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ABSTRACT
Background There is great interest in finding ways 
to identify patients who will develop toxicity to cancer 
therapies. This has become especially pressing in the era 
of immune therapy, where toxicity can be long- lasting and 
life- altering, and primarily comes in the form of immune- 
related adverse effects (irAEs). Treatment with the first 
drugs in this class, anti- programmed death 1 (anti- PD1)/
programmed death- ligand 1 (PDL1) checkpoint therapies, 
results in grade 2 or higher irAEs in up to 25%–30% of 
patients, which occur most commonly within the first 6 
months of treatment and can include arthralgias, rash, 
pruritus, pneumonitis, diarrhea and/or colitis, hepatitis, and 
endocrinopathies. We tested the hypothesis that germline 
microRNA pathway functional variants, known to predict 
altered systemic stress responses to cancer therapies, 
would predict irAEs in patients across cancer types.
Methods MicroRNA pathway variants were evaluated 
for an association with grade 2 or higher toxicity using 
four classifiers on 62 patients with melanoma, and 
then the panel’s performance was validated on 99 
patients with other cancer types. Trained classifiers 
included classification trees, LASSO- regularized logistic 
regression, boosted trees, and random forests. Final 
performance measures were reported on the training set 
using leave- one- out cross validation and validated on 
held- out samples. The predicted probability of toxicity 
was evaluated for its association, if any, with response 
categories to anti- PD1/PDL1 therapy in the melanoma 
cohort.
Results A biomarker panel was identified that predicts 
toxicity with 80% accuracy (F1=0.76, area under the curve 
(AUC)=0.82) in the melanoma training cohort and 77.6% 
accuracy (F1=0.621, AUC=0.778) in the pan- cancer 
validation cohort. In the melanoma cohort, the predictive 
probability of toxicity was not associated with response 
categories to anti- PD1/PDL1 therapy (p=0.70). In the same 
cohort, the most significant biomarker of toxicity in RAC1, 
predicting a greater than ninefold increased risk of toxicity 
(p<0.001), was also not associated with response to anti- 
PD1/PDL1 therapy (p=0.151).
Conclusions A germline microRNA- based biomarker 
signature predicts grade 2 and higher irAEs to anti- PD1/
PDL1 therapy, regardless of tumor type, in a pan- cancer 
manner. These findings represent an important step 
toward personalizing checkpoint therapy, the use of which 
is growing rapidly.

INTRODUCTION
Checkpoint inhibitors are an exciting 
advance in the treatment of patients with 
cancer. Enthusiasm is justified, with response 
rates of over 20% in melanoma, non- small 
cell lung cancer (NSCLC), and genitouri-
nary cancers (GU).1 However, a new form of 
toxicity resembling autoimmunity, where the 
immune system attacks host normal tissues, 
referred to as immune- related adverse events 
(irAEs), is a significant problem.2 3 irAEs 
from checkpoint therapy can affect the skin, 
liver, bowel, endocrine system, lung, heart, 
eyes, nerves, muscles, or the kidneys, and can 
be severe and even life- threatening. Grade 
2 and higher irAEs, which require steroid 
treatment and a break from therapy, occur 
in 25%–30% of patients treated with single- 
agent checkpoint therapy and in up to 55% 
for combination immune therapies with 
increased severity.2 Currently there is no way 
to predict which patients will develop irAEs 
before starting treatment; thus, the strategy is 
to watch and wait after treatment initiation. 
As immune therapy is being broadly offered, 
even in the metastatic setting in tumor types 
where efficacy may not be fully determined,1 
there is a growing need to identify patients 
at risk of such toxicities to allow a balanced 
discussion to guide treatment decisions.

While there are several tumor- based 
biomarkers predicting response to immune 
therapy, such as percent of tumor PDL1 
expression4 and more recently tumor muta-
tional burden and T cell- inflamed gene 
expression profiling,5 identifying biomarkers 
to predict toxicity to cancer treatment has 
been limited.6 Notably, toxicity to immune 
therapy occurs in 25%–30% of patients regard-
less of cancer type, even in non- responding 
tumor types, supporting the hypothesis that 
toxicity is patient- specific and not tumor type- 
dependent. This further indicates that there 
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are tumor- specific factors predicting response to immune 
therapy, which has been demonstrated, as described 
above. However, we hypothesized that since toxicity likely 
represents a patient- specific systemic immune stress 
response, biomarkers of toxicity should be found in a 
patient’s germline DNA. Unfortunately, predictive germ-
line variants in the most studied regions of the DNA—the 
protein coding regions—are quite rare,7 and approaches 
that have been historically applied to study the ‘non- 
coding’ regions of the DNA, such as genome- wide asso-
ciation studies (GWAS), have been relatively unsuccessful 
in identifying functional germline variants.

Fortunately, the ability to identify meaningful 
biomarkers in the non- coding germline DNA has been 
dramatically advanced with the discovery of functional 
non- coding regions,8 such as those encoding microRNAs 
(miRNAs) and their regulatory pathways.9 miRNAs 
are global gene regulators that play important roles in 
cancer10 and are critical regulators of the systemic stress 
response, including the immune response to cancer 
therapy.11–13 Recent work has identified functional 
variants in miRNA pathways (now often referred to as 
miRNA single nucleotide polymorphisms or miRSNPs), 
which have dramatic impacts on response to cancer 
therapy.14 15 Notably, to date, miRSNPs are poorly repre-
sented in widely used single nucleotide polymorphism 
(SNP) platforms as well as in exon sequencing. The first 
example of a cancer- associated miRSNP is a functional 
miRNA binding site variant in the 3 prime untranslated 
region (3′UTR) of the KRAS oncogene,16 now referred 
to as the KRAS- variant, which is a biomarker that predicts 
significant differences in treatment response or resistance 
in a pan- cancer manner.17–21 Furthermore, it was shown 
that KRAS- variant patients are immunosuppressed with 
significantly elevated transforming growth factor beta 
(TGF-ß), higher toxicity, and a poor systemic response to 
radiation.22 In addition, it was recently found that a panel 
of miRSNPs predict wound toxicity after accelerated radi-
ation in sarcoma.23 These findings afford evidence of the 
global impact this class of functional variants can have on 
the systemic stress response, resulting in toxicity to cancer 
therapies.

We therefore evaluated a panel of miRSNPs (previously 
discovered by our group)24 in patients treated with anti- 
programmed death 1 (anti-PD1)/programmed death- 
ligand 1 (PDL1) checkpoint therapy to determine if they 
can act as biomarkers of increased risk for irAEs, regard-
less of cancer type.

MATERIALS AND METHODS
Patients
Based on sample availability, the study included 161 
patients with cancer treated with single- agent anti- 
PD1 or anti- PDL1 therapy. All were consented on one 
of three Human Investigations Committee- approved 
protocols:  ClinicalTrials. gov number NCT01295827 
(IRB#11- 003066, initiated in 2011), MiraKind protocol 

Pro00009633 (initiated in 2015), or  ClinicalTrials. gov 
number NCT02280161 (IRB#14- 001115, initiated in 
2014). All samples were processed and tested through 
MiraDx on their miRSNP platform. Cycle number, toxicity 
status, and in some cases tumor responses were collected 
directly from patient charts by physicians with protocol 
access rights. Inclusion criteria for this study were the 
following: having received equal to or more than four 
cycles of anti- PD1/PDL1 therapy (unless stopping due to 
toxicity before cycle 4); having therapy delivered every 2 
or 3 weeks; not being on steroids for other reasons; and 
not having a pre- existing diagnosis of an autoimmune 
disease prior to treatment.

irAEs were recorded by the treating physician and 
graded per American Society of Clinical Oncology guide-
lines as grades 1–4.25 irAEs were considered significant if 
they were recorded as grade 2 or higher and the patient 
required a treatment break and steroid therapy for reso-
lution. The choice of grade 2 or higher as the cut- off 
for significance was based on prior published toxicity 
studies,26 the rarity of grade 3 and higher toxicity to single- 
agent anti- PD1/PDL1, and the clarity of this toxicity 
through the need for steroids and a treatment interrup-
tion. Response was recorded by treating physicians for the 
melanoma clinical trial patients using immune- Response 
Evaluation Criteria in Solid Tumors (iRECIST) criteria,27 
using best overall response as follows: progressive disease 
(PD), stable disease (SD), partial response (PR), or 
complete response (CR).

Because the markers tested are germline and the 
study was a retrospective analysis of prospective studies, 
the samples studied were collected at any point in treat-
ment. Patients with melanoma were primarily treated 
on pembrolizumab or nivolumab protocols at Univer-
sity of California, Los Angeles (UCLA) for advanced 
and relapsed disease, with a small proportion treated 
with anti- PDL1 agents. Patients with prostate cancer all 
had metastatic prostate cancer and were treated with 
anti- PD1 single- agent pembrolizumab therapy at Pros-
tate Oncology Specialists and consented to a MiraKind 
protocol. Patients with other cancer types were captured 
through the radiation oncology or urology clinics at 
UCLA or were collected at Saint John’s Cancer Center 
or Appalachian Regional Healthcare and submitted to 
MiraDx directly for analysis. These patients were a mix of 
metastatic patients and patients with earlier- stage, defini-
tively treated NSCLC or GU cancer. All were treated with 
anti- PD1 or anti- PDL1 agents, including pembrolizumab, 
nivolumab, atezolizumab, or avelumab. The proportion 
of patients treated with anti- PD1 versus anti- PDL1 therapy 
by cancer type is presented in online supplemental table 
1.

DNA biomarker panels
DNA was isolated from blood or saliva using Qiagen kits 
per protocol. Because prior reports have not shown any 
differences in the prevalence of germline variants in 
blood versus saliva, either was used as source of germline 
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DNA samples.16 Biomarkers were chosen from a pool 
of miRNA- based variants disrupting DNA repair and 
immune- related genes previously discovered and deter-
mined to be functional through sequencing and bioin-
formatic approaches.24 MiraDx performed the miRSNP 
analysis on blinded samples. Additional information on 
variant selection for testing and comparison between 
training and validation cohorts are included in online 
supplemental methods, part 1 and online supplemental 
table 2.

Statistical analysis
Four classifiers were trained on the largest disease- 
homogenous cohort, a set of 62 patients with melanoma 
with documented toxicity. Subjects were classified as 
experiencing high toxicity (grade 2 or higher) versus low 
toxicity (lower than grade 2). Performance of the clas-
sifiers was tested on a validation set of 99 patients with 
other types of cancer. Classifiers were built using classi-
fication trees (CT),28 least absolute shrinkage and selec-
tion operator (LASSO)- regularized logistic regression 
(LASSO- LR),29 boosted trees (BT),30 and random forests 
(RF).31 Due to the class imbalance in observed toxicity, 
subjects with toxicity were upweighted in the training 
data and tuning parameters were selected to minimize 
the F1 score (defined as the harmonic mean of sensitivity 
and positive predictive value) using leave- one- out cross 
validation (LOOCV). The final performance measures, 
accuracy, specificity, sensitivity, negative predictive value, 
positive predictive value, area under the curve (AUC), and 
F1 score were reported on both the training data using 
LOOCV and on the validation cohorts using data held 
out from model training. A total of four missing marker 
values were imputed five times via chained equations,32 
with markers treated as categorical variables. Results 
are presented for a single imputation data set given that 
performance and variable importance measures are 
stable across imputation data sets. Additional information 
on statistical analyses is included in online supplemental 
methods, part 2.

RESULTS
Toxicity across patient cohorts
For the melanoma training cohort, 21 of 62 patients 
(33.9%) developed grade 2 or higher irAEs, and for the 
validation cohort 24 of 99 patients (24.2%; 25% of pros-
tate and 23.8% of other) developed grade 2 or higher 
irAEs. The frequency and distribution of toxicity did not 
vary significantly by cancer type (p=0.425; online supple-
mental table 3), even in cancer types without expected 
response to immune therapy. The patients in the valida-
tion cohort had several different types of cancer, including 
prostate, non- prostate GU cancer, NSCLC, head and neck 
cancer, sarcoma, and others. Forms of grade 2 or greater 
toxicity, in order of frequency, included skin, colon, 
thyroid, adrenal, liver, lung, muscular, arthritis, neuro-
logic, renal, fatigue, and cardiac (table 1).

For analysis the validation cohort was grouped as pros-
tate and other. The probability of experiencing grade 2 or 
higher irAEs in all groups increased with increasing cycles 
of anti- PD1/PDL1 therapy delivered. As far as the onset 
of toxicity, patients with melanoma had the longest time 
before developing toxicity (median number of cycles=14, 
IQR=17) and patients with prostate cancer had the 
shortest time before developing toxicity (median number 
of cycles=4, IQR=2), with the three cancer groups (mela-
noma, prostate, and other) differing only marginally in 
their estimated toxicity- free survival time (log- rank test, 
p=0.110; figure 1).

Models and biomarkers predicting toxicity
Within the melanoma training cohort, toxicity was 
predicted with 79.4% accuracy for CT (F1=0.748, 
AUC=0.753), 80.3% accuracy for LASSO- LR (F1=0.750, 
AUC=0.816), 82.0% accuracy for BT (F1=0.744, 
AUC=0.806), and 75.4% accuracy for RF (F1=0.681, 
AUC=0.756). The consistency of findings across these 
different statistical approaches suggests strong predic-
tive performance is not restricted to a particular class of 
models.

The same classifiers were then applied to the valida-
tion cohort to determine their ability to predict toxicity 
regardless of cancer type on held- out samples. The same 
biomarkers predicting toxicity for patients with mela-
noma predicted grade 2 or greater irAEs in the validation 
set, with 77.0% accuracy for CT (F1=0.593, AUC=0.786), 
77.6% accuracy for LASSO- LR (F1=0.621, AUC=0.788), 
79.6% accuracy for BT (F1=0.571, AUC=0.724), and 
79.6% accuracy for RF (F1=0.600, AUC=0.746). The accu-
racy was better in the ‘other cancer types’ versus the pros-
tate cancer cohort, perhaps due to the shortest duration of 
treatment resulting in the lowest positive predictive value 
for these patients. Yet, overall, the classifiers performed 
consistently very well in both validation cohorts. The 
receiver operating characteristic curve (ROC) shows the 
trade- off between sensitivity and specificity at various 
decision thresholds for LASSO- LR for each of the cancer 
subgroups (online supplemental figure 1). For the mela-
noma and validation groups, the ROC curve lies above 
the 45° diagonal, with an average AUC of 0.797, showing 
the strong performance of the LASSO- LR classifier. The 
ability for the final biomarker signature to predict toxicity 
is shown for the four tuned classifiers applied from a 
single imputation (table 2). The final cross- validated 
tuning parameters for the four classifiers are presented in 
online supplemental methods, part 3.

Our toxicity biomarker signature conferred a substan-
tially increased risk of toxicity with increasing cycles 
of treatment, with a greater than ninefold increase in 
toxicity for these patients for the entire cohort (figure 2, 
left panel) as well as for patients in the test set alone 
(figure 2, right panel) (p<0.001) compared with patients 
for whom our biomarker signature did not predict 
toxicity. This finding is also found when dividing the test 
set into prostate only versus others (online supplemental 
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figure 2). These findings suggest that patients with this 
toxicity biomarker signature eventually develop toxicity 
over time with increasing exposure to treatment, seem-
ingly regardless of cancer type.

To characterize the biomarkers that were the most 
predictive of toxicity, marginal associations and vari-
able importance measures were calculated. Marginally, 
a 3′UTR germline mutation in RAC1 (rs9374) was iden-
tified as the most significant biomarker in predicting 
toxicity across cancers and within both the melanoma 
and other cancer subgroups (online supplemental table 
4). Similarly, RAC1 was identified as the most influential 
marker in all four classifiers by a factor of at least two in 
their respective variable importance measures (online 
supplemental figure 3).

The association of biomarkers of toxicity with response to 
checkpoint therapy
We next investigated if our identified germline biomarkers 
predicting toxicity would also predict response to 

anti- PD1/PDL1 therapy. Within the melanoma cohort, 
we evaluated the association between predicted proba-
bilities of toxicity using LASSO- LR and response to anti- 
PD1/PDL1 therapy. Response was documented as CR, 
PR, SD, or PD per protocol. Kendall’s rank correlation 
between probability of toxicity and response category was 
estimated at −0.04 (p=0.71); thus, there was no apparent 
association.

In the same cohort, we also evaluated the association 
between response and the single strongest biomarker 
of toxicity in RAC1. We found that, overall, heterozy-
gous RAC1 status was not associated with any category of 
response in these patients using χ2 test of independence 
(p=0.151; online supplemental table 5). Finally, we eval-
uated if there was an association between irAE grade 
and any category of response in our melanoma cohort, 
but also did not find a clear association (p=0.539; online 
supplemental table 6).

Table 1 Description of patients across cancer types

Toxicity grade <2 (n=116) Toxicity grade ≥2 (n=45) Overall (N=161) P value

Total cycles, median (IQR) 9 (12) 15 (18) 10 (15) 0.229

Toxicity cycle, median (IQR) – 8 (16) –

Male, % (n) 69 (80) 78 (35) 71 (115) 0.322

Age, mean (SD) 66 (14) 67 (11) 67 (13) 0.691

Cancer type, % (n) 0.425

  Melanoma 35 (41) 47 (21) 39 (62)

  Prostate 23 (27) 20 (9) 22 (36)

  Other 41 (48) 33 (15) 39 (63)

  HNSCC 5 (6) 0 (0) 4 (6)

  GU 9 (11) 18 (8) 12 (19)

  GYN 3 (4) 2 (1) 3 (5)

  NSCLC 9 (11) 13 (6) 11 (17)

  Miscellaneous (sarcoma, GYN, breast, GBM, GI) 14 (16) 0 (0) 10 (16)

Toxicity type, % (n)

  Adrenal – 13 (6) –

  Arthritis – 4 (2) –

  Skin – 36 (16) –

  Colitis – 18 (8) –

  Fatigue – 2 (1) –

  Muscular/skeletal – 7 (3) –

  Kidney – 2 (1) –

  Liver – 13 (6) –

  Lung – 9 (4) –

  Neurologic – 4 (2) –

  Thyroid – 16 (7) –

  Cardiac – 2 (1) –

The reported p values are associated with independent z tests for difference in mean for continuous variables, z tests for differences in proportions 
for counting variables, and χ2 tests for categorical variables.
GBM, glioblastoma multiforme; GI, gastrointestinal; GU, genitourinary cancer; GYN, gynecological; HNSCC, head and neck cancer; NSCLC, non- 
small cell lung cancer.

https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625
https://dx.doi.org/10.1136/jitc-2021-003625


5Weidhaas J, et al. J Immunother Cancer 2022;10:e003625. doi:10.1136/jitc-2021-003625

Open access

DISCUSSION
In this study we identify a discrete germline toxicity 
biomarker panel that predicts grade 2 or higher irAEs to 
single- agent anti- PD1/PDL1 checkpoint therapy, with an 
accuracy of over 77%. This panel consists of inherited, 

germline mutations primarily in regions disrupting 
miRNAs, referred to as miRSNPs. These regions are 
logical locations for such biomarkers, as miRNAs them-
selves are known to be first responders in the systemic 
stress response.11 Furthermore, consistent with the 

Figure 1 Toxicity- free probability survival curves and cycles across cancer types. (Top left) Survival curves of toxicity- free 
probability (grade 2 or higher) stratified by cancer type by number of cycles. (Bottom left) Risk table for toxicity- free survival 
(grade 2 or higher) stratified by cancer type by number of cycles. (Top right) Box plot of number of cycles to toxicity by cancer 
type. (Bottom right) Box plot of total number of cycles by cancer type.

Table 2 Performance measures for the four classifiers

Accuracy Sensitivity Specificity PPV NPV F1 AUC

Training: melanoma (LOOCV estimate)

  Classification trees 0.794 0.840 0.774 0.667 0.914 0.753 0.748

  LASSO- LR 0.803 0.905 0.750 0.655 0.938 0.760 0.827

  Random forest 0.754 0.762 0.750 0.615 0.857 0.681 0.756

  Boosted trees 0.820 0.762 0.850 0.727 0.872 0.744 0.806

Test: prostate and other cancers

  Classification trees 0.770 0.660 0.809 0.553 0.884 0.593 0.786

  LASSSO- LR 0.776 0.773 0.783 0.514 0.921 0.621 0.778

  Random forest 0.796 0.840 0.652 0.556 0.887 0.600 0.746

  Boosted trees 0.786 0.840 0.609 0.538 0.875 0.571 0.724

Test: prostate cancer

  Classification trees 0.622 0.550 0.661 0.353 0.818 0.435 0.648

  LASSO- LR 0.667 0.667 0.667 0.400 0.857 0.500 0.667

  Random forest 0.750 0.815 0.556 0.500 0.846 0.526 0.685

  Boosted trees 0.750 0.778 0.667 0.500 0.875 0.571 0.722

Test: other cancers

  Classification trees 0.844 0.719 0.888 0.687 0.915 0.710 0.869

  LASSO- LR 0.839 0.833 0.857 0.600 0.952 0.706 0.845

  Random forest 0.839 0.854 0.786 0.611 0.932 0.688 0.820

  Boosted trees 0.806 0.875 0.571 0.571 0.875 0.571 0.723

Results are reported for the melanoma training data (best LOOCV estimate) and the validation data.
AUC, area under the curve; F1, F1 score; LASSO- LR, LASSO- regularized logistic regression; LOOCV, leave- one- out cross validation; 
NPV, negative predictive value; PPV, positive predictive value.
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clinical evidence that irAEs are a patient- specific and pan- 
cancer phenomenon, our biomarker panel predicts irAEs 
across, or regardless, of cancer type. Finally, and perhaps 
not surprisingly, our genetic toxicity panel alone did not 
appear to predict a patient’s response to single- agent anti- 
PD1/PDL1 therapy.

Other approaches to try and identify patients at risk of 
irAEs have used baseline gene profiling in whole blood33 
or circulating cytokines before and after the initiation 
of treatment.26 34 The baseline gene profiling approach 
found some evidence for baseline biomarkers and is 
consistent with the hypothesis that irAEs are patient- 
specific, but this approach has not been applied to anti- 
PD1/PDL1 therapies nor has it been investigated across 
cancer types. The circulating cytokine work found that 
baseline interleukin (IL) 17 or on- treatment IL- 17 levels 
could predict irAEs with ipilimumab in melanoma alone, 
but this has not been further validated. The most recent 
study, which was the largest, looked at circulating cyto-
kines before and after treatment initiation for patients 
with melanoma treated with anti- PD1 or anti- cytotoxic 
T- lymphocyte- associated antigen 4 (CTLA- 4) plus anti- 
PD1 therapy.26 While the study did not find cytokines 
predicting toxicity to single- agent anti- PD1 therapy, they 
did find cytokines predicting toxicity to combination anti- 
PD1 plus anti- CTLA- 4 therapy, with an AUC of 0.78 in 
their training cohort (n=58) and an AUC of 0.68 in their 
validation cohort (n=49). Notably, like our findings, they 
did not find an association between response and any of 
the cytokines being studied or an association of response 
with their toxicity score.

Although a potential weakness of our study is the rela-
tively small number of individuals studied, we believe 
that this is balanced by many strengths of our study, one 
of which is the use of several cohorts of patients from 
different institutions in which we were able to validate 
our biomarker panel. This is in fact the largest cohort 

reported of patients studied for germline biomarkers of 
irAEs, and its validation in independent cohorts further 
confirms its significance. It is important to note that the 
patients in these studies also had diverse prior treatments, 
with some receiving adjuvant treatment after surgery 
and others joining the original Keynote trials where the 
anti- PD1/PDL1 treatment was their final option. Our 
findings that this biomarker signature predicts toxicity 
regardless of prior treatment support the hypothesis that 
these biomarkers are related to a fundamental inherent 
systemic response, versus tumor mutations or the tumor 
milieu, which has been shown to evolve with prior therapy.

While the specific 3′UTR variant in RAC1 identified 
in our study has not been broadly studied, the RAC1 
protein itself is important in both innate immunity35 as 
well as autoimmunity,36 37 supporting our findings that 
dysregulation of this gene could be reasonably expected 
to be predictive of irAEs. In addition, another important 
biomarker identified as having high variable importance 
across our models is the IL- 10 receptor 2 SNP rs2834167. 
This variant has been associated with an increased suscep-
tibility to systemic sclerosis,38 and its involvement in our 
signature is consistent with the known increased risk of 
irAEs in patients with known pre- existing autoimmu-
nity.39 It is also pertinent to note that others have found 
that the level of the IL- 10 cytokine predicts response to 
anti- CTLA- 4 therapy, supporting the importance of this 
signaling pathway in immune response.34

Another interesting finding in this work is the lack of 
an apparent association between our signature or most 
predictive germline biomarker of toxicity in RAC1 and 
response to anti- PD1/PDL1 checkpoint therapy. It is 
important to acknowledge that this study is not adequately 
powered to detect patterns of association between toxici-
ties and response rates, especially if that association exists 
primarily between higher- grade irAEs and response, due 
to the expected rarity of grade 3 and above irAEs from 

Figure 2 Survival curves of toxicity- free probability stratified by our biomarker signature. The orange lines are the estimated 
toxicity- free probability survival curves for patients who were predicted to not experience toxicity (probability of toxicity <0.5), 
while the blue lines are the estimated survival curves for patients who were predicted to have toxicity (probability of toxicity 
≥0.5). The left panel includes the entire cohort and all cancer types. The right panel includes only the test set. HR estimated 
through a Cox proportional hazards and p value estimates via log- rank tests.



7Weidhaas J, et al. J Immunother Cancer 2022;10:e003625. doi:10.1136/jitc-2021-003625

Open access

anti- PD1/PDL1 single- agent therapy as seen in our study. 
In addition, even in the presence of a mild positive asso-
ciation between irAE grade and response, germline signa-
tures predicting toxicity are unlikely to predict response 
with an acceptable degree of accuracy. However, we would 
also hypothesize that germline signatures, at least alone, 
are unlikely to be able to predict response, as response 
to checkpoint therapy is very tumor type- dependent, 
suggesting a strong impact of tumor- specific factors. As 
larger sample numbers are accrued, our approach will 
be extended to include both germline factors and tumor 
biomarkers to better define the role, if any, of germline 
biomarkers in predicting response to checkpoint therapy, 
work that is ongoing.

The ability to predict toxicity to checkpoint therapy 
before the initiation of treatment has broad potential 
clinical utility. For example, checkpoint inhibitors are 
now being applied in the adjuvant setting where indi-
vidual benefit is harder to ascertain. In addition, check-
point therapy is being broadly offered in the metastatic 
cancer setting as a palliative therapy. The likelihood 
of serious toxicity could prove to be a critical factor in 
deciding whether to implement therapy in such settings 
or it could lead to altered management through cycle 
reductions or closer surveillance if the potential benefit 
outweighs the risk of treatment. Importantly, these find-
ings should also be taken into account when considering 
the increasingly important concept of financial toxicity 
to patients with cancer. Finally, anti- PD1/PDL1 drug 
therapy is often considered a safe base to which addi-
tional immune- stimulating agents can be added, where 
the risk of more severe toxicity is high. Work to deter-
mine if our germline signature of toxicity to single- agent 
anti- PD1/PDL1 is predictive of increased toxicity risk to 
combination therapy is ongoing.

While we are still at the early stages of understanding 
the mechanisms by which miRNA- based germline muta-
tions regulate immunity and the systemic stress response, 
it is important to note that our repeated findings that 
germline variant panels can reproducibly predict 
systemic toxic responses to cancer therapy are potentially 
paradigm- shifting. Application of this class of functional 
variants may improve our ability to offer truly personal-
ized cancer therapy by enabling consideration of toxicity 
along with patient response. As the efficacy of cancer 
therapy improves, resulting in higher and higher rates 
of long- term cancer control, cure without harm will only 
become an increasingly important endpoint.
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