite profiling. The three cell types were grown using
identical conditions under normoxia or hypoxia, and with or
without treatment by BPTES. It is shown that the effect of
BPTES on metabolism was pronounced under hypoxia for
both cancer cell lines. Further, between the two cancer cell
lines, the BPTES induced effect was substantially higher for
MCF7 cells compared to MDA-MB231 cells. After BPTES
treatment twice as many detected metabolites were altered
significantly in MCF7 compared to MDA-MB231 cells, and a
number of metabolic pathways were affected. To the best of our
knowledge, this is the first metabolomics study that investigates
altered metabolism in breast cancer cells induced by the
glutaminase inhibitor, BPTES. Identification of the altered levels
of metabolites potentially offers valuable metabolite biomarkers
for exploration of responses to therapy in the treatment of breast
cancer.

MATERIALS AND METHODS

BPTES (bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl
sulfide), (2-bromoethyl) trimethylammonium bromide and
3-(Trimethylsilyl)propionic acid-2,2,3,3-d4 sodium salt (TSP)
were obtained from Sigma-Aldrich (St. Louis, MO). 4-(4,6-
dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholinium chloride
(DMTMM) was obtained from Acros Organic (Pittsburgh, PA),
while 15N-phthalimide potassium was obtained from Cambridge
Isotope Laboratories (Andover, MA). Human breast cancer
cell lines MCF7 and MDA-MB231, and the non-cancerous cell
line, MCF10A, were procured from the Hockenbery lab at the
Fred Hutchinson Cancer Research Center. All chemicals and
solvents used were of analytical grade and used without further
purification.

Cell Culture
MCF7 and MDA-MB231 cells were cultured in DMEM medium
(Gibco, Los Angeles, CA USA) containing 10% fetal calf serum,
2mM glutamine, 1% penicillin-streptomycin (Gibco, Grand
Island, NY, USA) at 37◦C with 5% CO2. MCF10A cells were
grown in complete growth medium, 1:1 mixture of Dulbecco’s
Modified Eagle’s Medium and Ham’s F12 Medium (Gibco,
Grand Island, NY) supplemented with 20 ng/mL epidermal
growth factor (EGF), 100 ng/mL cholera toxin, 10µg/mL insulin,
500 ng/mL hydrocortisone (Sigma-Aldrich St. Louis, MO, USA),
5% horse serum, and 1% penicillin-streptomycin. The cells were
plated at a density of 5 × 106 on 150 × 25mm tissue culture
dishes (Corning Incorporated, MA) in 25mL complete growth
medium. After 18 h, fresh medium was replaced. A total of 12
plates were grown for each cell line so that each study group
had three replicates (Table S1). For each cell type, six plates were
incubated under normoxic conditions (21% O2, 5% CO2, 37

◦C)
and the other six plates were incubated under hypoxic conditions
(2% O2, 5% CO2, 37

◦C). Half of the cell plates from normoxic
(n = 3) and hypoxic (n = 3) conditions were treated with
20µM BPTES inhibitor (Sigma-Aldrich St. Louis, MO) before
incubation.
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Metabolite Extraction
After 24 h incubation, the cell media were removed and
the cells washed with 30mL cold water; a mixture of
methanol/chloroform (9.5mL; 9:1 v/v) was then immediately
added to the plates to quench the cells and extract metabolites.
Cell lysates were obtained by keeping the plates at −75◦C for
5min and thawing them at room temperature. Cell remnants
were scraped from the culture dishes and collected in fresh tubes
along with the cell lysates. Resulting mixtures were centrifuged at
13,000 rpm for 5min and supernatant solutions that contained
cell metabolites were transferred to fresh tubes and dried
overnight using a Speedvac at 30◦C. The dried residues were
dissolved in 600 µL 0.1M phosphate buffer (pH 7.4) in D2O
solvent containing 50µM TSP and the solutions transferred to
5mm NMR tubes for metabolite analysis using 1H 1D NMR
spectroscopy.

Metabolite Labeling With a 15N- Isotope
Tag
After acquiring 1H 1D NMR spectra as described below for cell
extracts, the solutions were dried and reconstituted in 550 µL
water. Carboxyl group containing metabolites were then labeled
with 15N-cholamine (Figure 1), which was synthesized using a
two-step reaction following the protocol described previously
by our laboratory (Tayyari et al., 2013). Briefly, 15N-cholamine

(5mg, 50 µmol) was added to solutions of cell extracts in
Eppendorf tubes and pH adjusted to 7.0 with 1M hydrochloric
acid (HCl) or sodium hydroxide (NaOH). DMTMM (15mg)
was then added as a catalyst to help initiate the reaction, and
the mixtures were then stirred at room temperature for 4 h
to complete the reaction. The resulting solutions were mixed
with a small volume (25 µL) of D2O for NMR field-frequency
locking. To maintain amide protonation the pH was adjusted
to 5.0 by adding 1N HCl or 1N NaOH. The solutions were
then transferred to 5mm NMR tubes for detection of the isotope
tagged metabolites using two-dimensional NMR spectroscopy.

NMR Spectroscopy
All NMR experiments were performed at 298K on a Bruker
Avance III 800 MHz spectrometer equipped with a cryoprobe
and Z-gradients. Before labeling with the cholamine tag, 1H 1D
NMR experiments were performed on the cell extracts using
the CPMG (Carr-Purcell-Meiboom-Gill) pulse sequence with
residual water signal suppression using presaturation. A spectral
width of 9,615Hz, time domain points of 32K, a recycle delay
of 6 s, 16 dummy scans and 64 scans were used. The raw
data were then Fourier transformed after multiplying with an
exponential window function using a line broadening (LB) of
0.5Hz and spectrum size of 32K points. Resulting 1D spectra
were phase and baseline corrected. To detect the carboxyl

FIGURE 1 | (A) General reaction for tagging of carboxylic group containing metabolites with 15N-cholamine tag; (B) schematic 3D view of a typical 2D 1H-15N HSQC

NMR spectrum of a sample with 15N-cholamine tagging of carboxylic acid containing metabolites. DMTMM:4-(4,6-dimethoxy[1,3,5]triazin-2-yl)-4-methylmorpholinium

chloride.
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group containing metabolites after isotope tagging, sensitivity-
enhanced 1H-15N 2D HSQC experiments were performed with
an INEPT transfer delay of 6ms corresponding to the 1JNH
coupling of 90Hz. Spectral widths for the 1H and 15Ndimensions
were approximately 8 and 3 kHz, respectively. One hundred and
twenty-eight free induction decays of 1,024 data points each
were collected in the indirect dimension (t1) with 16 transients
per increment. 15N decoupling during the direct acquisition
dimension (t2) was achieved with the GARP (Globally Optimized
Alternating-Phase Rectangular Pulses) sequence. The resulting
2D data were zero-filled to 2,048 points in the t2 and 1,024 in the
t1 dimension after forward linear prediction to 256 points. A 90◦

shifted squared sine-bell window function was applied to both
dimensions before Fourier transformation. Chemical shifts were
referenced to the TSP signal for 1H 1D NMR or the derivatized
formic acid signal (1H: 8.05 ppm; 15N: 123.93 ppm) in the 2D
HSQC NMR spectra for isotope tagged samples.

Data Analyses
Bruker Topspin versions 3.0 or 3.1 and the Bruker AMIX
software package were used for NMR data processing and
analyses. Metabolites were identified based on established
chemical shift databases (Tayyari et al., 2013; Wishart et al., 2013;
Nagana Gowda et al., 2015) and quantitated after normalizing
the spectra to their total sums. For 1D NMR spectra, integrals
for characteristic and well-resolved metabolite peaks were used
to obtain the relative metabolite concentrations. For 2D spectra,
Bruker Topspin 2D peak integration was used to obtain the
relative metabolite concentrations of isotope tagged metabolites.
The metabolite profiles were analyzed combining univariate
and multivariate statistical methods. Multivariate hierarchical
cluster analysis (HCA) was used to enable global visualization of
natural clusters and altered metabolite profiles between different
groups of cells based on comparing distances between pairs
of samples. Pearson correlations between metabolites in each
cell type under normoxia, hypoxia and with BPTES treatment
were also calculated. Individual metabolite differences between
pairs of cell treatments, were analyzed using the Student’s t-test
and fold changes. Metabolite changes that exhibited p < 0.05
were considered significant. HCA and correlation analysis were
performed using R statistical software (version 2.12.2).

RESULTS

NMR experiments at 800 MHz provided highly resolved spectra
for all cell extracts. 1D NMR experiments enabled identification
and quantitation of a total of 32 intracellular metabolites, while
2D NMR experiments that targeted carboxylic group containing
metabolites in the same cells based on selective labeling using
an 15N-cholamine tag enabled identification of a total of 19
metabolites. A total of 41 unique metabolites were obtained from
the combination of 1D and 2D NMR approaches. Of these, 9
metabolites namely arginine, carnitine, citrate, p-coumaric acid,
N-acetylglycine, malate, pyroglutamate, oxalic acid and succinate
were unique to the 2D NMR method. Table 1 lists metabolites
identified by both 1D and 2D NMR; all metabolites identified
by 2D NMR are marked in the table. Although the relative

concentrations for the metabolites identified by both 1D and 2D
NMRwere comparable, in this study all metabolites derived from
1D NMR and the 9 unique metabolites derived from 2D NMR
were used in the analysis and for reporting.

Cancer vs. Non-cancerous Cells
Metabolite profiles of cancer cells, MCF7 andMDA-MB231, were
distinctly different from each other and from non-cancerous
cells, MCF10A. Levels of a majority of the metabolites were
significantly different between cancer and non-cancer cells. The
number of metabolites that were altered significantly (p <

0.05) was 25 between MCF7 and MCF-10A, 29 between MDA-
MB231 and MCF-10A, and 27 between MCF7 and MDA-MB231
(Table S2). Overall, the differences in metabolite levels between
cancer and non-cancerous cells varied by up to two orders of
magnitude, while the differences between the two breast cancer
cells varied by as much as twenty-fold. The significantly altered
metabolites between cancer and non-cancerous cells represented
numerous pathways including glycolysis, TCA cycle, amino acid
and nucleotide metabolisms.

The Warburg effect was quite evident in both cancer cell
types as glucose levels dropped by a factor of 10 when compared
to the non-cancerous cells, signifying the high rate of glucose
metabolism (Table S2). Further, the high glucose metabolism was
more pronounced for MCF7 cells (p < 0.00003) than MDA-
MB231 (p < 0.0001). High levels of lactate were also observed
for both cancer cell types, increasing by a factor of 3.8 for
MCF7 cells and 3.5 forMDA-MB231. Further, in accordance with
the difference in the rate of glycolysis, lactate production was
more pronounced for MCF7 cells (p < 0.002) than MDA-MB231
(p < 0.01).

Hypoxia Induced Metabolite Changes to
Cells
A significant effect of hypoxia on the cancer and non-
cancerous cells was evident from the altered levels for a large
number of metabolites. The effect, however, was different for
each cell type. For MCF7 cells, 20 metabolites were altered
significantly (p < 0.05) due to hypoxia compared to normoxia;
of these, 6 metabolites were upregulated and 14 metabolites were
downregulated compared to normoxic conditions (Figure 2;
Table 1). For MDA-MB231 cells, 16 metabolites were altered
significantly (p < 0.05) due to hypoxia; of these, 4 metabolites
were upregulated and 12 metabolites were downregulated
relative to normoxia. The hypoxic effect was even more
pronounced for the non-cancerous cells, MCF-10A; a total of
21 metabolites were altered significantly with 6 metabolites
upregulated and 15 metabolites downregulated. Hypoxia altered
metabolite levels by more than three-fold in some cases, with
majority of them decreased relative to normoxia cells (Figure 2;
Table 1).

Hypoxia affected glycolysis and TCA cycle metabolism
for both cancer cell lines, albeit differently (Figures 3, 4).
Specifically, hypoxia caused increased levels for both glucose
and lactate in MCF7, while in MDA-MB231 cells glucose
decreased and lactate increased. However, none of these
changes was significant except for the increased level of
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lactate in MDA-MB231 cells. Glutamic acid levels, which
are closely related to activity of the TCA cycle, were
significantly altered. Glutamic acid decreased in MCF7 cells,
while in MDA-MB231 cells both citrate and glutamic acid
decreased.

Effect of BPTES on Metabolite Profiles
BPTES exhibited significant effects on the metabolite profiles of
all three cell types. However, its effect was most pronounced for
cancer cells under hypoxia (Figure 2). Further, between the two
cancer cell lines, the effect was more striking for MCF7 cells
compared to MDA-MB231 cells. For example, BPTES altered
14 metabolite levels significantly for MCF7 cells (p < 0.05;
4 upregulated; 10 downregulated) under hypoxia, while only
one was altered significantly (p < 0.05, upregulated) under
normoxia. On the other hand, BPTES altered 7 metabolite levels
significantly for MDA-MB231 cells (p < 0.05; 2 upregulated; 5
downregulated) under hypoxia, while only two metabolites were
altered significantly (p < 0.05; 2 upregulated) under normoxia.
BPTES induced up to 2-fold changes in metabolite levels
(Table 1). For the non-cancerous cells, the response to BPTES
was quite different; BPTES affected both normoxia and hypoxia
cells significantly, albeit differently. For example, 7 metabolite
levels were altered significantly (p < 0.05; 4 upregulated;
3 downregulated) under hypoxia, while under normoxia 10
metabolites were altered significantly (p < 0.05; 4 upregulated
and 6 downregulated) (Figure 2; Table 1).

BPTES significantly affected the glycolysis pathway for both
the cancer cell types under hypoxia (Figure 3). The effect,
however, was different for the two cancer cells. Specifically,
BPTES caused a significant reduction in glucose and increase in
lactate levels for MCF7 cells, while the effect was opposite for
MDA-MB231 cells. BPTES also affected a number of metabolites
associated with the TCA cycle (Figure 4). In particular, it
increased the levels of citrate for both MCF7 and MDA-MB231;
however, the increase was significant (p < 0.05) only for MDA-
MB231 cells.

Hierarchical Cluster Analysis
For global visualization of the altered metabolite profiles the
levels of the 41 metabolites from all groups of cells were
combined and subjected to hierarchical cluster analysis (HCA).
Figure 5 shows the dendrograms from HCA for all the three
cell types under normoxia, hypoxia, and with and without
treatment with BPTES. The metabolic phenotypes exhibited
distinct clustering in HCA based on cell type as well as the
effect of hypoxia and BPTES treatment. In particular, the clusters
between cancerous and non-cancerous cells showed the largest
distance in HCA, indicating that the difference in the metabolic
profiles between the two cell types is most pronounced. The
second largest distance observed was between the two cancer cell
lines,MCF7 andMDA-MB231. Clusters of the same cells between
normoxia and hypoxia cells exhibited the third largest distance.
Finally, the cells that were treated with BPTES and those that were
not treated were the least separated.
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FIGURE 2 | Metabolites that increased or decreased significantly (p < 0.05) in hypoxia cells vs. normoxia cells (MCF10A, MCF7, and MDA-MB231) as well as in

BPTES treated vs. untreated cells (for interpretation of the references to color in the description of this figure in the text, the reader is referred to the Web version of this

article). Red: increase in hypoxia compared to normoxia cells or BPTES treated cells compared to untreated cells; Blue: decrease in hypoxia compared to normoxia

cells or BPTES treated cells compared to untreated cells. *AXP is a combination of AMP (adenosine monophosphate), ADP (adenosine diphosphate), and ATP

(adenosine triphosphate); NAD: Nicotinamide adenine dinucleotide, oxidized; UXP is a combination of UMP (uridine monophosphate), UDP (uridine diphosphate), and

UTP (uridine triphosphate).

Pearson Correlations
Pearson correlations for the 41 metabolites from the two breast
cancer cells, MCF7 and MDA-MB231, under normoxia, hypoxia
and hypoxia with BPTES treatment are shown in Figure 6. The
correlations for the non-cancerous cell line, MCF10A, are shown
in the Supplementary Figure S1. Both hypoxia and BPTES altered
a number of correlations significantly for both breast cancer cells.
For instance, forMCF7 cells under hypoxia, glutamine is strongly
positively correlated with lactate, 3-methyl-2-oxovalerate, citrate,
pyroglutamate, isoleucine, leucine, lysine and valine, and strongly
negatively correlated with glucose, glutamic acid, glutathione,
glycine, glycerophosphocholine, phosphocholine, myoinositol,
tryptophan, uridine, and fumaric acid. All these correlations were
opposite after BPTES treatment. Similarly, for MDA-MB231 cells
under hypoxia, glutamine is strongly positively correlated with

lactate, AXP, carnitine, glycine and 3-methyl-2-oxovalerate and
strongly negatively correlated with glucose, formate. All of these
correlations were opposite in the BPTES treated cells.

DISCUSSION

This study focused on investigating the effects of BPTES
on the metabolism in several breast cancer cell lines using
a combination of 1D and isotope tagged 2D NMR-based
metabolomics approaches to visualize the altered metabolite
profiles. The cell studies were performed under both normoxia
and hypoxia, with a major emphasis on the investigations
of breast cancer cells under hypoxia. Cancer cell metabolism
under hypoxia is considered to better mimic the in vivo
environment, where proliferating tumors experience a reduced
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FIGURE 3 | Variation of levels of two metabolites associated with the

glycolysis pathway (A) glucose and (B) lactic acid in the two cancer cell lines,

MCF7 and MDA-MB231 under the conditions of normoxia, hypoxia and

hypoxia treated with the glutaminase inhibitor, BPTES.

oxygen supply due to inadequate blood supply. It is well
known that hypoxia leads to numerous consequences in
invasive and metastatic cancers including a shift toward
anaerobic glycolysis, away from the oxidative mitochondrial
phosphorylation. Hypoxia increases dependence on glutamine
for ATP synthesis (Fan et al., 2013) and also important for
reductive metabolism for lipogenesis (Metallo et al., 2011).
In the present study, the effect of hypoxia is reflected in
significantly altered levels of metabolites for nearly half of
the detected cell metabolites (Figures 2–4). The two breast
cancer cell lines, MCF7 and MDA-MB231, showed vastly
different metabolite levels relative to each other as well as to
the control cells, even in the absence of BPTES treatment.
Such differences arise from the fact that the two breast
cancer cell lines exhibit distinct characteristics, clinically and
pathologically (Rouzier et al., 2005; Neve et al., 2006; Ibrahim
et al., 2009). While MCF7 cells express high levels of estrogen
receptor and are dependent on estrogens for growth, MDA-
MB231 cells are estrogen-independent and do not express
estrogen receptor very highly (Thompson et al., 1988). In

FIGURE 4 | Variation of levels of three metabolites associated with TCA cycle

and glutamine addiction to cancer cells (A) citric acid; (B) glutamic acid, and

(C) glutamine in the two cancer cell lines, MCF7 and MDA-MB231 under the

conditions of normoxia, hypoxia and hypoxia treated with the glutaminase

inhibitor, BPTES.

addition, MCF7 cell line represents luminal-like and MDA-
MB231 cell line represents basal-like breast cancer. Importantly,
the major metabolic differences between the two breast cancer
cells observed in the current study are in accordance with a
previous investigations using 1H NMR (Lefort et al., 2014).
Metabolic changes in basal-like and luminal-like cancers have
been investigated using high-resolution magic angle spinning
NMR in xenografted primary human breast tumors (Moestue
et al., 2010). Distinct metabolic profiles in the two xenograft
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FIGURE 5 | Results of hierarchical cluster analysis (HCA) of metabolic profiles in BPTES treated and untreated cells (MCF10A, MCF7, and MDA-MB231) under

normoxic and hypoxic conditions. Relative NMR peak areas were used in the analysis (for interpretation of the references to color in the description of this figure in the

text, the reader is referred to the Web version of this article).

models were identified in accordance with the differences in
gene expression. In particular, choline metabolite concentrations
differed significantly between the two subtypes.

BPTES treatment significantly altered the levels of a number of
metabolites in both breast cancer cell lines, and such altered levels
clearly indicate the cells’ sensitivity to the glutaminase inhibitor
BPTES (Figures 2, 5). The BPTES effect was distinctly different
for the two cancer cell types: while 14 metabolites were altered
significantly in MCF7 cell line, only 7 were altered significantly
in MDA-MB231. Interestingly, other than phosphocholine, none
of the significantly altered metabolites was common between the
two cancer cell types. And even phosphocholine decreased in
MCF7 while it increased in MDA-MB231 cells (Figures 2, 5).
Such altered metabolite profiles due to BPTES can be understood
based on the different metabolic pathway preferences between
the two cell types. For example, the luminal-like MCF7 cells

depend more strongly on glucose and, therefore, glycolysis
dominates in these cells for energy. On the other hand, the basal
like MDA-MB231 cells strongly depend on glutamine (Kung
et al., 2011; Yizhak et al., 2014). Our results are in accordance
with the recent metabolomics study by Terunuma et al., which
exhibited a distinctly different metabolism for these two breast
cancer cells and indicates that breast tumors with the same
characteristics as MDA-MB231 cells exhibited poor prognosis
(Terunuma et al., 2014). The differences in BPTES-induced
metabolite levels for the two cancer cell types observed here
also agree with the finding that resveratrol, a naturally occurring
anticancer compound in red grapes and wine, exhibited vastly
different metabolic activity toward these two cell type (Jäger et al.,
2011). Further, interestingly, the major effect of BPTES on the
metabolite profiles of MCF7 cells compared to MDAMB231 cells
observed in our study is in accordance with the findings of a
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FIGURE 6 | Pearson’s correlations of the quantities of the 41 metabolites determined by NMR spectroscopy in human breast cancer cell lines (A) MCF7 and (B)

MDA-MB231 under normoxia, hypoxia and hypoxia with BPTES treatment as indicated. The numbers for the metabolites used are as given in Table 1. Each square

between any two metabolites in the 2D plots represents the magnitude of correlation between them. The vertical chart on the right indicates color code for the

correlations. For example, red indicates a correlation of +1 and blue indicates a correlation of −1 (for interpretation of the references to color in the description of this

figure in the text, the reader is referred to the Web version of this article).

recent metabolomics study, which was focused on investigations
of inhibitors that targeted pyruvate dehydrogenase kinase in the
two types of breast cancer cells (Lefort et al., 2014).

Altered glucose metabolism is a major hallmark of cancer and
accordingly, in the absence of BPTES treatment, glucose and
lactic acid were altered significantly (p< 0.05) in both cancer cells
relative to control cells (Table S2). The observed upregulation of
glycolysis under hypoxia is consistent with earlier investigations
(Weljie and Jirik, 2011) (Figure 2). However, interestingly,
BPTES affected the glycolysis pathway only in MCF7 cell line;
it caused a significant reduction of glucose and a concomitant
increase of lactic acid (Figure 3). It is well known that MCF7
cells depend strongly on glucose and therefore glycolysis is
the dominant pathway for this cell line (Kung et al., 2011).
Inhibition of glutaminase activity by BPTES treatment potentially
enhances the demand for energy, which leads to increased
glycolysis. On the other hand, BPTES did not alter glycolysis
for the MDA-MB231 cells, while the significantly decreased
lactate may indicate that BPTES causes enhanced utilization

of lactic acid. These results are in accordance with earlier
findings that MDA-MB231 cells depend largely on external
glutamine as source of energy (Kung et al., 2011); the glutamine

dependence of MDA-MB231 cells is further supported from the
fact that these cells have a higher expression of glutaminase
(Jain et al., 2012). Because of their glutamine dependence,
these cells are believed to be susceptible to glutamine targeted
therapy (Kung et al., 2011). Thus, BPTES inhibition of glutamine
metabolism, by triggering metabolic reprogramming involving
an enhanced utilization of lactic acid, may account for the
significantly decreased level of lactate (Figure 3). A previous
study has shown that glutaminolysis adds to cellular production
of lactate (Reitzer et al., 1979) and, therefore, the decreased
lactate level in our study for MDA-MB231 cells also potentially
represents a direct effect of inhibition of glutaminolysis by
BPTES.

The Warburg effect in cancer is known to cause reduced
TCA cycle activity due to the diversion of glucose to glycolysis
instead of shuttling pyruvate for TCA cycle metabolism. Thus,
the reduced level of citrate under hypoxia, in the absence of
BPTES treatment, represents reduced TCA cycle metabolism
for both MCF7 and MDA-MB231 cancer cell lines (Figure 4).

Interestingly, BPTES treatment causes a significant increase in
citrate levels for MDA-MB231, indicating that inhibition of
glutaminase by BPTES blocks entry of glutamine to the TCA
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FIGURE 7 | Depiction of metabolic pathways associated with metabolites that changed significantly due to BPTES induced metabolism in cancer cells under hypoxic

conditions.

cycle and causes utilization of substrates through alternative
pathways to fuel TCA cycle metabolism. Significant reduction
of the levels of a number of metabolites including amino
acids and nucleotides potentially indicates their enhanced
utilization by the cells caused by inhibition of the glutamine
supply to the TCA cycle metabolism (Figure 2). These results
are also consistent with the reduction in the levels for a
number of metabolites including amino acids due to BPTES
treatment reported previously for glioma cells (Seltzer et al.,
2010).

It is interesting to note that while the levels of a majority
of metabolites decrease significantly after BPTES treatment for
both cancer cell types, a number of organic acids including
acetic acid, formic acid, and oxalic acid, as well as 3-methyl-2-
oxovaleric acid (from isoleucine metabolism) increased in MCF7
cells, but not in MDA-MB231 cells (Figure 2). The reasons for
such increased levels of organic acids are unknown; however,
the results point to the increased activity of pathways associated
with these metabolites as well as highlight the differences in

pathway preferences in the two cell types. Further, while the
level of phosphocholine decreased significantly in MCF7 cells,
it increased significantly in MDA-MB231 cells due to BPTES
treatment. An increased concentration of phosphocholine is in
accordance with the increased demand for choline metabolites by
MDA-MB231 cells due to their high proliferative characteristics
compared toMCF7 cells, and is in accordance with earlier reports
(Lefort et al., 2014).

The results of hierarchical cluster analysis (HCA) indicate that
the metabolic phenotypes exhibited distinct clustering based on
cell type as well as the effect of hypoxia and BPTES treatment
(Figure 5). As anticipated from the results of univariate analysis
(Figure 3, Table 1), the cell phenotypes and hypoxia caused
major effects on the metabolic profiles followed by a more
subtle BPTES effect; cells treated with BPTES and those that
were not treated formed the closest clusters in HCA. Similarly,
Pearson correlations provide a global view of the metabolic
perturbations, and showed large changes in the relationships
of a number of metabolites as a result of stressors such as
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hypoxia and BPTES (Figure 6; Supplementary Figure S1). Such
correlations in combination with the results of univariate analysis
provide important clues to tracing altered metabolic pathways
due to hypoxia or BPTES. From these results we can provide a
visualization in Figure 7 of the overall effect of BPTES on the
two cancer cell lines, which includes pathways associated with
significantly altered metabolites due to BPTES treatment under
hypoxic conditions.

In conclusion, investigations of BPTES induced metabolism
changes in two breast cancer cell lines, MCF7 and MDA-
MB231 were performed using a combination of advanced
NMR-based metabolomics techniques and statistical analysis
methods. These investigations focus on the BPTES inhibition
under hypoxia, the condition that best mimics the proliferating
cancer in vivo, and the resulting metabolite profiles showed
dramatic changes relative to the same cells under normoxia or
non-cancerous MCF10A cells. Numerous metabolites associated
with many pathways including glutamine metabolism, glycolysis,
TCA cycle and amino acids pathways were significantly altered
in response to BPTES. However, the metabolic response was
distinctly different for the two cancer cell types. This is likely
due to the different genetic regulations in the two cell types,
preferences to estrogen receptor and dependence of glucose or
glutamine for proliferation. The distinct metabolite responses
to treatment, apart from providing clues to the molecular

basis of glutaminase inhibition by BPTES, may potentially
provide avenues for evaluating BPTES response and monitoring
treatment.
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