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Glioma is the most common tumor with the worst prognosis in the central nervous system.
Current studies showed that glucose metabolism could affect themalignant progression of
tumors. However, the study on the dysregulation of glucose metabolism in glioma is still
limited. Herein, we firstly screened 48 differentially expressed glucose metabolism-related
genes (DE-GMGs) by comparing glioblastomas to low-grade gliomas. Then a glucose
metabolism-related gene (GMG)-based model (PC, lactate dehydrogenase A (LDHA),
glucuronidase beta (GUSB), galactosidase beta 1 (GLB1), galactose mutarotase (GALM),
or fructose-bisphosphatase 1 (FBP1)) was constructed by a protein–protein interaction
(PPI) network and Lasso regression. Thereinto, the high-risk group encountered a worse
prognosis than the low-risk group, and the M2 macrophage was positively relevant to the
risk score. Various classical tumor-related functions were enriched by Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Since protein GALM
was rarely studied in glioma, we detected high expression of GALM by western blot and
immunohistochemistry in glioma tissues. And experiments in vitro showed that GALM
could promote the epithelial-to-mesenchymal transition (EMT) process of glioma cells and
could be regulated by TNFAIP3 in glioma cells. Overall, our study revealed the critical role of
glucose metabolism in the prognosis of patients with glioma. Furthermore, we
demonstrated that GALM was significantly related to the malignancy of glioma and
could promote glioma cells’ EMT process.
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1 INTRODUCTION

Glioma is a common intracranial tumor with high mortality and
morbidity (Ostrom et al., 2014). For the majority of patients, the
traditional treatment is maximum surgical resection with
postoperative radiotherapy and chemotherapy, but the average
overall survival time is still less than 15 months (Abdul et al.,
2018). Therefore, we intended to explore the malignant
mechanism of glioma and identify a more feasible prognosis
marker.

Recent studies have found that the metabolic reprogramming of
tumors could replace the normal metabolic pathway, support the
growth and proliferation of cells, and meet the associated
bioenergetic and biosynthetic demands (Hanahan and Weinberg,
2011). Moreover, further studies have shown that the genesis and
development of the tumor are increasingly dependent on glucose
metabolism (Woolf and Scheck, 2015). Studies reported that tumor
cells reprogram glucose metabolism and promote tumor growth,
proliferation, invasion, and drug resistance through the Warburg
effect (Vander Heiden et al., 2009; Liberti and Locasale, 2016; Icard
et al., 2018). Hence, the current treatments may be improved by
affecting cellular glucose metabolism (Woolf and Scheck, 2015).
Many studies have found pathways that affect glucosemetabolism in
glioma cells; for example, p53 could combine with oncogenes to
drive glucosemetabolism in glioblastomas (GBMs) (Mai et al., 2017).
In GBMs, glucose uptake and cell growth could be promoted by
IKKβ and NF-κB signal pathways activated by α-KG (Wang et al.,
2019). A study reported that MTORC2 regulates glycolysis of GBMs
by increasing c-Myc (Masui et al., 2013). Therefore, understanding
the changes in glucose metabolism of gliomas would provide a new
strategy for cancer treatment (DeBerardinis and Chandel, 2016).

In the study ( Figure 1), we selected 289 glucose metabolism-
related genes (GMGs) involved in 11 glucose metabolism-related
pathways from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. Then 48 differentially expressed GMGs (DE-
GMGs) were screened between GBMs and low-grade gliomas
(LGGs). And the protein–protein interaction (PPI) network was
used to identify 13 hub genes. Furthermore, we constructed a
GMG model by Lasso regression, including six genes (PC, lactate
dehydrogenase A (LDHA), glucuronidase beta (GUSB),
galactosidase beta 1 (GLB1), galactose mutarotase (GALM),
and fructose-bisphosphatase 1 (FBP1)). Moreover, the
underlying biological functions and pathways related to the
model were analyzed by functional analyses. Since little is
known about GALM in glioma, we focused our study on
GALM. We found that GALM was overexpressed in glioma
and could promote the epithelial-to-mesenchymal transition
(EMT) process of glioma cells. In addition, high expression of
GALM could be regulated by TNFAIP3.

2 MATERIALS AND METHODS

2.1 Data Acquisition
The TCGA RNAseq (HTSeq-FPKM) data of LGG, GBM, and
related clinical information were downloaded from https://portal.
gdc.cancer.gov/. The CGGA dataset was acquired from https://

www.cgga.org.cn (The REMBRANDT array data was downloaded
from GEO database (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc�GSE108474). Samples with incomplete clinical
information were excluded. Finally, the TCGA dataset
containing 609 gliomas was set as the training set. The
CGGA dataset with 430 gliomas and the REMBRANDT
dataset with 278 gliomas were set as test sets.

2.2 Patient Tissue Samples
All the clinical specimens were taken from Sanbo Brain Hospital
Capital Medical University, and all of themwere primary grade II,
III, and IV gliomas with reliable pathological diagnoses. The
diagnosis, surgery, and postoperative treatment of the patients
were followed up. All the tissues were collected from fresh
surgical specimens. After surgical separation, we treated them
in liquid nitrogen for 30 min and stored them at −80°C for a long
time until RNA and protein were extracted. All samples in this
study were approved by the Ethics Committee of Sanbo Brain
Hospital, Capital Medical University.

2.3 Screening of DE-GMGs
Firstly, the RNAseq data of gliomas from TCGA were
preprocessed, including background correction, elimination of
invalid data, data normalization, and calculation of gene
expression. The expression profile of 289 GMGs in 11
pathways was extracted from the matrix. The DE-GMGs were
screened by the Limma package via comparing GBMs and LGGs.
The cutoff thresholds were intended to be log2|fold change| > 1
and false discovery rate (FDR) < 0.05.

2.4 Functional Enrichment Analysis
The GO enrichment analysis of the GMG model was performed
on the DAVID dataset (https://david.ncifcrf.gov), including
biological process (BP), cellular component (CC), and
molecular function (MF), p < 0.01, and a count >10 was
considered as the cutoff threshold. The KEGG (http://www.
genome.ad.jp/kegg/) database was analyzed for possible related
pathways of this model, p < 0.01, and a count >5 was considered
as the cutoff criterion. All results were visualized by R and
Cytoscape software (Huang da et al., 2009).

2.5 PPI Network and Hub Genes
The PPI network of 48 DE-GMGs was constructed by using the
STRING database (http://stringdb.org/) (Szklarczyk et al., 2015).
And we removed nodes with an interaction score greater than 0.7
and isolated. Then, we performed two algorithms (MCC and
Degree) to screen the hub genes by the CytoHubba plug-in (Chin
et al., 2014). All of the above data were visualized using the
Cytoscape software (Shannon et al., 2003).

2.6 Construction and Validation of the
Model
We evaluated the hub genes and determined factors affecting
prognosis by univariate Cox regression analysis. And then, we
identified the six most valuably predictive genes by lasso
regression. Multivariate Cox analysis evaluated the six core
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GMGs and constructed a risk score prognosis model based on
expression value and Cox regression coefficient. Then the median
of all risk scores was taken as the cutoff threshold to separate into
low- and high-risk groups. The predictive value of this model was
evaluated by constructing receiver operating characteristic (ROC)
curves. In addition, we also evaluated the predictive value of the
model by performing univariate Cox regression analysis for the
prognosis of patients.

2.7 Cell Culture and Transfection
Ten percent fetal bovine serum (FBS) was added to DMEM
(XiGong Biotechnology, China) medium for cell culture under
the condition of 37°C and 5% CO2. The cells we used included
human GBM cells U87, U343, and human embryonic kidney cell
HEK-293T. All cell lines were obtained from laboratory-
preserved cells. The GALM siRNAs (small-interfering RNA)
were purchased from JTS Scientific (Supplementary Table
S5). According to the instruction manual, we used
Lipofectamine 2000 (Invitrogen, United States) to transfect
GALM siRNA into cells. According to the instruction manual,
the Neofect DNA transfection reagent (Genomtec, China) was
used to transfect the deubiquitinase (DUB) overexpression
plasmids. The overexpression plasmids were purchased from
Geneppl Technology, Co., Ltd.

2.8 Western Blot
We dissolved cells and tissues by using a RIPA buffer
supplemented with a protease inhibitor cocktail. Then we
separated the protein mixture by SDS-polyacrylamide gel
electrophoresis. Therewith, a polyvinylidene fluoride
membrane was used to transfer the protein. One hour was
enough to seal it with 5% skim milk. And it was necessary to
incubate it with the corresponding antibody at 4°C overnight.
After that, we washed the membrane with PBST three times and
then incubated it with horseradish peroxidase (HRP)-coupled
antimouse IgG H&L (W4021, 1:2,000) and antirabbit IgG H&L
(W4011, 1: 3,000) for 1 h. Rewash the membrane with PBST three
times for 5 min. The binding antibody was detected by a
hypersensitive ECL chemiluminescence kit (NCM Biotech),
and the image was collected by the chemiluminescence imager
Image 800.

The specific primary antibodies used are as follows: GALM (1:
500; 16022-1-AP, ProteinTech), E-cadherin (1:500; sc-7870,
Santa), Slug (1:500; sc-15391, Santa), Snail (1:500; 3879S,
CST), Twist (1:500; ab49254, Abcam), Vimentin (1:500; sc-
32322, Santa), and β-Actin (1:5,000; 3700S, CST).

2.9 Immunohistochemistry
First, the paraffin slices were dewaxed, hydrated, and incubated at
room temperature with an endogenous peroxidase blocker for
20 min. Then antigen repair was performed in a boiled EDTA
antigen repair solution (pH 9.0). After that, the pathological
section was sealed with sheep serum for 20 min and incubated
with GALM (1:50; 16022-1-AP, ProteinTech) antibody at 4°C
overnight. The slices were cleaned, the second antibody was
incubated, and the color was developed with a DAB
chromogenic solution, redyed with hematoxylin, differentiated

with 1% hydrochloric acid/75% alcohol, and returned to blue with
1% ammonia. Finally, the slices were dehydrated by gradient
alcohol and sealed with neutral resin. The sections were scanned
by a gene chip scanner, and five visual fields were randomly
selected to determine the immunohistochemical score of GALM
positive cells. We recorded the staining intensity as 0 (no
staining), 1 (light color), 2 (moderate color), or 3 (deep
color). And we recorded the proportion of stained cells as 0
(<5%), 1 (5%–25%), 2 (26%–50%), 3 (51%–75%), or 4(>75%).
The formula for calculating the immunohistochemical score was
as follows: IHC score � staining intensity × proportion of
stained cells. The tissue chips were obtained from Sanbo
Brain Hospital Capital Medical University and US Biomax
(GL242 B055).

2.10 Total RNA Extraction and qRT-PCR
We purchased an RNA Express Total RNA Kit (NCM Biotech) to
extract RNA from tissues and cells. And NanoDrop 2000
(Thermo Fisher Scientific, United States) was used to quantify
RNA concentration. We used a reverse-transcription kit
(Promega) to reverse 2 μg RNA into cDNA. Then the target
gene was amplified by 2× qPCR MasterMix (ABM). The relative
expression of GALM was calculated using the 2−ΔΔCt method and
standardized for actin. The experiments were repeated three
times. Sequences of target gene-specific primers are provided
in Supplementary Table S6.

2.11 Statistical and Survival Analysis
The above data were processed by R software and corresponding
packages. We performed the Cox proportional hazard model and
the Kaplan–Meier method to evaluate the survival rate. The
Glmnet package was used for Lasso–Cox analysis. We used
one-way ANOVA and the Student t-test to evaluate the
differences between each group. Differences with a p-value
<0.05 were considered statistically significant.

3 RESULTS

3.1 Screening of DE-GMGs in Glioma
To characterize the expression of GMGs in gliomas, we selected
11 glucose metabolism-related pathways (Supplementary Table
S1) in the KEGG pathway database, including 289 genes
(Supplementary Table S2). The expression data of these 289
genes in glioma were obtained from the TCGA database,
including 152 GBMs and 457 LGGs. As shown in Figure 2A,
GMGs’ expression profile was heterogeneous in gliomas,
especially in GBMs. Then we analyzed the expression profile
of these 289 genes by comparing GBMs with LGGs. Forty-eight
DE-GMGs (Figures 2B,C) were identified by the rank analysis,
including 17 downregulated genes and 31 upregulated genes.
These results indicated that GMGs were closely related to the
malignancy of glioma.

3.2 Identification of Hub GMGs
In order to obtain GMGs that play the most critical role in
glioma malignancy, we constructed a PPI network containing
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126 edges and 44 nodes (Figure 3A). Then, 13 hub genes were
identified by the MCC and Degree algorithms of CytoHubba,
including two downregulated genes (ALDOC and PC) and 11
upregulated genes (HK2, GALM, GUSB, PGK1, GLB1, HK3,
FBP1, GCK, PYGL, LDHA, and PGAM2) (Figure 3B). Besides,
as shown in the forest map (Figure 3C), all hub genes were
significantly associated with gliomas’ prognosis. These results
suggested that these 13 hub GMGs played a vital role in glioma
development and might be the kernel to judge glioma patients’
prognosis.

3.3 Construction of the GMG-Based Model
for Glioma
To construct an accurate model for analyzing clinical values, six
genes (PC, LDHA, GUSB, GLB1, GALM, and FBP1) were
identified by lasso regression combined with cross-validation
(Figures 4A,B) to optimize the model. Then we constructed
the risk score formula (model) according to the regression
coefficients of the six genes and the corresponding expression
levels. The risk score formula was as follows:

Risk score � 0.263 × Exp(LDHA) + 0.345 × Exp(GUSB)
− 0.072 × Exp(PC) + 0.517 × Exp(GLB1) + 0.044

× Exp(GALM) + 0.059 × Exp(FBP1)

As shown in Figure 4C, we divided these patients into a low-
risk group (n � 302) and a high-risk group (n � 301) on the basis
of median risk score. The distribution of survival status
(Figure 4D) revealed that the high-risk group was confronted
with a higher mortality rate than the low-risk group. Likewise,
survival analysis (Figure 4H) revealed that the high-risk group
encountered a worse prognosis compared to the low-risk group.
The expression details of the six GMGs with different risk scores
are shown in Figure 4E. In addition, the area under the curve
(AUC) value of the ROC curve of the GMG model was 0.887
(Figure 4F), which was higher than that of the other
clinicopathological factors, including WHO grades and IDH
mutation status. Moreover, as shown in Figure 4G, the AUC
values at 1, 3, and 5 years were all greater than 0.8. This evidence
showed that the GMG model we constructed had a moderate
predictive ability in survival analysis. In addition to tumor cells,

FIGURE 1 | Workflow diagram of this research.
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there are other factors in tumor tissue, such as immune cells and
stromal cells, which affect tumor development. Therefore, we
intended to explore the relevance of the risk score to these factors.
We found that the risk score was positively relevant to stromal

cells and immune cells (Figures 4I–K). Further analysis
(Figure 4L) showed that M2 macrophages were positively
relevant to the risk score, which in turn plays a cancer-
promoting role in a variety of tumors, including gliomas.

FIGURE 2 | Screening of DE-GMGs. (A)Heatmap of 289 GMGs from 11 pathways related to glucose metabolism between GBM and LGG in the TCGA cohort. (B)
Volcano plots of GMGs by comparing GBM and LGG, log2|fold change| > 1, p-value < 0.05. (C) Heatmap of 48 DE-GMGs between GBM and LGG.

FIGURE 3 | Screening and characteristic analysis of hub genes. (A) The PPI network of DE-GMGs. (B)Degree and MCC algorithms of CytoHubba were performed
to screen the hub genes. (C) The prognostic value of each hub gene was visualized with the forest plot of hazard ratios.
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These results indicated that the GMG model with six GMGs
could predict glioma patients’ prognosis and implied an
association between glucose metabolism and tumor immunity.

3.4 Validation of the GMG Model via
Independent Datasets
To verify the GMG model’s accuracy and reliability, two
independent datasets (CGGA-seq and REMBRANDT array)
were acquired as test sets. In the CGGA cohort, the
distributions of risk score and gene expression level are shown
in Figures 5A,C. And by analyzing different groups, we revealed
that the high-risk group encountered higher mortality

(Figure 5B) and lower survival (Supplementary Figure S1A)
rates compared to the low-risk group. In addition, the AUC of the
ROC curve of the model also showed very dependable prediction
ability (Figures 5D,E). The CIBERSORT analysis demonstrated
that the risk score was positively relevant to immune cells, mainly
M2 macrophage (Figures 5F,G). In the REMBRANDT array,
similar results were acquired through comprehensive
bioinformatics analyses. The distributions of risk score,
survival situation, and gene expression profile are shown in
Figures 5H–J. And survival analysis (Supplementary Figure
S1B) revealed that the high-risk group was also confronted
with a worse overall survival (OS) compared to the low-risk
group. Moreover, the AUC of the model’s ROC curve also showed

FIGURE 4 | Construction of the GMG-based model for glioma in the TCGA cohort. (A,B) Lasso regression and cross-validation of 13 hub genes. (C) Grouping of
the risk score for each patient. (D) Distribution of survival situation of different risk scores for patients. (E) Distribution of gene expression panel in the prognostic model.
(F) Survival-dependent ROC curves of risk score, grade, gender, age, IDH status, and 1p19q status. (G) Survival-dependent ROC curves at 1, 3, and 5 years. (H)
Survival analysis of different risk score groups in gliomas. (I) Correlation between risk score and tumor purity. (J) Relevance of the risk score to stromal cell content.
(K,L) Relevance of the risk score to immune cell infiltration analyzed by Pearson test.
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an accurate predictive value of the GMG model (Figures 5K,L).
As shown in Figures 5M,N, we also found an arresting
correlation between risk score and immune cells, especially
M2 macrophage. These results suggested that the GMG model
was reliable and accurate for gliomas.

3.5 Functional Enrichment Analysis
Since the GMG model played a vital role in predicting patients’
survival with glioma, we explored the underlying biological
functions and pathways related to the model. Pearson analysis
was applied to acquire 2,875 potential genes related to risk score
(p < 0.05, r > 0.7). Then we conducted GO and KEGG enrichment

analyses of these 2,875 genes. As shown in Figure 6A, for the BP,
these genes were primarily relevant to the extracellular matrix
(ECM) organization, angiogenesis, cell–cell adhesion, and
apoptosis. Interestingly, it was also related to innate immune
response and inflammatory response. For the CC, these genes
were primarily enriched in the cytoplasm, membrane, and
extracellular exosome. For the MF, these genes’ functions
mainly included receptor binding, protein kinase binding, and
protein binding. The KEGG pathway enrichment analysis
revealed (Figure 6B) that these genes were mainly connected
with the ECM–receptor interaction, phagosome, focal adhesion,
cell adhesion molecules (CAMs), leukocyte trans-endothelial

FIGURE 5 | Validation of the GMGmodel in other independent datasets. (A–C) The detailed information of risk score, survival situation, and gene expression profile
in the CGGA cohort. (D) Survival-dependent ROC curves at 1, 3, and 5 years in the CGGA cohort. (E) Survival-dependent ROC curves of risk score, recurrence, grade,
gender, age, IDH status, 1p19q status, and MGMTp status in the CGGA cohort. (F,G) Relevance of the risk score to immune cell infiltration analyzed by Pearson test in
the CGGA cohort. (H–J) The detailed information of risk score, survival situation, and gene expression profile in the REMBRANDT array. (K) Survival-dependent
ROC curves at 1, 3, and 5 years in the REMBRANDT array. (L) Survival-dependent ROC curves of grade and risk score in the REMBRANDT array. (M,N) Relevance of
the risk score to infiltrating immune cells in the REMBRANDT array.
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migration, and processes associated with cell adhesion and
activity. In addition, these genes were also relevant to
signaling pathways affecting the tumors’ malignancy, such as
the NF-kappa B and TNF signaling pathways. The above results
suggested that glucose metabolism might influence the malignant
progression of glioma in multiple ways.

3.6 Clinical Value of GALM
Through the retrospective investigation of the six GMGs in the
model, it was found that little has been known about GALM in
glioma. Then we further explored the potential value of
GALM. In the TCGA database, survival analysis revealed
that the patients with high expression of GALM
encountered worse prognosis compared to patients with low
expression of GALM (Figure 7A). Also, the expression of
GALM showed significant differences in different WHO
grades (Figure 7B). And compared to that in IDH mutant
gliomas, we found that GALM’s expression in IDH wild-type
gliomas was overexpressed (Figure 7C). A similar high
expression of GALM was also found in 1p/19q non-
codeletion gliomas (Figure 7D). Furthermore, we also
validated these results in the CGGA dataset (Figures 7E–H)
and REMBRANDT array (Figures 7I,J). These results
indicated that GALM’s expression was significantly relevant
to gliomas’ prognosis and malignancy, implying that GALM
might regulate the malignant progression of gliomas.

3.7 Validation of GALM in Clinical Samples
Due to the remarkable clinical significance of GALM in glioma,
we intended to further confirm the expression of GALM by
Western blot and qRT-PCR in clinical specimens. As shown
in Figures 8A,B (Supplementary Figure S2A), a higher

expression level of GALM was observed in gliomas compared
to normal brain tissues. Furthermore, a larger sample was
examined by IHC. As shown in Figures 8C,D
(Supplementary Figures S2B–D), GALM was significantly
overexpressed in high-grade and IDH wild-type gliomas,
which supported data analysis results. These results proved
that GALM was overexpressed in gliomas and was closely
related to the malignancy of gliomas.

3.8 GALM Could Promote the EMT Process
of Glioma Cells
In the functional enrichment analysis, plenty of genes were
enriched in processes and pathways related to cell adhesion,
which has been recognized to be regulated by EMT (Bergeman
et al., 2016; O’Connor et al., 2016; Reher et al., 2017; Porretti
et al., 2018; Shi et al., 2020). After knocking down GALM with
siRNA, we observed that the EMT process of glioma cells was
significantly inhibited (Figure 9A; Supplementary Figure
S3A). Then, we explored the mechanism for the
overexpression of GALM in glioma. The regulation of
protein deubiquitination was considered first. By analyzing
the expression levels of DUBs (Supplementary Figure S3C)
and their correlation with GALM in gliomas (Supplementary
Figures S4; Supplementary Table S3), combined with in vitro
experiments (Supplementary Figure S3B), four DUBs were
selected, namely, USP18, TNFAIP3, USP39, and USP38
(Figure 9B; Supplementary Table S4). Among them,
TNFAIP3 correlated most significantly with GALM with
R � 0.52. Notably, the expression of GALM increased
significantly after overexpression of TNFAIP3 in the glioma
cell (Figure 9C).

FIGURE 6 | Functional analysis of the GMGmodel. (A)Gene ontology analysis of the identified genes. (B) Enriched KEGG pathways of the identified genes (FDR <
0.05 and count > 5).
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FIGURE 7 | Clinical value of GALM and expression of GALM in different subtypes of glioma. (A) In the TCGA cohort, survival analysis of different GALM expression
levels in gliomas. (B–D) In the TCGA cohort, expression levels of GALM in different glioma subtypes. (E) In the CGGA cohort, survival analysis of different GALM
expression levels in gliomas. (F–H) In the CGGA cohort, expression levels of GALM in different glioma subtypes. (I) In the REMBRANDT array, survival analysis of different
GALM expression levels in gliomas. (J) In the REMBRANDT array, expression levels of GALM in different glioma subtypes.

FIGURE 8 | The expression of GALM in clinical samples. (A,B) In normal brain and glioma tissues, the expression of GALM was detected by Western blot. (C,D)
IHC staining of GALM in human normal brain tissues, LGGs, and GBMs; ** represents p < 0.01, *** represents p < 0.001, and **** represents p < 0.0001.
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In conclusion, GALM was overexpressed in glioma and could
promote the EMT process of glioma cells. In addition, high
expression of GALM could be regulated by TNFAIP3.

4 DISCUSSION

Glioma is the most common malignant intracranial tumor with
little long-term treatment effect (Seyfried et al., 2015; Cai et al.,
2018). Although the treatments have been improved (Omuro and
DeAngelis, 2013), the existing treatments have a limited effect on
the progression of the disease and the survival of patients (Poff
et al., 2019). Therefore, in order to explore effective treatment
strategies, it is essential to study the malignant mechanisms of
gliomas. Metabonomics is a promising field of precision medicine
and drug discovery. With the rapid development of
metabonomics, metabolic changes could reveal effective new
molecular intervention targets (Pandey et al., 2017). Relatively
speaking, in the field of neuro-oncology, although significant
progress has beenmade inmetabonomics, the study on how brain
tumors reprogram metabolic pathways is still limited (Venneti
and Thompson, 2017). Among them, the reprogramming of
glucose metabolism is a promising strategy for the treatment
of gliomas (Lu et al., 2020). Therefore, we intended to study the
potential changes in glucose metabolism of gliomas and to
identify a reliable prognosis marker. In this study, we
comprehensively analyzed the 289 genes contained in 11
glucose metabolism-related pathways in the TCGA database,
constructed a GMG model based on DE-GMGs, and proved
the clinical values and immunological characteristics of the
model. Furthermore, we proved that the expression of GALM
was overexpressed in gliomas and that GALM could promote the
EMT process of glioma cells. In addition, the expression of
GALM could be regulated by TNFAIP3.

First of all, the comprehensive analyses revealed that there was
a noteworthy heterogeneity in the expression profile of GMGs
between GBMs and LGGs. And plenty of GMGs were related to

the prognosis. These results suggested that GMGs changed and
perhaps played an important role in high-grade gliomas. The
studies of Xu et al. (2017) and Xiao et al. (2018) also reported that
GMGs, such as GLUT1 and HK2, have changed expression and
performed important functions in tumors.

In order to clarify the role of DE-GMGs in gliomas, we
constructed a GMG model. A risk score formula (model) was
constructed according to the regression coefficient and the
corresponding expression level of genes. Then we analyzed and
verified the model’s clinical value and immunological
characteristics in multiple datasets. Data analysis revealed
that a high-risk score possessed a worse prognosis. And
immune cells, especially the M2 macrophage, was positively
correlated with the risk score. In the tumor microenvironment
(TME), the most crucial component is tumor-associated
macrophages (TAMs) (Choi et al., 2018). And the TAMs
could acquire polarized M2 phenotype driven by various
cytokines (Mantovani et al., 2002). Studies have reported
that these polarized cells play a key role in tumors (Yang
et al., 2020). The study of Chen et al. (2017) showed that the
M2 macrophage promotes the metastasis of gastric cancer and
breast cancer through the secretion of the CHI3L1 protein. The
study of Yang et al. (2018) reported that M2 macrophage
polarization is promoted through the Wnt/β-catenin signal
pathway between tumor cells and macrophages, which in turn
promotes the malignant progression of tumors. Combined
with these studies, our results showed that these DE-GMGs
significantly affected the prognosis of glioma patients, possibly
by regulating the immune mechanism.

Subsequently, the functional analysis of the GMG model
revealed how it might play a role, including the “NF-kappa B
signaling pathway,” “cell–cell adhesion,” “TNF signaling
pathway,” and “leukocyte transendothelial migration.” Our
analysis also reported that the innate immune response, the
inflammatory response, might be involved in the genesis and
development of glioma, revealing the potential
immunomodulatory mechanism of GMGs.

FIGURE 9 | Function and regulatory mechanisms of GALM in glioma cells. (A) The expression level of GALM, actin, and EMT biomarkers (E-cadherin, Slug, Snail,
Twist, and Vimentin) in U87 cells transfected with siNC or three different siRNAs. (B) Venn diagram of Groups A, B, and C (Group A for overexpressed DUBs in glioma,
Group B for DUBs positively correlated with GALM in glioma, and Group C for DUBs screened by western blot, which could upregulate the expression of GALM). (C) The
expression of GALM and actin in U343 cells transfected with Flag NC and Flag TNFAIP3.
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In addition, this model contained six GMGs, namely, PC,
LDHA, GUSB, GLB1, GALM, and FBP1. Pyruvate
carboxylase (PC) exists in the mitochondria and is a
member of the biotin-dependent carboxylase family
(Wallace et al., 1998). Pyruvate is carboxylated to
oxaloacetic acid via ATP-dependent pyruvate carboxylase
(PC) to supplement the tricarboxylic acid cycle (Cheng
et al., 2011). In addition, oxaloacetic acid could also be
used to synthesize other compounds, including glucose,
fats, some amino acids and their derivatives, and some
neurotransmitters (Wallace et al., 1998). Recent studies
showed that PC is abnormally expressed and plays an
essential role in many tumors, such as ovarian cancer
(Shang et al., 2020), lung cancer (Sellers et al., 2015),
gallbladder cancer (Ma et al., 2016), and breast cancer
(Shinde et al., 2018), and it was proved that PC could
participate in tumor proliferation, metastasis, and invasion
(Sellers et al., 2015; Christen et al., 2016; Shinde et al., 2018;
Lao-On et al., 2020). Moreover, a small molecular inhibitor,
ZY-444, was reported to target PC to inhibit the proliferation
of breast cancer (Lin et al., 2020). A study showed that PC is
overexpressed in non-small-cell lung cancer and could
promote tumor proliferation (Sellers et al., 2015). On the
contrary, it was interesting that our analysis proved that the
expression of PC in glioma was downregulated, which
indicated that PC might play different functions through
different mechanisms in various tumors. LDHA belongs to
the lactate dehydrogenase family, participates in the vital
process of glycolysis, and promotes glycolysis by catalyzing
the conversion of pyruvate to lactic acid (Cai et al., 2019). A
recent study showed that LDHA weakens the immune
monitoring of T cells and NK cells to tumors by
promoting lactic acid production (Brand et al., 2016). MiR-
30a-5p could inhibit growth and metastasis by inhibiting the
LDHA-mediated Warburg effect in breast cancer (Li et al.,
2017). Phosphorylation-mediated LDHA activation
promoted cancer cell invasion and metastasis (Jin et al.,
2017). Consistent with our analysis results, a study showed
that the expression of LDHA is relevant to the malignancy of
tumors and could affect the proliferation, apoptosis, and
chemical sensitivity of temozolomide in glioma cells (Di
et al., 2018). However, no suitable LDHA inhibitor has
been found for tumor therapy (Valvona et al., 2016). GUSB
is an essential lysosomal enzyme, which participates in the
degradation of glycosaminoglycans. And GUSB deficiency
could cause mucopolysaccharidosis VII (MPS VII) (Vogler
et al., 2003; Bigg et al., 2013). The studies of Xie, et al. (2014a)
and Xie, et al. (2014b) reported that GUSB is abnormally
expressed in colorectal cancer and is relevant to abnormal
methylation. GLB1 is a lysosomal exoglycosidase involved in
the catabolism of glycoconjugates and could affect the
senescence of cancer cells (Vidya et al., 2020). Lack of
GLB1 caused lysosomal storage disorder and led to G(M1)
gangliosidosis (Caciotti et al., 2005). GALM is a mutarotase
involved in the mutual transformation of beta-D-galactose
and alpha-D-galactose in galactose metabolism (Timson and
Reece, 2003). GALM participates in the first step of the Leloir

pathway and eventually metabolizes beta-D-galactose to
glucose 1-phosphate in the liver (Wada et al., 2019). A
study showed that GALM also has an effect on D-glucose,
but its effect is not as evident as that on galactose (Timson and
Reece, 2003). All-trans-retinoic acid (RA) is a vital regulator
of GALM in myeloid-monocytic cells (Pai et al., 2007). FBP1
was reported as a metabolic tumor suppressor factor in
hepatocellular carcinoma Cancer Discovery (2020), and the
deletion of FBP1 could promote tumor growth by affecting
crosstalk between hepatocyte metabolism and HSC
senescence (Li F. et al., 2020). Similarly, FBP1 was proven
to inhibit tumor progression in cholangiocarcinoma (CCA)
(Zhao et al., 2018), prostate cancer (PCA) (Zhang et al., 2019),
and lung adenocarcinoma (LUAD) (Li L. et al., 2020).
However, it was noteworthy that a study in gliomas
reported that the expression of FBP1 is positively relevant
to the c-Myc level and tumor proliferation (Ding et al., 2015).
It was consistent with our results, indicating that FBP1 might
play different functions in gliomas. In addition, FBP1 could
also affect the function of immune cells. For example, for NK
cells, overexpression of FBP1 could lead to dysfunction by
inhibiting glycolysis (Cong et al., 2018).

On account of the lack of research on protein GALM in
gliomas, we intended to explore the function of GALM in
glioma further. Bioinformatic analyses revealed that the poor
prognosis happened in glioma patients with high expression of
GALM and that the expression of GALM was also related to the
malignancy of gliomas. Then we further verified the expression of
GALM by western blot, qRT-PCR, and IHC in glioma samples.
The above evidence suggested that GALM could be used to
estimate the prognosis in glioma. Furthermore, we
demonstrated that knocking down the expression of GALM
could affect the EMT process of glioma. Moreover, TNFAIP3
could regulate the expression level of GALM. Therefore, we
proposed that highly expressed GALM maintained by
TNFAIP3 could promote the malignancy of glioma by
regulating the EMT process.

However, there are still some limitations in our study. Our
study lacked the verification of in vivo experiments. And we were
required to expand the amount of data because of the limited
specimen capacity. The research on the related mechanism was
not enough.

In summary, our study revealed the significance of glucose
metabolism in gliomas and provided a model composed of six
GMGs. Furthermore, we demonstrated that GALM could
promote the EMT process of glioma cells and was significantly
related to the malignant degree of glioma. Moreover, TNFAIP3
could regulate the high expression of GALM. Our study might
provide potential targets for the diagnosis and treatment of
glioma.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71718211

Xu et al. Comprehensive Analyses of Glucose Metabolism

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee of Sanbo Brain Hospital,
Capital Medical University (SBNK-YJ-2020-001-01). The
patients/participants provided their written informed consent
to participate in this study.

AUTHOR CONTRIBUTIONS

HZ and YS designed the work. YG made the bioinformatic
analysis in this study. JX performed biological experiment
verification and was a major contributor in writing the
manuscript. WN, XW, SL, and YC performed data analyses.
LM and YQ collected clinical specimens. HZ and YG revised the

manuscript. YS and HZ supervised the work. The final
manuscript was informed by all the authors.

FUNDING

This research was supported by funds from the National Key R&D
Program of China (2019YFC1316104) and the CAMS Innovation
Fund for Medical Sciences (CIFMS; grant no. 2019-I2M-1-003).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fcell.2021.717182/
full#supplementary-material

REFERENCES

Abdul, K. U., Houweling, M., Svensson, F., Narayan, R. S., Cornelissen, F. M. G.,
Küçükosmanoglu, A., et al. (2018). WINDOW Consortium: A Path towards
Increased Therapy Efficacy against Glioblastoma. Drug Resist. Updates 40,
17–24. doi:10.1016/j.drup.2018.10.001

Bergeman, J., Caillier, A., Houle, F., Gagné, L. M., and Huot, M.-É. (2016).
Localized Translation Regulates Cell Adhesion and Transendothelial
Migration. J. Cel. Sci. 129, 4105–4117. doi:10.1242/jcs.191320

Bigg, P. W., Baldo, G., Sleeper, M. M., O’Donnell, P. A., Bai, H., Rokkam, V. R. P.,
et al. (2013). Pathogenesis of Mitral Valve Disease in Mucopolysaccharidosis
VII Dogs. Mol. Genet. Metab. 110, 319–328. doi:10.1016/j.ymgme.2013.06.013

Brand, A., Singer, K., Koehl, G. E., Kolitzus, M., Schoenhammer, G., Thiel, A., et al.
(2016). LDHA-associated Lactic Acid Production Blunts Tumor
Immunosurveillance by T and NK Cells. Cel Metab. 24, 657–671.
doi:10.1016/j.cmet.2016.08.011

Caciotti, A., Donati, M. A., Boneh, A., d’Azzo, A., Federico, A., Parini, R., et al.
(2005). Role of ? galactosidase and Elastin Binding Protein in Lysosomal and
Nonlysosomal Complexes of Patients with GM1-Gangliosidosis. Hum. Mutat.
25, 285–292. doi:10.1002/humu.20147

Cai, H., Li, J., Zhang, Y., Liao, Y., Zhu, Y., Wang, C., et al. (2019). LDHA Promotes
Oral Squamous Cell Carcinoma Progression through Facilitating Glycolysis
and Epithelial-Mesenchymal Transition. Front. Oncol. 9, 1446. doi:10.3389/
fonc.2019.01446

Cai, J., Chen, Q., Cui, Y., Dong, J., Chen, M., Wu, P., et al. (2018). Immune
Heterogeneity and Clinicopathologic Characterization of IGFBP2 in 2447
Glioma Samples. Oncoimmunology 7, e1426516. doi:10.1080/
2162402x.2018.1426516

Cancer Discovery (2020). FBP1 Is a Tumor Suppressor Linking Hepatic
Metabolism to Tumorigenesis. Cancer Discov. 10, Of13. doi:10.1158/2159-
8290.Cd-rw2020-071

Chen, Y., Zhang, S., Wang, Q., and Zhang, X. (2017). Tumor-recruited M2
Macrophages Promote Gastric and Breast Cancer Metastasis via
M2 Macrophage-Secreted CHI3L1 Protein. J. Hematol. Oncol. 10, 36.
doi:10.1186/s13045-017-0408-0

Cheng, T., Sudderth, J., Yang, C., Mullen, A. R., Jin, E. S., Matés, J. M., et al. (2011).
Pyruvate Carboxylase Is Required for Glutamine-independent Growth of
Tumor Cells. Proc. Natl. Acad. Sci. 108, 8674–8679. doi:10.1073/
pnas.1016627108

Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., and Lin, C.-Y. (2014).
cytoHubba: Identifying Hub Objects and Sub-networks from Complex
Interactome. BMC Syst. Biol. 8 (Suppl. 4), S11. doi:10.1186/1752-0509-8-s4-s11

Choi, J., Gyamfi, J., Jang, H., and Koo, J. S. (2018). The Role of Tumor-Associated
Macrophage in Breast Cancer Biology. Histol. Histopathol 33, 133–145.
doi:10.14670/hh-11-916

Christen, S., Lorendeau, D., Schmieder, R., Broekaert, D., Metzger, K., Veys, K.,
et al. (2016). Breast Cancer-Derived Lung Metastases Show Increased Pyruvate
Carboxylase-dependent Anaplerosis. Cel Rep. 17, 837–848. doi:10.1016/
j.celrep.2016.09.042

Cong, J., Wang, X., Zheng, X., Wang, D., Fu, B., Sun, R., et al. (2018). Dysfunction
of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung
Cancer Progression. Cel Metab. 28, 243–255.e5. doi:10.1016/j.cmet.2018.06.021

DeBerardinis, R. J., and Chandel, N. S. (2016). Fundamentals of Cancer
Metabolism. Sci. Adv. 2, e1600200. doi:10.1126/sciadv.1600200

Di, H., Zhang, X., Guo, Y., Shi, Y., Fang, C., Yuan, Y., et al. (2018). Silencing LDHA
Inhibits Proliferation, Induces Apoptosis and Increases Chemosensitivity to
Temozolomide in Glioma Cells. Oncol. Lett. 15, 5131–5136. doi:10.3892/
ol.2018.7932

Ding, Z., Liu, X., Liu, Y., Zhang, J., Huang, X., Yang, X., et al. (2015). Expression of
Far Upstream Element (FUSE) Binding Protein 1 in Human Glioma Is
Correlated with C-Myc and Cell Proliferation. Mol. Carcinog. 54, 405–415.
doi:10.1002/mc.22114

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: the Next
Generation. Cell 144, 646–674. doi:10.1016/j.cell.2011.02.013

Huang, D. W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and
Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics
Resources. Nat. Protoc. 4, 44–57. doi:10.1038/nprot.2008.211

Icard, P., Shulman, S., Farhat, D., Steyaert, J.-M., Alifano, M., and Lincet, H. (2018).
How the Warburg Effect Supports Aggressiveness and Drug Resistance of
Cancer Cells? Drug Resist. Updates 38, 1–11. doi:10.1016/j.drup.2018.03.001

Jin, L., Chun, J., Pan, C., Alesi, G. N., Li, D., Magliocca, K. R., et al. (2017).
Phosphorylation-mediated Activation of LDHA Promotes Cancer Cell
Invasion and Tumour Metastasis. Oncogene 36, 3797–3806. doi:10.1038/
onc.2017.6

Lao-On, U., Rojvirat, P., Chansongkrow, P., Phannasil, P., Siritutsoontorn, S.,
Charoensawan, V., et al. (2020). c-Myc Directly Targets an Over-expression of
Pyruvate Carboxylase in Highly Invasive Breast Cancer. Biochim. Biophys. Acta
(Bba) - Mol. Basis DiseaseMolecular basis Dis. 1866, 165656. doi:10.1016/
j.bbadis.2019.165656

Li, F., Huangyang, P., Burrows, M., Guo, K., Riscal, R., Godfrey, J., et al. (2020).
FBP1 Loss Disrupts Liver Metabolism and Promotes Tumorigenesis through a
Hepatic Stellate Cell Senescence Secretome. Nat. Cel Biol 22, 728–739.
doi:10.1038/s41556-020-0511-2

Li, L., Kang, L., Zhao, W., Feng, Y., Liu, W., Wang, T., et al. (2017). miR-30a-5p
Suppresses Breast Tumor Growth andMetastasis through Inhibition of LDHA-
Mediated Warburg Effect. Cancer Lett. 400, 89–98. doi:10.1016/
j.canlet.2017.04.034

Li, L., Yang, L., Fan, Z., Xue, W., Shen, Z., Yuan, Y., et al. (2020). Hypoxia-induced
GBE1 Expression Promotes Tumor Progression through Metabolic
Reprogramming in Lung Adenocarcinoma. Sig Transduct Target. Ther. 5,
54. doi:10.1038/s41392-020-0152-8

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71718212

Xu et al. Comprehensive Analyses of Glucose Metabolism

https://www.frontiersin.org/articles/10.3389/fcell.2021.717182/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2021.717182/full#supplementary-material
https://doi.org/10.1016/j.drup.2018.10.001
https://doi.org/10.1242/jcs.191320
https://doi.org/10.1016/j.ymgme.2013.06.013
https://doi.org/10.1016/j.cmet.2016.08.011
https://doi.org/10.1002/humu.20147
https://doi.org/10.3389/fonc.2019.01446
https://doi.org/10.3389/fonc.2019.01446
https://doi.org/10.1080/2162402x.2018.1426516
https://doi.org/10.1080/2162402x.2018.1426516
https://doi.org/10.1158/2159-8290.Cd-rw2020-071
https://doi.org/10.1158/2159-8290.Cd-rw2020-071
https://doi.org/10.1186/s13045-017-0408-0
https://doi.org/10.1073/pnas.1016627108
https://doi.org/10.1073/pnas.1016627108
https://doi.org/10.1186/1752-0509-8-s4-s11
https://doi.org/10.14670/hh-11-916
https://doi.org/10.1016/j.celrep.2016.09.042
https://doi.org/10.1016/j.celrep.2016.09.042
https://doi.org/10.1016/j.cmet.2018.06.021
https://doi.org/10.1126/sciadv.1600200
https://doi.org/10.3892/ol.2018.7932
https://doi.org/10.3892/ol.2018.7932
https://doi.org/10.1002/mc.22114
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1016/j.drup.2018.03.001
https://doi.org/10.1038/onc.2017.6
https://doi.org/10.1038/onc.2017.6
https://doi.org/10.1016/j.bbadis.2019.165656
https://doi.org/10.1016/j.bbadis.2019.165656
https://doi.org/10.1038/s41556-020-0511-2
https://doi.org/10.1016/j.canlet.2017.04.034
https://doi.org/10.1016/j.canlet.2017.04.034
https://doi.org/10.1038/s41392-020-0152-8
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Liberti, M. V., and Locasale, J. W. (2016). The Warburg Effect: How Does it Benefit
Cancer Cells? Trends Biochemical Sciences 41, 211–218. doi:10.1016/
j.tibs.2015.12.001

Lin, Q., He, Y., Wang, X., Zhang, Y., Hu, M., Guo, W., et al. (2020). Targeting
Pyruvate Carboxylase by a Small Molecule Suppresses Breast Cancer
Progression. Adv. Sci. 7, 1903483. doi:10.1002/advs.201903483

Lu, J., Liu, X., Zheng, J., Song, J., Liu, Y., Ruan, X., et al. (2020). Lin28A Promotes
IRF6-Regulated Aerobic Glycolysis in Glioma Cells by Stabilizing SNHG14.Cell
Death Dis 11, 447. doi:10.1038/s41419-020-2650-6

Ma, M.-z., Zhang, Y., Weng, M.-z., Wang, S.-h., Hu, Y., Hou, Z.-y., et al. (2016).
Long Noncoding RNA GCASPC, a Target of miR-17-3p, Negatively Regulates
Pyruvate Carboxylase-dependent Cell Proliferation in Gallbladder Cancer.
Cancer Res. 76, 5361–5371. doi:10.1158/0008-5472.Can-15-3047

Mai, W. X., Gosa, L., Daniels, V. W., Ta, L., Tsang, J. E., Higgins, B., et al. (2017).
Cytoplasmic P53 Couples Oncogene-Driven Glucose Metabolism to Apoptosis
and Is a Therapeutic Target in Glioblastoma. Nat. Med. 23, 1342–1351.
doi:10.1038/nm.4418

Mantovani, A., Sozzani, S., Locati, M., Allavena, P., and Sica, A. (2002).
Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm
for Polarized M2 Mononuclear Phagocytes. Trends Immunology 23,
549–555. doi:10.1016/s1471-4906(02)02302-5

Masui, K., Tanaka, K., Akhavan, D., Babic, I., Gini, B., Matsutani, T., et al. (2013).
mTOR Complex 2 Controls Glycolytic Metabolism in Glioblastoma through
FoxO Acetylation and Upregulation of C-Myc. Cel Metab. 18, 726–739.
doi:10.1016/j.cmet.2013.09.013

O’Connor, J. W., Mistry, K., Detweiler, D., Wang, C., and Gomez, E. W. (2016).
Cell-cell Contact and Matrix Adhesion Promote αSMA Expression during
TGFβ1-Induced Epithelial-Myofibroblast Transition via Notch and MRTF-A.
Sci. Rep. 6, 26226. doi:10.1038/srep26226

Omuro, A., and DeAngelis, L. M. (2013). Glioblastoma and Other Malignant
Gliomas. Jama 310, 1842–1850. doi:10.1001/jama.2013.280319

Ostrom, Q. T., Bauchet, L., Davis, F. G., Deltour, I., Fisher, J. L., Langer, C. E., et al.
(2014). The Epidemiology of Glioma in Adults: a "state of the Science" Review.
Neuro-Oncology 16, 896–913. doi:10.1093/neuonc/nou087

Pai, T., Chen, Q., Zhang, Y., Zolfaghari, R., and Ross, A. C. (2007).
Galactomutarotase and Other Galactose-Related Genes Are Rapidly Induced
by Retinoic Acid in Human Myeloid Cells. Biochemistry 46, 15198–15207.
doi:10.1021/bi701891t

Pandey, R., Caflisch, L., Lodi, A., Brenner, A. J., and Tiziani, S. (2017).
Metabolomic Signature of Brain Cancer. Mol. Carcinog 56, 2355–2371.
doi:10.1002/mc.22694

Poff, A., Koutnik, A. P., Egan, K. M., Sahebjam, S., D’Agostino, D., and Kumar, N.
B. (2019). Targeting the Warburg Effect for Cancer Treatment: Ketogenic Diets
for Management of Glioma. Semin. Cancer Biol. 56, 135–148. doi:10.1016/
j.semcancer.2017.12.011

Porretti, J., Dalton, G. N., Massillo, C., Scalise, G. D., Farré, P. L., Elble, R., et al.
(2018). CLCA2 Epigenetic Regulation by CTBP1, HDACs, ZEB1, EP300
and miR-196b-5p Impacts Prostate Cancer Cell Adhesion and EMT in
Metabolic Syndrome Disease. Int. J. Cancer 143, 897–906. doi:10.1002/
ijc.31379

Reher, D., Klink, B., Deutsch, A., and Voss-Böhme, A. (2017). Cell Adhesion
Heterogeneity Reinforces Tumour Cell Dissemination: Novel Insights from a
Mathematical Model. Biol. Direct 12, 18. doi:10.1186/s13062-017-0188-z

Sellers, K., Fox, M. P., Bousamra, M., 2nd, Slone, S. P., Higashi, R. M., Miller, D. M.,
et al. (2015). Pyruvate Carboxylase Is Critical for Non-small-cell Lung Cancer
Proliferation. J. Clin. Invest. 125, 687–698. doi:10.1172/jci72873

Seyfried, T. N., Flores, R., Poff, A. M., D’Agostino, D. P., and Mukherjee, P. (2015).
Metabolic Therapy: a New Paradigm for Managing Malignant Brain Cancer.
Cancer Lett. 356, 289–300. doi:10.1016/j.canlet.2014.07.015

Shang, H., Zheng, J., and Tong, J. (2020). Integrated Analysis of Transcriptomic
and Metabolomic Data Demonstrates the Significant Role of Pyruvate
Carboxylase in the Progression of Ovarian Cancer. Aging 12, 21874–21889.
doi:10.18632/aging.104004

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al.
(2003). Cytoscape: a Software Environment for Integrated Models of
Biomolecular Interaction Networks. Genome Res. 13, 2498–2504.
doi:10.1101/gr.1239303

Shi, S., Li, Q., Cao, Q., Diao, Y., Zhang, Y., Yue, L., et al. (2020). EMT Transcription
Factors Are Involved in the Altered Cell Adhesion under Simulated
Microgravity Effect or Overloading by Regulation of E-Cadherin. Int. J. Mol.
Sci. 21, 1349. doi:10.3390/ijms21041349

Shinde, A., Wilmanski, T., Chen, H., Teegarden, D., and Wendt, M. K. (2018).
Pyruvate Carboxylase Supports the Pulmonary Tropism of Metastatic Breast
Cancer. Breast Cancer Res. 20, 76. doi:10.1186/s13058-018-1008-9

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas,
J., et al. (2015). STRING V10: Protein-Protein Interaction Networks, Integrated
over the Tree of Life. Nucleic Acids Res. 43, D447–D452. doi:10.1093/nar/
gku1003

Timson, D. J., and Reece, R. J. (2003). Identification and Characterisation of
Human Aldose 1-epimerase. FEBS Lett. 543, 21–24. doi:10.1016/s0014-
5793(03)00364-8

Valvona, C. J., Fillmore, H. L., Nunn, P. B., and Pilkington, G. J. (2016). The
Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in
Brain Tumor. Brain Pathol. 26, 3–17. doi:10.1111/bpa.12299

Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009). Understanding
the Warburg Effect: the Metabolic Requirements of Cell Proliferation. Science
324, 1029–1033. doi:10.1126/science.1160809

Venneti, S., and Thompson, C. B. (2017). Metabolic Reprogramming in Brain
Tumors. Annu. Rev. Pathol. Mech. Dis. 12, 515–545. doi:10.1146/annurev-
pathol-012615-044329

Vidya, B., Palaniswamy, M., Angayarkanni, J., Ayub Nawaz, K., Thandeeswaran,
M., Krishna Chaithanya, K., et al. (2020). Purification and Characterization of
β-galactosidase from Newly Isolated Aspergillus terreus (KUBCF1306) and
Evaluating its Efficacy on Breast Cancer Cell Line (MCF-7). Bioorg. Chem. 94,
103442. doi:10.1016/j.bioorg.2019.103442

Vogler, C., Galvin, N., Levy, B., Grubb, J., Jiang, J., Zhou, X. Y., et al. (2003).
Transgene Produces Massive Overexpression of Human -glucuronidase in
Mice, Lysosomal Storage of Enzyme, and Strain-dependent Tumors. Proc.
Natl. Acad. Sci. 100, 2669–2673. doi:10.1073/pnas.0437941100

Wada, Y., Kikuchi, A., Arai-Ichinoi, N., Sakamoto, O., Takezawa, Y., Iwasawa, S.,
et al. (2019). Biallelic GALM Pathogenic Variants Cause a Novel Type of
Galactosemia. Genet. Med. 21, 1286–1294. doi:10.1038/s41436-018-0340-x

Wallace, J. C., Jitrapakdee, S., and Chapman-Smith, A. (1998). Pyruvate
Carboxylase. Int. J. Biochem. Cel Biol. 30, 1–5. doi:10.1016/s1357-2725(97)
00147-7

Wang, X., Liu, R., Qu, X., Yu, H., Chu, H., Zhang, Y., et al. (2019). α-Ketoglutarate-
Activated NF-Κb Signaling Promotes Compensatory Glucose Uptake and Brain
Tumor Development. Mol. Cel. 76, 148–162.e7. doi:10.1016/
j.molcel.2019.07.007

Woolf, E. C., and Scheck, A. C. (2015). The Ketogenic Diet for the Treatment of
Malignant Glioma. J. lipid Res. 56, 5–10. doi:10.1194/jlr.R046797

Xiao, H., Wang, J., Yan, W., Cui, Y., Chen, Z., Gao, X., et al. (2018). GLUT1
Regulates Cell Glycolysis and Proliferation in Prostate Cancer. Prostate 78,
86–94. doi:10.1002/pros.23448

Xie, F. W., Peng, Y. H., Chen, X., Chen, X., Li, J., Wang, W. W., et al. (2014a).
Relationship between the Expression of CES2, UGT1A1, and GUSB in
Colorectal Cancer Tissues and Aberrant Methylation. neo 61, 99–109.
doi:10.4149/neo_2014_014

Xie, F.-W., Peng, Y.-H., Chen, X., Chen, X., Li, J., Yu, Z.-Y., et al. (2014b).
Regulation and Expression of Aberrant Methylation on Irinotecan
Metabolic Genes CES2, UGT1A1 and GUSB in the In-Vitro Cultured
Colorectal Cancer Cells. Biomed. Pharmacother. 68, 31–37. doi:10.1016/
j.biopha.2013.06.013

Xu, D., Jin, J., Yu, H., Zhao, Z., Ma, D., Zhang, C., et al. (2017). Chrysin Inhibited
Tumor Glycolysis and Induced Apoptosis in Hepatocellular Carcinoma by
Targeting Hexokinase-2. J. Exp. Clin. Cancer Res. 36, 44. doi:10.1186/s13046-
017-0514-4

Yang, Q., Guo, N., Zhou, Y., Chen, J., Wei, Q., and Han, M. (2020). The Role of
Tumor-Associated Macrophages (TAMs) in Tumor Progression and Relevant
advance in Targeted Therapy. Acta Pharmaceutica Sinica. B 10, 2156–2170.
doi:10.1016/j.apsb.2020.04.004

Yang, Y., Ye, Y.-C., Chen, Y., Zhao, J.-L., Gao, C.-C., Han, H., et al. (2018).
Crosstalk between Hepatic Tumor Cells and Macrophages via Wnt/β-
Catenin Signaling Promotes M2-like Macrophage Polarization and

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71718213

Xu et al. Comprehensive Analyses of Glucose Metabolism

https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1002/advs.201903483
https://doi.org/10.1038/s41419-020-2650-6
https://doi.org/10.1158/0008-5472.Can-15-3047
https://doi.org/10.1038/nm.4418
https://doi.org/10.1016/s1471-4906(02)02302-5
https://doi.org/10.1016/j.cmet.2013.09.013
https://doi.org/10.1038/srep26226
https://doi.org/10.1001/jama.2013.280319
https://doi.org/10.1093/neuonc/nou087
https://doi.org/10.1021/bi701891t
https://doi.org/10.1002/mc.22694
https://doi.org/10.1016/j.semcancer.2017.12.011
https://doi.org/10.1016/j.semcancer.2017.12.011
https://doi.org/10.1002/ijc.31379
https://doi.org/10.1002/ijc.31379
https://doi.org/10.1186/s13062-017-0188-z
https://doi.org/10.1172/jci72873
https://doi.org/10.1016/j.canlet.2014.07.015
https://doi.org/10.18632/aging.104004
https://doi.org/10.1101/gr.1239303
https://doi.org/10.3390/ijms21041349
https://doi.org/10.1186/s13058-018-1008-9
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1016/s0014-5793(03)00364-8
https://doi.org/10.1016/s0014-5793(03)00364-8
https://doi.org/10.1111/bpa.12299
https://doi.org/10.1126/science.1160809
https://doi.org/10.1146/annurev-pathol-012615-044329
https://doi.org/10.1146/annurev-pathol-012615-044329
https://doi.org/10.1016/j.bioorg.2019.103442
https://doi.org/10.1073/pnas.0437941100
https://doi.org/10.1038/s41436-018-0340-x
https://doi.org/10.1016/s1357-2725(97)00147-7
https://doi.org/10.1016/s1357-2725(97)00147-7
https://doi.org/10.1016/j.molcel.2019.07.007
https://doi.org/10.1016/j.molcel.2019.07.007
https://doi.org/10.1194/jlr.R046797
https://doi.org/10.1002/pros.23448
https://doi.org/10.4149/neo_2014_014
https://doi.org/10.1016/j.biopha.2013.06.013
https://doi.org/10.1016/j.biopha.2013.06.013
https://doi.org/10.1186/s13046-017-0514-4
https://doi.org/10.1186/s13046-017-0514-4
https://doi.org/10.1016/j.apsb.2020.04.004
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Reinforces Tumor Malignant Behaviors. Cel Death Dis 9, 793. doi:10.1038/
s41419-018-0818-0

Zhang, Y.-P., Liu, K.-L., Yang, Z., Lu, B.-S., Qi, J.-C., Han, Z.-W., et al. (2019). The
Involvement of FBP1 in Prostate Cancer Cell Epithelial Mesenchymal
Transition, Invasion and Metastasis by Regulating the MAPK Signaling
Pathway. Cell Cycle 18, 2432–2446. doi:10.1080/15384101.2019.1648956

Zhao, W., Yang, S., Chen, J., Zhao, J., and Dong, J. (2018). Forced Overexpression
of FBP1 Inhibits Proliferation and Metastasis in Cholangiocarcinoma Cells via
Wnt/β-Catenin Pathway. Life Sci. 210, 224–234. doi:10.1016/j.lfs.2018.09.009

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Xu, Guo, Ning, Wang, Li, Chen, Ma, Qu, Song and Zhang. This is
an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other
forums is permitted, provided the original author(s) and the copyright owner(s)
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology | www.frontiersin.org January 2022 | Volume 9 | Article 71718214

Xu et al. Comprehensive Analyses of Glucose Metabolism

https://doi.org/10.1038/s41419-018-0818-0
https://doi.org/10.1038/s41419-018-0818-0
https://doi.org/10.1080/15384101.2019.1648956
https://doi.org/10.1016/j.lfs.2018.09.009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles

	Comprehensive Analyses of Glucose Metabolism in Glioma Reveal the Glioma-Promoting Effect of GALM
	1 Introduction
	2 Materials and Methods
	2.1 Data Acquisition
	2.2 Patient Tissue Samples
	2.3 Screening of DE-GMGs
	2.4 Functional Enrichment Analysis
	2.5 PPI Network and Hub Genes
	2.6 Construction and Validation of the Model
	2.7 Cell Culture and Transfection
	2.8 Western Blot
	2.9 Immunohistochemistry
	2.10 Total RNA Extraction and qRT-PCR
	2.11 Statistical and Survival Analysis

	3 Results
	3.1 Screening of DE-GMGs in Glioma
	3.2 Identification of Hub GMGs
	3.3 Construction of the GMG-Based Model for Glioma
	3.4 Validation of the GMG Model via Independent Datasets
	3.5 Functional Enrichment Analysis
	3.6 Clinical Value of GALM
	3.7 Validation of GALM in Clinical Samples
	3.8 GALM Could Promote the EMT Process of Glioma Cells

	4 Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


