A RTl C L E W) Check for updates

An adaptive threshold neuron for recurrent spiking
neural networks with nanodevice hardware
implementation

Ahmed Shaban® ', Sai Sukruth Bezugam® ' & Manan Suri® *

We propose a Double EXponential Adaptive Threshold (DEXAT) neuron model that
improves the performance of neuromorphic Recurrent Spiking Neural Networks (RSNNs) by
providing faster convergence, higher accuracy and a flexible long short-term memory. We
present a hardware efficient methodology to realize the DEXAT neurons using tightly coupled
circuit-device interactions and experimentally demonstrate the DEXAT neuron block using
oxide based non-filamentary resistive switching devices. Using experimentally extracted
parameters we simulate a full RSNN that achieves a classification accuracy of 96.1% on
SMNIST dataset and 91% on Google Speech Commands (GSC) dataset. We also demon-
strate full end-to-end real-time inference for speech recognition using real fabricated resistive
memory circuit based DEXAT neurons. Finally, we investigate the impact of nanodevice
variability and endurance illustrating the robustness of DEXAT based RSNNs.
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euromorphic Spiking Neural Networks (SNNs) are pro-

mising computational paradigms that take deep inspira-

tion from the working of mammalian brains, firing
neurons, and synaptic plasticity. SNN algorithms and specialized
SNN hardware have been shown to be useful for addressing a
wide variety of real-world data-centric applications. While con-
ventional artificial neural networks (ANNs) primarily depend on
continuous valued functions and supervised gradient descent
based learning rules, SNNs also exploit sparse neuron spikes and
unsupervised learning rules. ANNs have been shown to surpass
SNNs and recurrent-SNNs (RSNNs) in terms of accuracyl?2.
However, SNNs are relevant as they hold the promise for energy-
efficient hardware realization owing to their bio-inspired nature3.
Activation functions or neuron models play a pivotal role in the
overall learning accuracy and energy efficiency of both ANN and
SNN implementations. If RSNNs with spike- based temporal
computation are to perform better on sequential tasks, it is
essential that they get the capability of Long Short-Term Memory
(LSTM) cells as stable working memory/memory states. In this
regard, in a recent theoretical work* authors have shown that
inclusion of Adaptive-Leaky Integrate and Fire (ALIF) neurons in
RSNN can improve their computational capabilities. Such neu-
rons are also used in implementing RSNN that can learn through
hardware friendly algorithms like e-prop®. Adaptive neuron
models generally incorporate biological property of neuronal
adaptation® by either removing a part of membrane current after
each spike event or by increasing the leak current’-°. However,
in% authors demonstrate the use of an adaptive threshold model
in which the firing threshold varies dynamically on spike event.
The threshold voltage in such model increases on neuron firing
and decays back exponentially to a baseline.

Hardware implementation of neuron models such as Integrate and
Fire (IF) and Leaky Integrate and Fire (LIF)!®%!! have been widely
reported in literature both with complementary metal oxide semi-
conductor (CMOS) and emerging resistive memory devices like
resistive random access memory (RRAM), phase change memory,
conductive bridge random access memory etc.12-20 However, there
are limited studies that show hardware implementation of adaptive/
dynamically adaptive neuron functions. Mixed signal silicon imple-
mentation of adaptive neuron models exploiting membrane
dynamics like Mihalas-Niebur model® and adaptive exponential
decay model (AdeX)? have been shown in?1:?2, Wang et al.?3 have
recently simulated a RRAM device to realize an adaptive neuron, in
which the adaptation behavior is achieved by increasing the neuron
membrane resistance at each spike event.

In this work our contribution is twofold; first, we propose a
new dynamically varying Double EXponential Adaptive Thresh-
old (DEXAT) neuron model for RSNNs, and second we show an
efficient hardware implementation of the new neuron model. In
the proposed DEXAT neuron model the threshold voltage decays
by two exponential rates (slow and fast). We observe that the
proposed model has several benefits while realizing RSNNs such
as faster convergence, higher accuracy, re-configurability, and
ease of hardware implementation. For hardware realization, we
demonstrate the capability of non-filamentary OxRAM (oxide-
based resistive memory) devices to realize double exponentials,
using extracted data from multiple OXRAM material stacks. We
also show experimental demonstration of the DEXAT neuron
that exploits unique and tightly coupled circuit-device properties
of non-filamentary OxXRAM devices. Further, we perform system-
level RSNN simulations on classification of sequential MNIST
(SMNIST) handwritten digits and speech commands from GSC
dataset based on the neuron parameters extracted from experi-
ments. We demonstrate full end to end RSNN using fabricated
resistive memory based DEXAT neurons for live speech recog-
nition application on GSC dataset.

Results

Proposed adaptive neuron model. Authors in* propose an
architecture of RSNN called Long Short-Term Spiking Neural
Network (LSNN) to enhance their computational performance.
This involves providing RSNN with a LSTM by including ALIF
neurons in the network. Hence, LSNNs consist of a network of
LIF and ALIF neurons and can achieve similar performances as
LSTM on sequential tasks. Threshold voltage adaptation in the
ALIF neuron model is described by Egs. (1) and (2).

Bj(t) = bjO + ﬂbj(t) (1)

bj(t + 61) = ijj(t) + @1 - Pj)zj(t) (2

Bj(t) is the adaptive firing threshold of the neuron, bj, is the
baseline threshold voltage, 8 is a constant scaling factor which
scales the deviation b;(f) from the baseline bjy, p; = exp(—4t/7,)
and governs the exponential decay of threshold voltage, 7, is the
adaptation time constant of the threshold decay and z;(t) denotes
the output spike generated by neuron “j” having value 1/6t for a
spike event and zero otherwise. The equations are described in
discrete time with a minimum time step of t. In this model the
threshold voltage is increased by a fixed amount /7, when the
neuron fires and then decays exponentially back to a baseline
value bj, with a time constant 7, (see Fig. 1a).

We propose a new adaptive neuron model in which the
threshold voltage decays with a double exponential having two
time constants. Double exponential decay is governed by a fast
initial decay and then a slower decay over a longer period of time.
Threshold adaptation in our DEXAT neuron model is described
by Egs. (3), (4), (5).

Bi(t) = by + Bib(t) + Brby(0) (3)
bjl(t + 6t) = pjlbjl(t) + @1 - pjl)zj(t) 4)
bp(t + 6t) = ppbp(t) + (1 — pp)zi(h) €

where p;; = exp(—0t/741), pj2 = exp(—0t/7,;). Equation (3) denotes
the magnitude of threshold voltage at each time step of dt. First
terms in Eqgs. (4) and (5) for b;(?), bjx(t) define the magnitude of
threshold voltage decay governed by the two exponentially
decaying factors pji, pj, and second terms govern threshold
voltage increment when an output spike zj(t) occurs. The two
equations get independently updated at each time step of dt.
Values from both the equations are individually scaled by factors
B1, B> and added in (3) to define the magnitude of threshold
voltage at time “t”. 7,; and 7,, are two values of adaptation time
constants governing the decay of threshold voltage. Here, 7,, and
T, represent the small and large time constant respectively.
Figure 1b shows qualitatively the changes in threshold voltage of
neuron according to this model in response to firing.

Authors in?* have demonstrated the benefits of an ALIF based
LSNN using a STORE-RECALL task. STORE and RECALL is a
delayed response task that tests the capability of a network for
possessing “short-term” memory or a working memory. Working
memory is defined as the ability to store and manipulate
information over a short duration of time and forms the basis
of temporal and cognitive processing?®. We use the same task for
comparing the performance of our DEXAT based LSNN to ALIF
based LSNN. The task involves presenting the network with an
input sequence consisting of two characters (“0” and “1”) encoded
by a spike sequence. The network has to store a character in its
working memory on receiving a STORE instruction and has to
recall the character on a RECALL instruction. The time duration
between STORE and RECALL instruction is the working memory
of the network. A LSNN network with 10 LIF and 10 ALIF
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Fig. 1 Qualitative description of neuron models and network architecture for LSNN tasks. a Model in which neuron'’s threshold decays exponentially with
a single time constant and (b) Proposed DEXAT model used in this work where threshold decays with two time constants. ¢ LSNN Network used for
STORE-RECALL task and (d) Learning curves of LSNN with ALIF and DEXAT adaptive neurons on a STORE-RECALL task for a working memory

requirement of 1200 ms.

neurons as shown in Fig. 1c is used for this task. Time step Ot is
taken to be 1 ms in simulations. The network is trained for 200
iterations with a minimum desired decision error of 0.05.
Figure 1d shows the performance of LSNN with DEXAT and
ALIF neurons for STORE and RECALL task requiring a working
memory of 1200 ms. With ALIF neurons, the LSNN converges for
7, of 1200 ms in 200 iterations while for smaller 7, values of 600
and 300ms LSNN network fails to converge to the desired
decision error. On the other hand, LSNN with DEXAT neurons
reaches the decision error requirement successfully even with
adaptation time constants 7,; =30 ms, 7,, =300 ms (i.e, much
smaller than the working memory requirement of 1200 ms). A
case for a working memory of 600 ms is also presented for
different time-constant values of ALIF and DEXAT neurons
(Supplementary Fig. 1). We perform multiple simulations with
different ranges of working memory requirements and adaptation
time constants as shown in Fig. 2 to investigate their relation for
optimum performance. In Fig. 2a we vary the adaptation time
constant (7,) of ALIF neuron to observe the ranges of working
memory it can support. We conclude from Fig. 2a that the
performance of LSNN with ALIF neurons is optimum when the
adaptation time constant 7, is greater than or equal to the value of
required working memory. In Fig. 2b we fix smaller time constant
7,1 to 30 ms and vary larger time constant 7,, of DEXAT neuron.
We observe that for a case of 7,, =200 ms and working memory
requirement 2000 ms (i.e., working memory/7,, = 10) also, LSNN
converges successfully within 200 iterations using DEXAT
neurons; not possible with ALIF neurons as shown in Fig. 2a.
Hence, DEXAT neurons provide a LSNN the capability to
converge to a low required decision error even when adaptation
time-constant value is much smaller than the required working
memory. In Fig. 2c we fix larger time constant (7,,) and vary
smaller time constant (7,;) for different working memories. We
observe from Fig. 2¢ that optimum performance is obtained even
for large working memories if the ratio 7,,/7, is greater than six.
However, with a 7,,/7,; ratio of three the network fails to converge
for larger working memories (i.e., for 2000 and 2400 ms). We also
test the effect of scaling parameters (see Egs. (3), (4), (5) in our
model by varying the ratio B,/ f; as shown in Fig. 2d. It is
observed that performance remains unaffected for a wide range of
working memory size. Hence, from Fig. 2b, ¢, d we obtain a design
space for tuning parameters used in our neuron model for best
performance as shown in Fig. 2e. Thus, LSNNs with DEXAT
neurons can support working memories which are much larger

than the corresponding neuron adaptation time constants
compared to LSNNs with only ALIF neurons. From hardware
implementation point of view, this relaxes the requirements from
on-chip devices/circuits that are used for providing re-
configurability to generate a range of time constants for sequential
tasks with different working memory requirements. Further, in all
the cases LSNN network with DEXAT neurons takes lesser
number of iterations to converge compared to that consisting of
ALIF neurons which can also prove beneficial.

We discuss the reasons for better performance of proposed
DEXAT model in Supplementary Note 1 and Supplementary
Note 2. Presence of two time constants (i.e, a fast decaying
exponential followed by a slow decaying exponential) in the
adaptive threshold of neuron enables the network to fine tune
weights during training thus achieving higher accuracy. Further,
proposed DEXAT model provides a neuron spike-activity
dependent (spike frequency) weight update mechanism. This
enhances learning of individual neurons and results in faster
network convergence.

Hardware implementation. Emerging nonvolatile memory (NVM)
devices have been used to realize multiple synaptic and neuronal
functions. Most neuromorphic NVM implementations in literature
primarily rely on conductance modulation of the devices. For
instance, analog multilevel cell (MLC) characteristics are exploited for
realizing synaptic weight update characteristics like Long Term
Potentiation (LTP) and Long Term Depression (LTD) by increasing
or decreasing the device conductance respectively. For efficient
hardware realization of the proposed DEXAT neuron, multiple
nonlinear/analog functions need to be harnessed. In particular: (i) we
need a circuit-device property that can help realize the double
exponential with varying time constants, during the decaying phase
of the threshold and (ii) another property that helps to increase
(adapt) the peak threshold value after each consecutive firing event.
We propose to extract both of these analog properties from the
circuit-device interactions of OxRAM devices in the following
manner:

e Asymmetric conductance change: Non-filamentary OxXRAM
devices in which resistance change is determined by
modulation of the interfacial Schottky/tunneling barrier by
the electron trapping/detrapping or ion migration have
potential for MLC characteristics2®. Pulse characterization of
these devices used as synapses show asymmetric relative
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Fig. 2 Performance analysis of ALIF and DEXAT neurons. a Performance of LSNN on STORE-RECALL task with ALIF neurons and 7, varied for different
working memory requirements. Performance of LSNN on STORE-RECALL task with DEXAT neurons and (b) z,; fixed at 30 ms and z,, varied for different
working memory requirements (¢) 7, fixed at 600 ms and 7, varied for different working memory requirements (d) 7, =30 ms, 7., = 600 ms and ratio
P>/ Py varied for different working memory requirements (Shorter and yellower bars denote faster convergence and lower decision error, taller, and redder
bars denote non-convergence and higher decision error). e Radar plot showing design space for tuning parameters in DEXAT model for obtaining best
performance (For optimum performance, the region formed by the three set of points should lie within the shaded region).

conductance change between two or more consecutive LTP/
LTD pulses?’-33. Such relative conductance change non-
linearity may be attributed to the inherent diffusion/drift
dynamics of the ions/vacancies involved in switching?2. In
such devices after reaching the peak LTP state, abrupt or
very high conductance drop on application of the first (or
initial few) RESET pulse(s) has been commonly observed.
The relative change in conductance on application of
subsequent RESET pulses (i.e., after the first few) is more
gradual and tends to saturate. This nonlinear behavior is
considered undesirable while emulating ideal linear synaptic
characteristics, and efforts have been made to overcome the
nonlinearity through use of complex pulse schemes4.
However, we exploit this undesirable combination of initial
abrupt conductance jump followed by subsequent gradual
conductance jumps, to realize the dual time constants (i.e.,
faster and slower decaying exponential respectively) in our
proposed DEXAT neuron model.

Coupling of OxRAM initial resistance state with pro-
grammed resistance state: We exploit the coupled nature of
initial and final programmed states of OXRAM to realize
the adaptive behavior of the threshold with consecutive
firing events. The programmed conductance state of an
OxRAM device would depend on two factors: (i) the
programming condition used (i.e., pulse-voltage, duration)
and (ii) the initial conductance state prior to application of
programming pulse. In proposed DEXAT hardware
realization the programming SET pulse on each firing
event is identical, however the initial high resistance state
(HRS) prior to the application of the SET pulse is variable.
Our programming methodology (detailed in next section)

ensures that the initial HRS is a function of the time
between two consecutive firing events. If the time between
consecutive firing events is less the RESET pulse is shorter
and thus the corresponding initial HRS is weak. Similarly, if
the time between two consecutive firing events is larger the
devices ends up in a stronger HRS state owing to the
application of a longer RESET pulse. Based on the desired
biological adaptation of firing threshold, if two consecutive
firing events occur within a short time duration the
subsequent firing threshold of the neuron must increase
and should make the second firing event harder to achieve.
This same effect is emulated in our implementation as
when HRS is weaker the SET pulse leads the OxRAM
device in a higher conductance state compared to the case
when the HRS state was stronger. Using this phenomena
and the proposed programming methodology we are able
to ensure progressively increasing firing threshold after
every spike event without modifying the intermediate SET
condition (see below).

For realizing adaptive threshold voltage, we translate the device
conductance changes arising due to the above two properties
using an appropriate circuit described in the following section.
We validate our proposed DEXAT methodology based on
experimental data extracted from multiple different non-
filamentary OxRAM device stacks. We use the experimentally
observed typical LTP-LTD curves from four different devices
showing asymmetric conductance change?’-2? (Fig. 3a-d). LTD
part of the curve provides the two types of asymmetric jumps for
emulating the dual decaying adaptive thresholds (and estimating
the respective decay time constants). Discrete LTD pulses on X-
axis are upsampled using bi-linear interpolation choosing a
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Fig. 3 DEXAT behavior extraction from non-filamentary OxXRAM devices. a-d Extracted LTP-LTD characteristics of Pt/PCMO/N-doped TiN/Pt,
Pt/PCMO/TiN/Pt, Mo/TiOx/TiN, and Ni/HfO,/Al-doped TiO,/TiN devices respectively. e-h Normalized and interpolated LTD conductance curves
corresponding to (a-d), respectively, fitted with DEXAT neuron equations. Extracted DEXAT neuron parameter values are indicated inside respective

curves.

suitable sampling time “8¢”, which is equivalent of the LTD curve
showing the effect of applying a long duration RESET pulse.
Conductance values are normalized between 0 and 1 using
min-max normalization. The resultant conductance curves are
then fitted with DEXAT equations to extract values of time
constants 7,; and 7, and scaling factors f;, f, shown in
Fig. 3e-h. We calculate the measure of asymmetric nonlinearity
(ANL) as in33 for the four device stacks. ANL value lies between
“0” and “17, where “0” denotes a fully symmetric case. All four
types of devices exhibit a high value of ANL (see inset of
Fig. 3a—d). In order to achieve double exponential time constants
a high ANL value is helpful, contrary to existing efforts reported
in literature, that try to reduce the value of ANL for improving
traditional synaptic emulation.

Out of the four stacks considered for this study, we perform
full DEXAT circuit experiments on the bilayer device with Ni/
HfO,/Al-doped TiO,/TiN stack (Fig. 3d, h) as described in the
following section. DC characterization of this device is shown in
Supplementary Fig. 4 with fabrication details presented in
“Methods”.

Figure 4 shows the functional block diagram, circuit, and
programming methodology for the hardware realization of our
proposed DEXAT neuron. Peripheral circuit blocks such as
integrator, comparator, pulse generator have been extensively
investigated in existing literature!®21-233> and can be realized
using standard circuit elements (CMOS, capacitors etc.). Our main
focus in this section is efficient realization of the proposed novel
threshold adaptation block with capability to realize double
exponential decay behavior inside the DEXAT neuron. The
neuron fires when output of integrator i.e membrane potential
(Vinem) crosses the voltage on threshold terminal (Vy) of
comparator. Firing triggers the pulse-generator block to generate
a sequence of control pulse signals (and their complements) which
activate the SET and RESET paths in the threshold modulator
circuit as shown in Fig. 4b-d. Figure 4a also shows the control
signals generated on a firing event which are fed to the threshold
modulator block in order to control the different modes of the
circuit. In our proposed programming scheme, on the occurrence
of each spike event, a fixed short-duration SET pulse followed by a
variable duration RESET pulse is applied to the OxXRAM device
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(Fig. 5). The exact duration of the RESET pulse depends on the
time after which the next consecutive spike occurs. The neuron
circuit requires an initialization phase before starting to integrate
the incoming input spikes. When an output spike occurs the
OxRAM device first undergoes a SET process. During this period
transistors MN1 and MP4 turn ON and form the SET path as
shown in Fig. 4b while transistors MP1, MP3 and MN2 are turned
OFF. Although transistor MP2 is ON during this period as Vy is
low, its effect on SET process is negated by the OFF MP3
transistor. The RESET path of the device is then activated through
the ON MP1, MP3 and MN2 transistors as shown in Fig. 4c while
all other three transistors are OFF. The threshold voltage decays
during the duration of application of the RESET pulse. Greater the
time difference between the next spike more will be the decay of
the threshold voltage. The proposed circuit is event driven and all
transistors except MP2, MP3, and MN2 are turned OFF when the
threshold voltage saturates (i.e., once the baseline voltage is
reached) in the absence of a spike event. A reduced supply voltage
is applied on the device in IDLE mode to reduce the stress on the
device. Further, a smaller voltage also ensures that the resistance
state of the device is not disturbed while in IDLE state. The voltage
at Node “D” is governed by the ratio of final OxRAM resistance
state and the passive resistor (shown in Fig. 4d).

Figure 5 shows experimentally observed traces for an example
spike-sequence that we label as S1 for reference. Figure 5a denotes
output spikes or occurrence of neuron firing. Figure 5b shows the
programming signals applied to the OxRAM when the pulse-
generator module feeds control pulses to the threshold modulator
circuit. The pulse sequence consists of a fixed duration SET pulse
and a variable duration RESET pulse, where duration of the
RESET pulse depends on the time interval between occurrence of
consecutive output spikes. As soon as an output spike is generated
it initializes the pulse-generator block shown in Fig. 4a; the
previous RESET pulse is terminated and a new sequence of post
spike SET/RESET pulses is generated. In Fig. 5b RESET pulse
duration is 50 ms for first three spikes events. The threshold
voltage peak that appears immediately after the end of each SET
pulse or the onset of RESET pulse (shown in Fig. 5¢) is a
consequence of the low-resistance state attained by the device due
to the SET pulse. After every local threshold peak value, first a fast
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Fig. 5 DEXAT threshold modulator experiment. a Output spikes of the
neuron denoting a sequence S1 of four firing events. b Input pulses applied
to OXRAM device in threshold modulator circuit initiating threshold
modulation in case of a spike event. A 3V, 30 ms SET pulse (Vpp ser=3 V)
applied at top electrode (TE) is followed by a 3V, 50 ms RESET pulse
(Vpp_reser =3 V) applied at bottom electrode (BE) after first spiking event.
A voltage of 2V (Vpp_ip1e) is applied on BE after threshold voltage saturates
in absence of firing. (Voltages applied on BE are shown negative only for
representation). ¢ Experimentally observed threshold voltage of hardware
neuron showing increase in threshold at each spike event and subsequent
decay afterwards.

decay, followed by a gradual decay of the threshold is observed,
during the course of the applied RESET pulse. This fast and
gradual decay occur due to the asymmetric conductance change
behavior of our device described in the previous section. The
continuously applied/long RESET pulse on the OxRAM device
has a cumulative effect similar to that of applying multiple short

RESET pulses. OxRAM’s initial resistance as seen by consecutive
SET pulse in the (i + 1)y, spike-event depends on the final HRS
reached due to the preceding RESET pulse in the iy, event. A
weak/shorter RESET pulse due to shorter inter-spike delay
ensures that the final high resistance reached prior to (i+ 1)y,
firing event is lesser compared to the state achieved prior to the iy,
spike event. Thus the SET pulse in (i + 1), spike event drives the
device to a stronger set state (as it started from a weaker initial
HRS) compared to the SET pulse in iy, event. Thus, the desired
threshold adaptation behavior for a sequence of spike events is
realized, as shown in Fig. 5c. If there is no spike event for a long
duration, the threshold voltage continues to decay and finally
saturates as shown in Fig. 5c. This emulates the adapting
threshold model described by Egs. (3), (4), (5).

Figure 6a shows the increment in neuron threshold at each
spike event for sequence S1 and its fitting obtained using the
DEXAT neuron model. The duration of SET pulse is omitted for
the purpose of fitting. We observed cycle to cycle (C2C) variation
in threshold voltage increment at each spike event as shown in
Fig. 6b for multiple cycles. To further validate the functionality,
an alternate spike sequence S2 was also experimentally tested on
the OxRAM-based DEXAT circuit. Figure 6¢ shows the threshold
voltage adaptation for S2 and corresponding fitting parameters
obtained using DEXAT model. The effect of OxRAM device
behavior is evident from Fig. 6d which shows that the magnitude
of increment in threshold voltage (A) at each event starts to
decrease with increasing number of spike events. The maximum
value of threshold voltage attained in our neuron as a result of
adaptation is experimentally observed to be ~1.2V and is
dependent on the OxRAM device’s minimum resistance state.
The minimum value of threshold (ie., lowest decayed value
obtained after application of RESET pulse) was experimentally
found to be ~280 mV in our case. Our adaptive neuron provides
an adaptation voltage range of about 5x the lowest value.

We also realize a fully digital implementation of the proposed
threshold modulator circuit using FPGA and simulated digital
ASIC hardware blocks as detailed in Supplementary Note 3. In
Supplementary Note 4 we present a comprehensive benchmarking
of our digital and memristive realizations of DEXAT with other
state of the art adaptive neurons in literature.

Learning results for LSNN with proposed DEXAT neuron
We use parameters extracted from proposed hardware neuron to
simulate a standard benchmark test of classifying SMNIST
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Fig. 6 Hardware DEXAT neuron parameter extraction. a, ¢ Experimentally
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requiring LSTM. LSNN network used for this task is shown in
Fig. 1lc. Figure 7 shows the results when a digit is sequentially
presented after training the LSNN network using our hardware
neuron parameters. Figure 7b, ¢ shows the spike rasters of LIF
and DEXAT neurons respectively used in the network during the
learning process. Figure 7d shows the dynamics of the firing
thresholds of a sample of eleven DEXAT neurons in the network.
It is evident that the adaptive nature of neurons provides a LSTM
by virtue of large adaptation time constant and helps in achieving
high accuracy for the sequential task at hand. An additional input
neuron is used to generate output from the network. This neuron
becomes active after the presentation of all 784 pixels of the input
image. Firing probability of this neuron is shown in the top right
corner of Fig. 7a. The softmax of 10 linear output neurons is
trained using back propagation through time (BPTT)3¢37 to
produce the label of the sequentially presented handwritten digit.
This is shown in Fig. 7e by a yellow shading denoting the output
label detected post testing. Figure 7f shows that during the
intermediate duration of presenting the input image, probability
of desired label varies but becomes maximum for correct infer-
ence by the end of 840 ms. In this case the input label corre-
sponding to digit 4 is correctly detected. Figure 8a shows the test

accuracy benchmarking of the simulated LSNN using our hard-
ware DEXAT neuron with networks comprising of other neuron/
activation functions. The LSNN network using our hardware
DEXAT neuron parameters achieves a test accuracy of 96.1%
which is 2.8% higher than the ALIF based LSNN network
reported in* and only 2.4% less than LSTMs.

We also benchmark through simulations the performance of
LSNN networks based on DEXAT neurons realized using different
OxRAM technology stacks (Fig. 3e-g). Baseline voltage in all three
cases is taken as 0.28 V. Accuracy of 94.35%, 95.4%, and 96.1%
for?’-2 was obtained, respectively, as shown in Fig. 8b. An
important point to note is that despite the variation in the time
constants for different devices the accuracy is almost unaffected for
classifying SMINIST. We also perform network simulations after
incorporating OXRAM device variability (see Methods for variability
extraction methodology) in the DEXAT neurons. We analyze the
network behavior over a wide range of #, values (0 to 40%) as shown
in Fig. 8c and Supplementary Fig. 7. Even for the extreme case of
1= 40%, the accuracy drop was found to be only ~2.1% in case of
SMINIST application shown in Fig. 8c proving the network and
neuron’s robustness towards both cycle to cycle (C2C) and device to
device (D2D) variability. Table 1 shows the comparison of our
proposed adaptive neuron with other reported works on adaptive
neurons. We present estimated performance (energy, power, and
area) of different implementations of our DEXAT neuron’s
threshold modulation block in Supplementary Note 4. It is impor-
tant to note that OXRAM device will undergo programming (SET/
RESET) during the inference process. This imposes high endurance
requirements on the OxRAM devices being used to realize the
neuron circuit. In Supplementary Note 5, we present a detailed
analysis on the impact of OxRAM device endurance (resistance
window degradation) on overall network inference accuracy.

In order to investigate advantages of the proposed DEXAT
based LSNN for real-world temporal applications, we trained
multiple LSNNs with varying dimensions, on the 12-class GSC
dataset (see Supplementary Fig. 15 for LSNN benchmarking
results). We found that LSNNs with the proposed DEXAT model
match state-of-the-art accuracy (~91%) on the GSC 12-class
dataset3® while significantly outperforming literature in terms of
total network resources (i.e., with 50 to 70% reduction in number
of hidden layer neurons). DEXAT based LSNNs were also found
to beat their ALIF based counterparts in lesser number of
iterations (Supplementary Fig. 15b). Further, we designed an
experimental setup (see Methods) as shown in Supplementary
Fig. 9 and Supplementary Fig. 10 to demonstrate full end to end
learning process inclusive of hardware DEXAT neurons for the
GSC (2 class) real-time speech recognition application. Figure 9
shows the learning result for a real-time speech sample using the
end to end experimental setup. The real-time spoken speech
sample “UP” is preprocessed (see Methods for details) as shown
in Fig. 9a. This preprocessed sample is then parsed to the net-
work based on which spiking in the input neurons occurs as
shown in Fig. 9b. Figure 9c shows the spike rasters for the hidden
layer neurons during the speech recognition process. Figure 9d, e
shows the adaptive thresholds of the DEXAT neurons defined in
software and hardware respectively during the inference. Fig-
ure 9f shows the decision generated at the output layer with time.
At the end of the inference the output decision value corre-
sponding to “UP” is higher than that corresponding to “DOWN”
signifying a correct decision. Movie of experimental demon-
stration showing live spoken speech recognition using real
OxRAM-based hardware DEXAT neuron circuits can be acces-
sed through Supplementary Movie 2. We also performed mul-
tiple cycles of experiments for input samples randomly chosen
from GSC dataset corresponding to the two classes “UP” and
“DOWN?”. The results are shown in Supplementary Fig. 11a-f.
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Discussion

Recent works have shown that the performance of neuromorphic
RSNN s can improve by including adaptive LIF neurons. In this work,
we propose a new DEXAT neuron model for use in RSNN. Our
proposed model provides drastic benefits like higher accuracy, faster
convergence and flexibility in hardware implementation compared to
existing ALIF model. Benefits of proposed DEXAT based LSNN are
shown on three diverse tasks (store-recall, SMNIST, and speech
recognition). System-level simulations of LSNN network with
DEXAT neurons achieved a test accuracy of 96.1% for classification
on SMNIST dataset and 91% on GSC dataset. In case of GSC dataset,
DEXAT based LSNNs were found to match state of the art accuracy

with significantly less number of hidden layer neurons. Further, we
experimentally demonstrate that the proposed DEXAT neuron
model can be realized in hardware using tightly coupled
circuit-device interaction of different bilayer OxRAM devices
(through hybrid CMOS-OxRAM circuits). Effects of OxRAM device
variation and endurance on network performance are also investi-
gated. LSNN networks with DEXAT neurons are found to be robust
to OxRAM device variability and are able to achieve an accuracy of
94% with even 40% resultant device variability. We demonstrate real-
time speech inference using full end-to-end experimental setup
consisting of real hardware CMOS-OxRAM DEXAT neurons. Fur-
ther, we explore digital implementations of the adaptive threshold
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Classification Task

(Accuracy)

Adaptation
Circuit

8T + 1 capacitor
+3 switched
capacitors

3 MUX 42
buffers

Emerging
Memory Used

None
None

Implementation
Experimental
Experimental

Model/Principle

Mihalas
Neibur Model

Threshold
Adaptation
Adaptive

Neuron Type

Adaptive LIF
Adaptive LIF

21
[22]

Table 1 Comparison with other implementations of adaptive neuron models.

Ref.

modulator block of the proposed DEXAT neuron for performance
benchmarking. Proposed new DEXAT neuron model and its dif-
ferent hardware implementations have the potential to realize effi-
cient large-scale recurrent/temporal neuromorphic networks. Among
various realizations, hybrid CMOS-OxRAM circuits offer clear area-
benefit. Future efforts should be in the direction of reducing indivi-
dual OxRAM device switching energy to sub pico-joules i.e., through
lower programming voltages, switching currents (~nA or lower), and
ultra-fast switching speeds (sub ns)).

Unsupervised STDP

BPTT

Methods

Experimental setup for basic characterization. Characterization of the OXRAM
devices is performed using Keithley 4200 SCS parameter analyzer. Keithley 4210
high power SMU (Source Measure Unit) was used to perform the DC sweep
measurements. For DC characterization a dual voltage sweep is applied on TE
using SMU with SET voltage from 0 to 3V and a RESET voltage from 0 to —5V.
Pulse characterization of our device is performed by applying multiple SET and
RESET pulses Keithley 4225 PMU and reading the device conductance after every
pulse. We built our proposed neuron circuit on a General Purpose Board (Sup-
plementary Fig. 5). CD4007UB CMOS dual complementary pair plus inverter IC is
used for MOS transistors. The IC has enhancement type high voltage CMOS
devices. An OxRAM device IC is used for the bilayer analog device. Firing events
are emulated by giving a serial input to arduino microcontroller that acts as a
pulse-generator block and outputs the desired control signal pulses denoting a
firing event. Sequence of firing events can be varied by controlling the timing
interval of serial inputs to microcontroller. Optimized SET and RESET voltages are
provided by external power supply. The threshold voltage output is observed using
a high resolution digital storage oscilloscope.

(~91%)P (GSC
dataset for 12

2. Speech Recognition
classes)

Partial MNIST (10
images) (100%)
1. SMNIST (96.1%)?

+1 tunable
resistor

+1 OTA +1
capacitor

+7 switches

2 RRAM devices
OxRAM device

6T +1

Experimental setup for end to end speech recognition. For the end to end real-
time speech recognition experiments we fabricated a custom designed parent
printed circuit board (PCB) having various blocks like microcontroller, analog to
digital converter (ADC), digital to analog converter (DAC), and a separate
daughter PCB consisting of DEXAT threshold modulator circuit components.
Daughter PCB is interfaced with the parent PCB as shown in Supplementary Fig.
10. Both the PCBs together are used to emulate the complete LSNN network
including multiple hardware DEXAT neurons. All LIF neurons are realized in
software, while the DEXAT neurons are partitioned between hardware and soft-
ware. Hardware DEXAT neurons communicate with their software counterparts as
shown in Supplementary Fig. 9 (peripheral neuron circuit blocks like integrator,
comparator are implemented in software, while adaptive threshold block is
implemented using multiple CMOS-OxRAM circuits). Inference takes place tem-
porally over time as each preprocessed input speech sample is presented in time
step “0f” where 8t = 10 ms. During the real-time inference, a serial input is syn-
chronously fed to the PCB whenever a hardware DEXAT neuron in the network
spikes. As a result, the control programming signals are applied to the hardware
DEXAT neurons. The real-time hardware adaptive thresholds are transmitted to
the ADC on board and is provided to the network code in real-time as shown in
Supplementary Fig. 9. Tektronix MDO3024 Mixed Signal Oscilloscope is used for
observing the real-time adaptive thresholds. For the hardware DEXAT neurons
OxRAM device variabilities are inherently included in the network in real-time
while extracted variability is incorporated in software neurons.

Bilayer OxXRAM

RRAM

Simulation
Experimental

Device fabrication. Analog resistive switching OXRAM stacks of Ni/3 nm HfO,/7
nm Al-doped-TiO2(ATO)/TiN (top to bottom) structure were fabricated by fol-
lowing a CMOS compatible process in Prof. Tuo’s Lab (NCTU). The active device
area was 50 um X 50 pm, and the ATO as well as HfO, were deposited using
plasma-enhanced atomic layer deposition (PE-ALD). The device fabrication flow is
as follows: first, 100 nm thick TiN BE flm was deposited on thermal-SiO, (500 nm)/
Si wafer by physical vapor deposition, RF magnetron sputtering. The BEs were then
patterned by optical photolithography (first mask) and dry etching using
inductively-coupled plasma (ICP). The bottom, 7 nm thick ATO dielectric, was
then deposited by interchanging varying amount of TiO, and A,O; PE-ALD
cycles, using TDMATi (Tetrakis(dimethylamido)titanium) and TMA (trimethyla-
luminum) as metal-organic precursors and O, plasma as a reactant. Upper, 3 nm
thick dielectric HfO, flm, was deposited using TDMAHIF (Tetrakis(dimethylamido)
hafnium) and O, plasma. All depositions were carried out at 250 °C using Veeco-
CNT Fiji F202 remote plasma hot-wall reactor PE-ALD system. Top Electrode
(TE) pattern (similar to the BE pattern but rotated 90°) was defined using second
optical photolithography mask and 100 nm thick Ni TE film was deposited by DC
sputtering and patterned using lift-off technique. Final photolithography (third
mask) and ICP dry etching step was performed to open the contact windows (etch
the dielectrics) to the BE contact pads. Wire bonding and packaging were the final
steps for the OxXRAM encapsulation.

(ADeX) Model
Resistance
Modulation
DEXAT Model

Exponential
Membrane

Adaptive LIF

Adaptive LIF

23]

Resultant device variability extraction methodology. In all the full network

(Detailed performance benchmarking is presented in Supplementary Notes 4, 5).

20btained a best accuracy run with 96.4%.
bObtained a best accuracy run with 91.3%.

This Work

analysis we incorporate variability on the adaptive threshold voltage of each neuron
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Fig. 9 Real-time recognition of a spoken input speech sample using DEXAT based LSNN. a Normalized and preprocessed real-time input speech sample.
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f Decision output plots for the two classes evolving with time and generating correct result corresponding to input sample at the end.

in the network based on experimental data and a combined variability (C2C +
D2D) parameter defined as resultant variability (#,). We use the methodology used
in3%40 for variability analysis. In order to experimentally characterize variability, we
performed both stand-alone variability (i.e., only C2C or D2D) and combined
variability (i.e., C2C + D2D) experiments as shown in Supplementary Fig. 6. The
resultant variability parameter (#,) is defined such that it helps to analyze the
statistical impact of variations for any generic OXRAM device (i.e., different
material stacks). First, several devices are cycled multiple times for implementing a
given threshold sequence. Next, for each time-step (i) the corresponding mean y;,
standard deviation (o;), and coefficient of variation (1; = 0;/y;) of the threshold
voltage values (i.e., y-axis) are calculated. Finally, median of all #; values is defined
as the resultant variability (7,) parameter. From Supplementary Fig. 6b, 7, =30%
for the Ni/HfO,/Al-doped TiO,/TiN stack device, for sequence S1. In order to
generate the simulated neuron thresholding traces, each Y-axis value (i.e., adaptive
threshold voltage) for a corresponding X-axis value (i.e., time) is drawn from a
random gaussian distribution (4 = y;, 0= #,*u;). Supplementary Fig. 7 shows
10,000 simulated neuron threshold traces for different values of #,.

LSNN training and inference simulations

STORE-RECALL and SMNIST. System-level simulations for STORE and RECALL
tasks and classifying SMNIST dataset are performed using a three layer recurrently
connected network of spiking neurons. Hidden layer consists of LIF and adaptive
neurons (ALIF/DEXAT). Our proposed DEXAT neuron model equations are inte-
grated using Tensorflow library in python code based on* available on github repo-
sitory. Simulations are performed in discrete time with smallest time interval “6t”
taken as 1 ms. The input bits and the STORE-RECALL instructions are encoded by
spiking activity of input neurons at firing frequency of 50 Hz. STORE-RECALL task is
trained using the BPTT algorithm. Decision error is calculated as the ratio of number
of false detected cases to total number of cases in a batch (batch size = 128). We have
defined the desired minimum decision error to be <0.05. Learning rate, learning rate
decay and dampening factor are taken to be 0.01, 0.8, and 0.3, respectively, in the
simulations. Training and testing batch size is set to 256 for simulations. All the
60,000 images in the train set of MNIST dataset are used for training. For inference,
input test image is presented from 10,000 test images in a sequential manner where
each input pixel is presented in 1 time step “6¢” (here 1 ms). Hence, inference of one
MNIST image takes 784 time steps (8t). It is important to note that the simulation
time step “0t” can be chosen to satisfy the number of time steps required for the
temporal task based on the extracted values of time constants from the experimental
device. Each pixel of 28 x 28 MNIST image is presented to the 80 input neurons and
is encoded by the firing of the input neurons with threshold crossing method. Net-
work architecture details are specified in Supplementary Table 6.

Speech recognition. This application involves initial speech data sample pre-
processing step. First, an input speech sample of 1 second duration is taken from

GSC dataset at a sampling rate of 16 kHz. Next, Mel Frequency Cepstral Coefficient
(MFCC) with a 30 ms window and 1 ms stride is applied to the sample. This leads
to a feature vector consisting of 40 output features, extracted for all 100,503 speech
samples, spanning across the 30 classes of the GSC dataset. We trained multiple
LSNN networks of varying dimensions (Supplementary Fig. 15) to classify the
speech data over 12 distinct classes. Here, 10 classes (yes, no, up, down, left, right,
on, off, stop, and go) are taken as such from the dataset, 20 other classes of the
dataset are grouped together to form an “unknown” class, while “silence” denoting
absence of any speech is taken as the 12th class. For all GSC LSNN simulations
(Supplementary Fig. 15) non-adaptive LIF neurons constitute 50% of the total
hidden layer neurons. The remaining 50% are either DEXAT or ALIF neurons.
Networks are trained using BPTT with Adam optimizer. Batch size is taken as 100.
Learning rate is varied as [0.01, 0.005, 0.002, 0.001] over 10,000 training iterations
[4200, 4000, 1200, 600], having dataset split of (80:10:10 i.e., train-validation-test).
Post-training, inference is performed on 4890 samples to estimate the test accuracy.
For full hardware end-to-end live speech recognition experiment (Fig. 9), a net-
work (consisting of 100 neurons in input layer, 10 LIF, and 10 DEXAT neurons in
hidden layer) is trained offline on a reduced 2-class GSC dataset. The two classes
consist of 7711 samples each of 1's duration, with Label “UP” (3917 samples) and
Label “Down” (3794 samples), having a split (70-20-10 i.e., Train: Validation: Test).
During inference, live input speech command spoken by a human is recorded in
real-time using in-built microphone of the logitech C270 webcam. Preprocessing of
this input sample is done in the same way as that of recorded GSC samples, by
dividing it into five parts, with each part of 0.2 s duration. On each part of the
sample, mean of 20 bank MFCC is extracted leading to a final feature vector with
100 features. Min-Max normalization is performed on every spoken sample. This
feature vector is parsed in real-time on the frozen pre-trained LSNN realized in
hardware (shown in Supplementary Fig. 10) for live classification decision.

Data availability

Data and results presented in the plots of this study can be made available by the
corresponding author, upon reasonable request. The MNIST dataset is available at
https://www.tensorflow.org/datasets/catalog/mnist. The google speech commands dataset
is available at https://storage.cloud.google.com/download.tensorflow.org/data/
speech_commands_v0.02.tar.gz.

Code availability
Code used in this study can be made available by the corresponding author, upon
reasonable request.
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