
RESEARCH ARTICLE

The increasing toll of adolescent cancer

incidence in the US

Jessica Burkhamer1*, David Kriebel1,2, Richard Clapp2

1 Department of Public Health, University of Massachusetts, Lowell, Massachusetts, United States of

America, 2 Lowell Center for Sustainable Production, University of Massachusetts Lowell, Lowell,

Massachusetts, United States of America

* jessica.burkhamer@gmail.com

Abstract

Cancer incidence is rising among adolescents (“teens”). The causes of the increase are

unknown but studying incidence patterns and trends may produce insights into etiology.

Using data from the US National Cancer Institute’s Surveillance, Epidemiology, and End

Results (SEER) program we described trends of cancer incidence among teens (15–19

year olds). We reviewed and summarized incidence patterns for histologic cancer groups

and the most frequently diagnosed sites of cancer among teens during 2008–2012 reported

by the SEER Cancer Statistics Review. We calculated annual incidence rates for the years

1975–2012 and used linear regression analysis to evaluate trends and calculate rates of

change. Incidence for all sites combined increased annually by 0.67% for males and 0.62%

for females during the period 1975 through 2012 –resulting in more than a 25% increase

over 38 years. The biggest annual incidence increases occurred in non-Hodgkin lymphoma

(NHL) (2.16% females; 1.38% males), thyroid cancer (2.12% females; 1.59% males), acute

myeloid leukemia (AML) (1.73% females) and testicular cancer (1.55% males). Incidence

rates for most histologic groups and sites showed steady long term increases over the 38

years of data. Despite improvements in survival, rising incidence trends mean growing num-

bers of young adults are undergoing painful and costly cancer treatments. A concerted

research program is vital to investigate causes of steadily rising teen cancer rates.

Introduction

Cancer incidence is rising among adolescents (“teens”) [1–3]. The causes of the increases are

poorly understood but studying incidence patterns and trends may produce insights into etiol-

ogy and suggest opportunities for prevention. However, with the exception of a small but

growing body of research, study of cancer in teens has been relatively neglected in the US. The

focus of cancer research has been on children and adults and research on cancer in teens and

young adults has not kept pace [4]. Thus, the rise in teen cancer rates has not received the

attention it deserves [3–5]. Although tremendous advances in cancer treatment have dramati-

cally improved the survivability of cancer, even when “cured” cancer has devastating long-

term effects including second malignancies and infertility [6]. Because teen cancer is relatively
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rare, large populations and long-term trends are needed for effective study. The goal of this

article is to describe long-term-teen cancer trends in the US using data from the US National

Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) program [7, 8]. To pro-

vide context for the trends, we first include a discussion of national teen cancer patterns pre-

sented in the tables 2.7, 32.1, 32.4, 32.7, and 32.17–32.19 of the SEER Cancer Statistics Review

[1, 9].

The late childhood, adolescent, or teen years (15 to 19) may be considered a transitional

phase between childhood and adulthood. In childhood, cancer incidence peaks in the first year

of life and declines after that until 5–9 years of age. Cancer incidence rates start a notable

upswing in the teen years (Fig 1) and incidence continues to increase with age throughout life

[1, 3, 9]. Teens’ cancer experience differs from children and adults with regard to the kinds of

cancers diagnosed. The most frequently diagnosed cancers among teens (males and females

combined) are lymphomas, carcinomas, germ cell cancers, and leukemias. This list differs

from the prevailing childhood cancers: leukemias, cancers of the central nervous system, and

other pediatric and embryonal tumors, and also differ from adult cancers, which are domi-

nated by carcinomas. In fact, the spectrum of common cancers shifts considerably from the

teen years to older young adults (35–39 years) (S1 Fig) [1, 3, 5, 10].

It is widely accepted that morphology (histology) is more important in defining childhood

cancers than topography (location), while topography is often thought to be more important

for defining adult cancers, which are largely carcinomas. Teen cancers share characteristics

from both of these age groups [5]. Barr and others developed a classification scheme tailored

to suit the transitional characteristics of cancers among adolescents and young adults (AYA)

aged 15–39 years, which include more histologic types than adult cancers and more carcino-

mas than childhood cancers but lack many of the embryonal tumors of childhood [2, 10]. This

system has a flexible hierarchical structure where cancers are aggregated into nine groups that

are subdivided into two or more sites or subgroups, which may be divided again as necessary.

The SEER program uses an adapted version of this classification scheme to describe tumors in

15–29 year olds [1].

According to the SEER Cancer Statistics Review, during 2008–2012, the incidence rate

among teens for all sites combined was 22.9 per 100,000 for males and 21.3 for females

(Table 1). The most frequent histologic diagnoses in males were lymphomas, germ cell and

trophoblastic neoplasms, and leukemias. In females, the most frequent histologic diagnoses

were carcinomas, lymphomas, and leukemias (Fig 2, Table 1). The most frequently diagnosed

cancer sites in males were testicular cancer (germ cell and trophoblastic neoplasms of the

gonads), Hodgkin lymphoma, NHL, acute lymphoid leukemia (ALL), astrocytoma, and osteo-

sarcoma. In females, the most frequently diagnosed sites were thyroid cancer, Hodgkin lym-

phoma, melanoma, astrocytoma, NHL, and ALL (Table 1)[1].

A closer look at the makeup of the nine cancer groups shows that the groups defined as mel-

anoma and skin carcinomas, germ cell cancers and trophoblastic neoplasms, and carcinomas

were each dominated by a single cancer site (Table 1). Melanoma accounts for nearly all diag-

noses in the melanoma and skin carcinomas group (100% for males and 93% for females).

Germ cell cancers are primarily gonadal cancers, testicular cancer in males (83%) and ovarian

cancer in females (83%). Thyroid cancer makes up the bulk of carcinomas in females (69%)

and a large percentage of carcinomas in males (38%) [1].

As the lists of top cancer sites suggest, there are some differences between the patterns of

cancer incidence for males and females (Fig 2). Generally, females tend to have slightly lower

incidence rates than males. There are large differences between males and females in the inci-

dence of germ cell cancers and carcinomas and moderate differences in the incidence of osse-

ous and chondromatous neoplasms, melanoma and skin carcinomas, and leukemias. During
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2008–2012, the incidence rate of germ cell and trophoblastic neoplasms of the gonads in males

(testicular cancer) was nearly four times that of females (ovarian cancer), the rate of thyroid

cancer in females was five times that of males, the rate of osseous and chondromatous neo-

plasms was 82% higher in males, the rate of melanoma and skin carcinomas was 56% higher in

females, and the rate of leukemias was 38% higher in males [1].

After reviewing the SEER Cancer Statistics Review, we selected the most frequently diag-

nosed cancer sites among teens in the US as identified by Howlader (1) and others for trend

analysis, focusing on direction and differences between males and females.

Methods

Cancer sites were analyzed using the adapted classification scheme for AYAs used by the SEER

program [1]. The classification scheme is based on the system developed by Barr and others to

describe tumors in 15–29 year olds [11]. The adapted classification scheme for AYAs used by

SEER is restricted to malignant tumors and updated based on the International Classification

of Diseases for Oncology’s third edition of codes (ICD-O-3) and the World Health Organiza-

tion (WHO) system of hematopoietic codes [1, 12, 13].

Fig 1. Age-specific incidence rates per 100,000, all sites combined, <1–24 years, 2008-2012a. aAdapted from Howlader et al. 2015, Table 2.7.

doi:10.1371/journal.pone.0172986.g001
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We describe and evaluate long-term trends for the nine AYA cancer groups and the most

frequently diagnosed sites of cancer among teens (15–19 year olds) during 2008–2012 (the

most recent five-year period rather than a single year was used to have more stable estimates of

rates), based on the 2015 Cancer Statistics Review published by the SEER program and SEER

incidence and population data [1]. We obtained cancer incidence data for the SEER 9 regis-

tries, which include Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-

Oakland, Seattle-Puget Sound, and Utah. Data are available for seven of the nine registries

from 1973 through 2012; however, data from Atlanta and Seattle-Puget Sound are available

starting in 1975. The SEER 9 registries cover about 9% of the US population and the popula-

tion covered is comparable to the general US population with regard to race and ethnicity

[14]. Trends observed in the SEER 9 registries are often considered to be representative of the

general US population.

To evaluate trends in teen cancers, age-group specific (15–19 years) annual incidence rates

were calculated for the years 1975–2012 and linear regression analysis was used to evaluate the

direction of trends and calculate annual and total percent change. Linear regression has an

intuitive and straightforward interpretation for examining the linear component of long-term

time trends, and can be useful when making comparisons among a large number of different

data sets, as in this article. Analyses of SEER data often use join point analysis [1, 15] instead of

linear regression. Although the former method does not assume linearity and is in that sense a

more flexible method, we believe that linear regression facilitates comparisons among trends

because it provides a consistent and straightforward estimate of long term trends in incidence.

Table 1. SEER cancer incidence per 100,000 and percent contribution, 2008–2012a.

DIAGNOSTIC GROUP/Siteb Male Female

Ratec % Contribution Ratec % Contribution

TOTAL 22.9 — 21.3 —

LEUKEMIAS 3.6 16% 2.6 12%

Acute lymphoid leukemia 2.2 10% 1.2 6%

Acute myeloid leukemia 0.9 4% 1.1 5%

LYMPHOMAS 5.3 23% 4.5 21%

Non-Hodgkin lymphoma 2.3 10% 1.2 6%

Hodgkin lymphoma 3 13% 3.3 15%

CNS, INTRACRANIAL, INTRASPINAL 2.2 10% 2 9%

Astrocytoma 1.2 5% 1.2 6%

OSSEOUS & CHONDROMATOUS NEOPLASMS 2 9% 1.1 5%

Osteosarcoma 1.0 4% 0.6 3%

SOFT TISSUE SARCOMAS 1.4 6% 1.3 6%

GERM CELL AND TROPHOBLASTIC NEOPLASMS 4.6 20% 1.2 6%

Gonadal (Testicular/Ovarian) 3.8 17% 1 5%

MELANOMA AND SKIN CARCINOMAS 0.9 4% 1.4 7%

Melanoma 0.9 4% 1.3 6%

CARCINOMAS (excluding skin) 2.4 10% 6.7 31%

Thyroid 0.9 4% 4.6 22%

MISCELLANEOUS SPECIFIED NEOPLASMS, NOS 0.3 1% 0.4 2%

aAdapted from Howlader et al. 2015, Table 32.4.
b Classification scheme for tumors diagnosed in adolescents and young adults (Barr 2006).
c. Rates for 2008–2012 and SEER 18 (San Francisco, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, Atlanta, San Jose-Monterey, Los

Angeles, Alaska Native Registry, Rural Georgia, California, Kentucky, Louisiana, New Jersey and Georgia).

doi:10.1371/journal.pone.0172986.t001
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Graphs of observed annual incidence rates for the most common cancer sites are presented

in Figs 3, 4 and 5 along with linear trend lines, their regression equations, and p-values for

trend. Graphs for cancer sites not presented in Figs 3, 4 and 5 are available in supporting infor-

mation (S2–S4 Figs). For additional information in interpreting the trends by site, S1 Table

provides a summary of the annual numbers of cases by cancer site. The assumption of linearity

in cancer incidence trends over the full 38 year period for which SEER 9 data are available was

evaluated by using the p-value for the slope in linear regression models. For each regression,

the p-value from the t-test of the slope was reported. The t-test evaluates the null hypothesis

that the derived slope could be obtained by chance if there was no linear trend. Thus a small

p-value is evidence that there is an important linear component to the long term trend. We

defined p< 0.05 as statistically significant. Total percent change in the incidence rate from

1975 through 2012 (38 years) was calculated using the fitted rates from the regression analysis

and comparing the predicted rates in the first and last years of the period expressed as a per-

cent of the 1975 rate. Cancers in teens are rare and thus even the national incidence rates fluc-

tuate quite a bit from year to year. Thus, using the fitted rates to calculate total percent change

results in more stable estimates of trends rather than simply comparing observed first and last

year rates.

Fig 2. Histologic cancer group incidence rates, 2008–2012. Male incidence rates are shown with blue bars and female rates

are shown by red barsa. aAdapted from Howlader et al. 2015, Table 32.4.

doi:10.1371/journal.pone.0172986.g002
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Fig 3. Annual incidence trends for all sites combined, acute lymphoid leukemia, and Non-Hodgkin lymphoma, 1975–

2012, SEER 9 registries. Annual rates are shown by connected points and the least squares regression line is shown as a

straight line. Regression equations and p-values for trend are also shown. SEER 9 registries include Atlanta, Connecticut,

Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah.

doi:10.1371/journal.pone.0172986.g003
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Fig 4. Annual incidence trends for Hodgkin lymphoma, astrocytoma, and osteosarcoma, 1975–2012, SEER 9 registries.

Annual rates are shown by connected points and the least squares regression line is shown as a straight line. Regression

equations and p-values for trend are also shown. SEER 9 registries include Atlanta, Connecticut, Detroit, Hawaii, Iowa, New

Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah.

doi:10.1371/journal.pone.0172986.g004
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Fig 5. Annual incidence trends for testicular cancer, melanoma, and thyroid cancer, 1975–2012, SEER 9 registries.

Annual rates are shown by connected points and the least squares regression line is shown as a straight line. Regression

equations and p-values for trend are also shown. SEER 9 registries include Atlanta, Connecticut, Detroit, Hawaii, Iowa, New

Mexico, San Francisco-Oakland, Seattle-Puget Sound, and Utah.

doi:10.1371/journal.pone.0172986.g005
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Because we used linear regression instead of join point analysis, we calculate the annual per-

cent change (APC) instead of the average annual percent change (AAPC), which is calculated

for analyses using the joint point method. The annual percent change in the incidence rate was

calculated using the method used by the SEER program [16]. Briefly, the APC was calculated

by fitting a least squares regression line using calendar year as the predictor and the natural log

of annual rates as the dependent variable. The standard error for the APC was obtained from

the linear regression model and used to calculate 95% confidence intervals:

APC ¼ 100� ðeslope � 1Þ

CI ¼ ðeðslope�ðTvalue�SEslopeÞÞ � 1Þ � 100

Results

The assumption of linearity in cancer incidence trends over the full 38 year period for which

SEER 9 data are available was evaluated by graph examination and by assessing the p-value for

the slope in linear regression models. Graphs of annual incidence rates for selected cancer sites

are presented in Figs 3, 4 and 5 along with linear trend lines, their regression equations, and p-

values for trend. Graphs for cancer sites not presented in Figs 3, 4 and 5 are available in addi-

tional file (S2–S4 Figs).

Trend analysis of SEER 9 data indicated that teen cancer incidence overall increased during

the period 1975 through 2012. During this time period, incidence for all sites combined

increased annually by 0.67% for males and 0.62% for females (Figs 3–6). These rate increases

mean that for every 100,000 teens, an estimated 5.2 additional males and 4.6 additional females

were diagnosed in 2012 compared to 1975, increases of about 28% and 26%, respectively, over

the entire 38 year period. Of the estimated 4,900 teens diagnosed with cancer in the US in

2012, more than 1,000 diagnoses could be attributed to these long-term incidence rate

increases (Table 2). Trends were positive for all cancer groups in males and for all groups

except lymphomas, germ cell tumors, and osseous and chondromatous neoplasms in females.

Within these groups, incidence rate trends were positive for all sites evaluated, except for

Hodgkin lymphoma and astrocytoma in males and Hodgkin lymphoma and osteosarcoma in

females. While incidence of most cancer sites and subgroups evaluated increased, trends for

Hodgkin lymphoma were negative for males and females, astrocytoma decreased in males,

and osteosarcoma decreased in females.

NHL, thyroid cancer, and AML in females had the highest annual percent increases: 2.16%,

2.12%, and 1.73%; followed by thyroid cancer, testicular cancer, and NHL in males: 1.59%,

1.55%, 1.38%. APCs for melanoma and ALL in females and osteosarcoma in males were also

among the largest observed. Among these seven cancer sites, only the trends for osteosarcoma

in males and melanoma in males and females had p-values slightly above the 0.05 significance

level (Table 3). In contrast to these increasing trends, Hodgkin lymphoma had an annual

decrease of 0.54% and 0.72% in males and females, astrocytoma decreased by 0.43% annually

in males, and osteosarcoma decreased 0.53% annually in females. However, these weakly nega-

tive trends were not statistically significant.

Incidence rate trends were similar in males and females for most cancers, but differed con-

spicuously for germ cell and trophoblastic neoplasm of the gonads (testicular and ovarian can-

cer) and thyroid cancer. The ovarian cancer trend was essentially flat and was not statistically

significant while the testicular cancer trend was about an order of magnitude larger. Testicular

cancer increased 1.55% annually, the predicted rate increasing from 2.17 to 3.77 per 100,000—
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a total increase of 74% over the last 38 years. While for thyroid cancer, the slope for females

(0.069) was about six times higher than for males (0.011). The APC for females was 2.12% and

was 1.59% for males. Due to the rate increases an estimated 267 additional females and 43

additional males were diagnosed with thyroid cancer nationally in 2012 compared to what

would have been expected if the rate had remained at the 1975 level.

NHL incidence rose steeply in both sexes. The APC for females was higher than males

(2.16% vs. 1.38%). In contrast, Hodgkin lymphoma incidence rates dropped annually, by

0.54% for males and 0.72% for females. Decreases in Hodgkin lymphoma were similar for

males and females resulting in about 75 fewer diagnoses in males and 84 fewer diagnoses in

females in 2012.

The annual rate increase for leukemias in females was five times that of males. Female rates

increased 1.29% annually for a total increase of 61% from 1975 to 2012. Rates of leukemias in

males increased more modestly, at 0.25% per year for a total increase of 13%. The trends for

ALL, AML, and leukemias as a group in males were not statistically significant. APCs for ALL

and AML in females were more than double those in males.

Fig 6. Annual percent change for all sites combined, histologic cancer groups, and nine sites, 1975–2012. Graphs showing annual percent

change for all sites combined (large circles, labeled in all capital letters), histologic cancer groups (medium circles, labeled in all capital letters), and

nine cancer sites (small circles). The 95% confidence intervals are shown as error bars extending from the markers.

doi:10.1371/journal.pone.0172986.g006
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Trends for melanoma also increased for both males and females, with increases of 1.08%

and 0.92% for males and females respectively. An estimated 151 males and 222 females were

diagnosed with melanoma nationally in 2012. About a third of the diagnoses in males and a

quarter of female diagnoses could be accounted for by the long-term rise in incidence rates.

Discussion

Our analyses showed that among 15–19 year old teens in the US, overall cancer incidence

has been increasing from the mid-1970s to 2012. Increases in incidence rates of all cancers

Table 3. Incidence rate trend slopes.

Diagnostic GROUP/Sitea Male Female

slope 95% CIb p-

value

slope 95% CIb p-

value

TOTAL 0.14 (0.081,

0.199)

0.00 0.125 (0.077,

0.173)

0.00

LEUKEMIAS 0.009 (-0.007,

0.026)

0.26 0.025 (0.008,

0.043)

0.01

Acute lymphoid leukemia 0.012 (-0.003,

0.027)

0.10 0.012 (0.001,

0.023)

0.04

Acute myeloid leukemia 0.005 (-0.004,

0.014)

0.25 0.013 (0.005,

0.020)

0.00

LYMPHOMAS 0.007 (-0.014,

0.028)

0.51 -0.002 (-0.016,

0.022)

0.85

Non-Hodgkin lymphoma 0.025 (0.010,

0.040)

0.00 0.02 (0.008,

0.031)

0.00

Hodgkin lymphoma -0.018 (-0.036,

-0.001)

0.05 -0.022 (-0.044,

-0.000)

0.04

CNS, INTRACRANIAL, INTRASPINAL 0.006 (-0.012,

0.023)

0.51 0.008 (-0.006,

0.023)

0.24

Astrocytoma -0.006 (-0.015,

-0.004)

0.26 0.002 (-0.010,

0.013)

0.77

OSSEOUS & CHONDROMATOUS

NEOPLASMS

0.016 (0.002,

0.031)

0.03 0 (-0.012,

0.012)

0.96

Osteosarcoma 0.007 (-0.005,

0.019)

0.243 -0.003 (-0.009,

0.004)

0.4

SOFT TISSUE SARCOMAS 0.006 (-0.006,

0.018)

0.29 0.003 (-0.012,

0.018)

0.69

GERM CELL AND TROPHOBLASTIC

NEOPLASMS

0.043 (0.026,

0.060)

0.00 -0.004 (-0.015,

0.007)

0.48

Gonadal (Testicular/Ovarian) 0.043 (0.026,

0.060)

0.00 0.003 (-0.006,

0.011)

0.53

MELANOMA AND SKIN CARCINOMAS 0.012 (0.000,

0.025)

0.05 0.014 (-0.002,

0.029)

0.08

Melanoma 0.012 (-0.001,

0.024)

0.07 0.014 (-0.001,

0.290)

0.06

CARCINOMAS (excluding skin) 0.028 (0.015,

0.042)

0.00 0.071 (0.037,

0.104)

0.00

Thyroid 0.011 (0.003,

0.019)

0.01 0.069 (0.045,

0.093)

0.00

MISCELLANEOUS SPECIFIED

NEOPLASMS, NOS

0.012 (0.004,

0.020)

0.00 0.008 (0.002,

0.015)

0.01

aClassification scheme for tumors diagnosed in adolescents and young adults (Barr 2006).
b95% CI—95% confidence interval.

doi:10.1371/journal.pone.0172986.t003
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combined in US teens have also been noted by Howlader and others in the Cancer Statistics

Review, as well as by Bleyer and colleagues [1, 3]. We believe however that this paper is the

first to systematically calculate and graphically present the long term trends in cancer inci-

dence for this age group. The reasons for these rising teen cancer rates are not known. Some

cancer researchers argue that improved technology, detection methods, and diagnoses account

for this rise in incidence [17], while others argue that if this were the case, one would expect to

see cancer incidence rates flattening, which has not yet occurred. In fact, incidence rates for

most cancer groups and six of the nine most common cancer sites have been increasing rea-

sonably linearly since 1975.

There is good evidence that thyroid cancer diagnosis in adults has been increasing at least

in part because of increased screening [18]. One might assume that this phenomenon is also

occurring among teens, but it is difficult to see how increased screening would explain the

marked sex difference we observed—an obviously increasing incidence trend in females and a

stable to slightly increasing trend in males. This sex difference was previously reported by

Bleyer and others (2006) for the period 1975–2000 and our evaluation shows that this trend

has continued through 2012.

For many of the most common teen cancers, known risk factors are unlikely to account for

the majority of cases [3]. Childhood cancers, including teen cancers, are often thought of as

being sporadic, rising from new mutations by chance. If these cancers are truly sporadic, why

would their incidence increase over time? The answer to this question is unknown but the

presence of yet to be confirmed risk factors seems likely.

Hodgkin lymphoma is the only cancer type examined here with a statistically significant

decreasing trend. Environmental exposure opportunities have long been thought to influence

incidence of Hodgkin lymphoma because in economically developed countries incidence

peaks in young adults and older adults and the nodular sclerosis subtype dominates, while in

developing countries, incidence peaks occur in children (particularly among boys) and older

adults and the mixed cellularity and lymphocyte-depleted subtypes are most common.

Epstein-Barr virus infection and high socio-economic status are associated with increased risk

of Hodgkin lymphoma, thus it has been suggested that differences in exposure opportunities,

such as delayed EBV infection in wealthier countries, explain the distinct age and subtype pat-

terns. However, the association with EBV is stronger for children and older adults than young

adults and stronger for the mixed cellularity subtype than the nodular sclerosis subtype most

frequently diagnosed among US teens [19]. Other risk factors include family history, human

immunodeficiency virus infection, autoimmune disorders, and Jewish ancestry [3]. In the

past, Hodgkin lymphoma was frequently over diagnosed and, since the 1990s, there have been

significant changes to the WHO classification system for lymphomas [20, 21]. More research

is needed to determine what role western lifestyle and changing diagnostic accuracy and classi-

fication systems play in these incidence rate changes.

Testicular and thyroid cancers are the most rapidly increasing cancers among teens, yet

the known risk factors for these cancers do not seem to offer explanation for their marked

increase. Risk factors for the type of thyroid cancer that occurs most frequently in teens—pap-

illary thyroid carcinoma—, include ionizing radiation, a mutation to the RET proto-oncogene,

and family history. The only widely accepted risk factor for testicular cancer is cryptorchidism

[3]. With the exception of ionizing radiation from diagnostic tests, we are unaware of evidence

that any of these factors has changed dramatically over this period. If increased use of medical

diagnostic x-rays is responsible for some of the increased incidence of thyroid cancer in teens,

it raises the question: why are the patterns so different in females and males?

While some researchers postulate that genes and viruses are the main contributors to any

observed increase in childhood cancer (including teens), other researchers argue that genes,

The increasing toll of adolescent cancer incidence in the US
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individual susceptibility and the environment are likely to interact in such a way as to disrupt

normal cell function, leading to cancer [17, 22, 23]. Evidence suggests that a substantial portion

of childhood cancers, including teen cancers, may be environmentally related, and thus pre-

ventable. The President’s Cancer Panel report highlighted the increasing use of pediatric CT

scans as a potential contributor to the rising rates of childhood cancer [24]. Dr. Philip Landri-

gan, in testimony before the President’s Cancer Panel in 2008, cited parental occupational

exposures to volatile organic compounds, prenatal and early childhood exposure to pesticides,

and growing up on farms or having a parent who is a pesticide applicator as part of the “emerg-

ing evidence for environmental causation of childhood cancer.” [25]. Continued surveillance

of chemicals in the U.S. population, documented in the National Reports on Human Exposure

to Environmental Chemicals by the U.S. Centers for Disease Control and Prevention may give

a clearer picture of the amounts and trends in body burdens of potentially carcinogenic expo-

sures in teens, as well as other age groups.

Teens present a particular opportunity for investigation of cancer etiology. In adults,

latency for most solid tumors is thought to range from 10 to more than 30 years, during which

a myriad of environmental exposures occur. The presumably shorter latency of teen cancer

effectively reduces the list of potential environmental contributors. Increased study of this age

group may lead to increased understanding of cancer etiology and identification of modifiable

risk factors.

Conclusions

Cancer in later childhood appears different in potentially important ways from early childhood

cancer and deserves more study. We examined long term incidence trends for ages 15–19

using a tumor classification scheme designed for this age group and found that since 1975

overall cancer incidence increased by more than 25%, with substantial increases in thyroid

cancer, testicular cancer, and NHL. The causes of these substantial increases are unknown. It

is likely that these trends are the result of many different factors. A concerted research program

into the causes of rising teen cancer rates is needed that can lead to interventions to alter this

trend and reduce the number of teens with cancer.

Supporting information

S1 Fig. Percent contribution of histologic groups by age group. Bar graphs showing percent

contribution of nine histologic cancer groups for males and females by age groups (0–14, 15–

19, 20–24, 25–29, 30–34, 35–39, 40+). Adapted from Howlader et al. 2015, Tables 32.1 and

32.2.

(TIF)

S2 Fig. Annual incidence trends for leukemias, acute myeloid leukemia, and lymphomas,

1975–2012. Annual rates are shown by connected points and the least squares regression line

is shown as a smooth line. Regression equations and p-values for trend are also shown. SEER 9

registries include Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-

Oakland, Seattle-Puget Sound, and Utah.

(TIF)

S3 Fig. Annual incidence trends for central nervous system, intracranial, intraspinal neo-

plasms; osseous and chondromatous neoplasms; and soft tissue sarcomas; 1975–2012.

Annual rates are shown by connected points and the least squares regression line is shown as a

smooth line. Regression equations and p-values for trend are also shown. SEER 9 registries

include Atlanta, Connecticut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland,
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Seattle-Puget Sound, and Utah.

(TIF)

S4 Fig. Annual incidence trends for germ cell and trophoblastic neoplasms, melanoma and

skin carcinomas, and carcinomas (excluding skin), 1975–2012. Annual rates are shown by

connected points and the least squares regression line is shown as a smooth line. Regression

equations and p-values for trend are also shown. SEER 9 registries include Atlanta, Connecti-

cut, Detroit, Hawaii, Iowa, New Mexico, San Francisco-Oakland, Seattle-Puget Sound, and

Utah.

(TIF)

S1 Table. Annual number of cases by site, 1975–2012. Summary statistics for the number of

cases by cancer site for the years 1975–2012.

(DOCX)
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