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Deducing Phonon Scattering from 
Normal Mode Excitations
Anant Raj & Jacob Eapen

While the quantum scattering theory has provided the theoretical underpinning for phonon 
interactions, the correspondence between the phonon modes and normal modes of vibrations has never 
been fully established; for example, the nature of energy exchange during elementary normal mode 
interactions remains largely unknown. In this work, by adopting a set of real asymmetric normal mode 
amplitudes, we first discriminate the normal and Umklapp processes directly from atomistic dynamics. 
We then demonstrate that the undulating harmonic and anharmonic potentials, which allow a number 
of interaction pathways, generate several total-energy-conserving forward and backward scattering 
events including those which are traditionally considered as quantum-forbidden. Although the 
normal mode energy is proportional to the square of the eigen-frequency, we deduce that the energy 
exchanged from one mode to another in each elementary interaction is proportional to the frequency – 
a quantum-like restriction. We anticipate that the current approach can be utilized profitably to discover 
unbiased scattering channels, many traditionally quantum forbidden, with complex anharmonicities. 
Our discovery will aid in the development of next-generation Peierls-Boltzmann transport simulations 
that access normal mode scattering pathways from finite temperature ab initio simulations.

Normal modes are non-interacting, non-decaying collective excitations of atomic vibrations – these are the 
eigen-states of the interacting harmonic Hamiltonian. In a crystal lattice with translational symmetry, the nor-
mal modes have eigen-frequencies that correspond to well-defined wave-vectors. Analogous to photons that are 
quantum excitations of an electromagnetic field, phonons are the quantum excitations of the lattice waves in a 
crystal1–3. Unlike photons, which arise as a particle-wave representation of an exact harmonic gauge potential, 
phonons are conceptualized from materials-specific anharmonic potentials, which allows a large diversity in 
their interactions, including among themselves4. Unsurprisingly, phonon interactions form the bedrock of our 
understanding of crystal response to external disturbances, particularly in the area of thermal transport – recent 
advances showcase unprecedented strides in phononics5–10, nanoscale and low-dimensional transport11–20, mate-
rials discovery21–23, and theoretical and simulation methods24–34.

Phonon-phonon interactions are usually treated as scattering events within the time-dependent perturbation 
theory. A key assumption in deriving the transition rates is that the anharmonic Hamiltonians add only small 
perturbations, and higher order contributions get progressively weaker. This assumption has been examined 
recently from two angles. Historically, the three-phonon interactions have been assumed to dominate energy 
transport with little or no contributions from higher-order processes. Recent work through the iterative solution 
of Peierls-Boltzmann transport equation (PBTE), however, has upended this notion by demonstrating appre-
ciable contributions from the four-phonon scattering processes in both bulk and 2D materials32,35. Although 
the probability for elementary four-phonon excitations is lower than that of three-phonons, the less-restrictive 
conservation rules can accord a larger phase space for four and higher order phonon scattering interactions. 
Perturbative expansion is also critiqued for its inability to account for strong anharmonic interactions that are 
comparable to the harmonic interactions36–38. Such situations typically arise at temperatures comparable to the 
Debye temperature (ΘD), or near second order phase transitions39 and dynamic/displacive instabilities. Large 
amplitude atomic/ionic oscillations40 or off-center rattling41,42 can also break the translational invariance and the 
assumption of a weak perturbation.

Many-body atomistic dynamics43,44 with an arbitrarily accurate anharmonic Hamiltonian provides a direct 
approach for probing the interactions among the crystal normal modes. Loss of translation or lowering of sym-
metry associated with structural complexities can be accommodated, in principle, with atomistic dynamics to 
all orders of anharmonicity. Three serious limitations hamper the close correspondence between the phonons 
and normal modes. Phonons are bound by Bose-Einstein statistics25,45 while atoms conform to the Boltzmann 
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statistics. Semi-classical quantum baths46,47 can potentially address this concern but their practicality is yet to be 
established fully48. Secondly, the traditional normal mode analysis (NMA) framework, which employs complex 
normal mode coordinates, does not distinguish the non-resistive normal (N) phonon interactions from the resis-
tive Umklapp (U) phonon interactions49 – a serious drawback in identifying quantum-like phonon interactions, 
given the overarching importance of the U processes in thermal energy transport1. The final limitation on the 
correspondence between the normal modes and phonon modes is right at the heart of quantum mechanics in that 
the energy transfer between quantum objects is always proportional to the corresponding frequencies, but the 
nature of energy exchange during elementary normal mode interactions remains largely unknown.

In this work, we show  that the theoretical limitation of the traditional NMA analyses can be removed by adopting a  
set of real asymmetric normal mode amplitudes, which can distinguish lattice waves moving in opposite wave vector (i.e.  
in +q and −q) directions – a virtue that immediately endows the ability to discriminate N and U processes and 
the phase space associated with their interactions (see Methods section). Although the normal modes exchange 
energy continuously, they are localized in the reciprocal space and engage in discrete interactions. Crucially, we 
observe that the harmonic and anharmonic energies do not remain constant in time. The oscillating energies, 
which appear to be generic to all anharmonic systems, allow interaction pathways that have not been identified 
before including those which are traditionally considered as quantum-forbidden. Finally, using controlled cubic 
and quartic anharmonicity, we infer that the energy transferred from one normal mode to another in an elemen-
tary interaction is proportional to the corresponding frequencies – a surprising similarity to energy interchanges 
at the quantum level.

Results
Atomistic systems.  We select linear Fermi-Pasta-Ulam (FPU)50–52 lattices with third and fourth order 
anharmonicities for illustrating the emergence of N and U modes. With the vibrations constrained to a single 
dimension, the lattices with cubic (FPU-α) and quartic (FPU-β) anharmonicities are specifically intended to 
probe the third and fourth order scattering processes, respectively. Historically, FPU lattices have been analyzed 
in the context of quasi-periodic or recurrence phenomena but in this work we have selected the parameters such 
that the lattices are ergodic and fully amenable to thermalization (see Methods section). The FPU models thus 
serve as surrogates of more sophisticated anharmonic systems. To illustrate the broader capability of the current 
approach, we also examine the modal interactions in graphene, which is modeled through an optimized Tersoff 
potential53 that includes anharmonicities of all orders. While the phonon dispersion is reasonably captured by the 
optimized Tersoff potential, the higher order anharmonicities of this potential may not be accurate. The choice 
of the models reflects our central purpose of demonstrating the scattering of normal modes and evaluating the 
extent to which it concurs with or diverges from the established quantum phonon scattering theory.

Conservation of crystal momentum – N and U modes.  In Fig. 1 we delineate the excited normal 
modes (x-axis) following perturbation of a single mode (y-axis) in a FPU-α lattice (top) and a FPU-β lattice 
(bottom) – the details are given in the Methods section and in Supplemental Information A. With all the atoms 
initially at their equilibrium positions without any kinetic energy, a single mode is perturbed first, and the result-
ant excited normal modes, which are measured by the magnitude of the modal energies, are tracked during a 
short observation time window of 0.4 units. As expected, the most prominent excited mode is N0, which corre-
sponds to the perturbing wavevector q. The next prominent excitations are the overtones of the primary modes: 
q + q → 2q; q + 2q → 3q for the FPU-α lattice (with only cubic anharmonicity) and q + q + q → 3q for the FPU-β 
lattice (with only quartic anharmonicity); these excitations are analogous to the three and four phonon merging 
events, respectively. More strikingly, the corresponding U-type processes (2q + g and 3q + g), also emerge. Thus 
by faithfully capturing the expected N and U processes, which is made possible by the asymmetric normal mode 
coordinates, we provide the first key correspondence between the normal mode interactions and the phonon 
modes. Since only a single mode is perturbed initially, merging events are dominant in the short time of obser-
vation (0.4 units). At longer times, or with more complex perturbations involving multiple modes, both Class I 
merging and Class II splitting events4 can be identified (results not shown). A curiously peculiar set of excitations 
involves the negative wavevectors, which does not fall in the aforesaid classification. The −2q mode for the FPU-α 
lattice, and the −q and −3q modes for the FPU-β lattice conserve crystal momentum and they are similar to the 
overtone modes previously described, however, with a negative sign. Similar overtones and Umklapp reflection 
at the zone boundary are observed in graphene, which is governed by a fully anharmonic interatomic potential 
(Supplemental Information B). Interestingly, negative modes appear prominently in graphene too as shown in 
Supplemental Information C and D.

Time-varying harmonic and anharmonic energies.  To understand the origin of the excited negative 
modes, we first examine the temporal behavior of the harmonic energies in Fig. 2 for well-equilibrated FPU lat-
tices. We simulate these systems with small kinetic energies such that they are nearly harmonic. Without using an 
external thermal bath or rescaling, both FPU systems are allowed to attain a steady temperature T of 0.01, which 
is sufficiently close to 0 K and almost two orders smaller than ΘD, the Debye temperature. The left panel in Fig. 2 
depicts the temporal behavior of the instantaneous harmonic and total energy from a single run as well as the 
harmonic energy averaged over time and different initial phases. The right panel shows the instantaneous and 
average behavior of the anharmonic energy (H3/H4) for the FPU-α/β systems.

Most notably, the harmonic energy (H2) is not constant in time even at low temperatures. Although H2 
approaches a steady value when averaged over time or a large number of initial phases, the fluctuations are 
conspicuously large for a single run as shown in Fig. 2 (left panel). Since the normal modes interact in any 
given phase trajectory, the oscillating harmonic energy deserves more attention because the theory of quan-
tum phonon interactions, which is largely formulated through the time-dependent perturbation theory or 
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through renormalization36, assumes a constant harmonic energy for all singular events such as three-phonon 
or four-phonon interactions. Further, the standard quantum phonon theory prescribes constant anharmonic 
energies as well without allowing any exchange between the harmonic and anharmonic Hamiltonians. Normal 
mode energies in atomistic systems, contrarily, portray a time varying behavior that is distinctly different. For any 
given initial phase, H2 serves as an energy bank from which the anharmonic Hamiltonians can borrow or return 
small amounts of energy. The instantaneous fluctuations of the anharmonic energies H3 and H4 (right panel of 
Fig. 2) reflect this energy transfer between H2 and H3, and H2 and H4, respectively. Expectedly, with time or phase 
space averaging, the energy fluctuations become small. Since βH4 is always positive, βH2 is lower than the total 
energy for FPU-β system. Although αH3 can take positive or negative values, αH3 for the FPU-α system that is 
investigated here is negative. We will return to the limiting constancy of harmonic and anharmonic energies on 
phase-space/time averaging in the context of energy conservation in phonon-phonon interactions within the 
quantum framework.

The oscillatory nature of energies is not unique to the particular systems that are investigated here; rather it 
appears to be universal to all vibratory anharmonic atomistic systems as there are no inherent physical mecha-
nisms to maintain harmonic and anharmonic energies that are invariant in time. The undulatory nature of the 
Hamiltonians, however, confers additional freedom for the normal modes to interact in ways not possible with 
constant Hamiltonians. Since the total energy is constant, we infer that portions of harmonic energy are continu-
ously interchanged with the anharmonic components.

Negative normal modes.  The origin of the negative modes is rooted in the time variation of the harmonic/
anharmonic energies, and is best illustrated by examining the theoretical structure of the Hamiltonians with the 
real asymmetric normal mode amplitudes in three dimensions. For simplicity, we focus only on the cubic term 
(the full derivation is given in Supplemental Information E), which is given by:

Figure 1.  Normal mode excitations (q′, x-axis) from externally perturbed modes (q, y-axis) on a FPU lattice 
with only cubic anharmonicity (FPU-α, top) and only quartic anharmonicity (FPU-β, bottom); the scale on 
the right denotes the energy of the corresponding modes. With all the atoms initially at their equilibrium 
positions and without any initial kinetic energy, a single mode q is first perturbed with an excess energy Ex. 
This external perturbation engenders additional interactions or excitations. The perturbation protocol is then 
repeated sequentually for several values of wavevectors (see Methods section). The excitations comprise of 
both N (yellow) and U (green) processes associated with the elementary merging overtones: q + q → 2q + g; 
q + 2q → 3q + g for the FPU-α lattice with only cubic (III) anharmonicity, and q + q + q → 3q + g for the FPU-β 
lattice with only quartic (IV) anharmonicity. The ability to capture the N and U modes separately arises through 
the use of real asymmetric normal mode amplitudes. Although not shown, splitting modes emerge at later 
times. Modes with negative wavevectors that do not fall in the merging or splitting categories also appear (−q, 
−2q, −3q). The numerical protocol for generating the excited modes is detailed in Supplemental Information A.
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The above time-dependent anharmonic Hamiltonian H3(t) is summed over all polarizations p (not shown 
explicitly above) and wavevectors that satisfy q1 + q2 + q3 = g (for the FPU lattices, the above expression reduces 
to a single dimension). Equation (1) is completely analogous to the anharmonic expression involving the cre-
ation and annihilation operators3,4. The first term allows simultaneous creation and annihilation of three nor-
mal modes while the remaining three cover all possible combinations for the merging and splitting processes. 
Interestingly, the two spontaneous processes, which correspond to the first term, are deemed impossible quantum 
mechanically as they violate the H3 energy constancy (for specific three-phonon interactions) but this restriction 
is true only if H3 is taken as a constant. For anharmonic atomistic systems, the Hamiltonians H2 and H3 are time 
varying as discussed previously, and thus both simultaneous creation and destruction events can occur without 
violating total energy (H) conservation. For example, if we consider the −2q mode in the FPU-α system (see 
Fig. 1) – this mode does not correspond to either a merging or a splitting mode, but it can arise through a simul-
taneous creation N process: 0 → q + q + (−2q). In the traditional viewpoint, each of the partitions of the total 
Hamiltonian (H2, H3, H4 …) is assumed to be constant; with such a restriction, energy is conserved for each par-
tition of the Hamiltonian. The simulations on FPU chains (and graphene), however, show that the partitions of 
total Hamiltonian are not constant, but they fluctuate with time. Thus the anharmonic Hamiltonians (H3, H4 …)  
can borrow or return small amounts of energy to harmonic energy (H2) bank as mentioned previously. This 
energy exchange allows the process: 0 → q + q + (−2q), which is traditionally considered as a simultaneous cre-
ation process. We emphasize here that simultaneous creation or annihilation processes do not violate the energy 
conservation law since at all times the total Hamiltonian (H) remains constant. The corresponding U process: 
0 → q + q + (−2q) + g is also discernible and its magnitude is comparable to the N process. Very feeble −q modes, 
which do not appear on the chosen scale in Fig. 1, also emerge in the FPU-α lattice. They can either be formed 
through a splitting process q → 2q + (−q) or through a decay process −2q → (−q) + (−q). Thus the number of 
possible normal mode interactions is greatly enhanced by the time-varying Hamiltonians.

For the FPU-β lattice, the −q mode, which is quite notable occurs through the decay process q → q + q + (−q). 
Thus the backward scattering normal mode −q appears prominent largely from the simplicity of the combination 
rule for a quartic Hamiltonian. The less conspicuous −3q mode, similar to the −2q mode in the FPU-α lattice, 
can arise from a spontaneous creation event: 0 → q + q + q + (−3q). The magnitude of the corresponding U pro-
cesses for the negative modes with the FPU-β chain is insignificant for the short window of observation. With due 
passage of time, secondary events emerge leading to a plethora of normal mode interactions. Interestingly, nega-
tive −qLA (longitudinal acoustic) and −qLO (longitudinal optic) modes emerge in graphene following an excita-
tion of a longitudinal LA mode (see Supplemental Information C and D). These modes ensue from four-phonon 
creation events: → + + −q q q q( )LA LA LA LA  and → + + −q q q q( )LA LA LA LO , which are remarkably identical 
to those observed with the FPU-β lattice that interacts only through a quartic potential. Such simultaneous crea-
tion (and annihilation) events are facilitated only through the time varying harmonic and anharmonic 

Figure 2.  (Left) Variation of harmonic energy (H2) and total energy (H) in time for the FPU-α/β systems 
at a temperature of 0.01. Although the total energy remains a constant in time, the cubic (α) and quartic 
(β) harmonic Hamiltonians show significant fluctuations. Only with increasing number of time or phase-
space averages (the number in the parenthesis depicts the number of averages from different initial 
conditions), the harmonic energy approaches a constant value. The right panel shows the temporal variation 
of the instantaneous anharmonic energy αH3(t) = αH(t) − αH2(t) from a single phase space trajectory 
along with the (running) time-averaged αH3 for the FPU-α lattice. The corresponding anharmonic energy 
βH4(t) = βH(t) − βH2(t) and the (running) time average for the FPU-β lattice are shown in the inset. Note that 
αH4(t) and βH3(t) are both zero, by construct.
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Hamiltonians, and appear to be generic and not specific to a particular kind of interatomic potential or 
dimensionality.

Frequency of the excited energy oscillations.  The temporal behavior of the anharmonic Hamiltonian 
is regarded to have only a weak dependence on the rate of change of the amplitude A(q, t). Inspection of Eq. (1)  
reveals that the rate of energy that is exchanged in a normal mode interaction will then be proportional to the 
corresponding cosine term. For example, the energy corresponding to the most prominent 2q mode in the 
FPU-α lattice that is formed by the merging event: q + q → 2q + g, is expected to oscillate with a distinctive fre-
quency: 2w(q) − w(2q). Similarly, the expected frequency of the energy oscillations for the −2q mode will be: 
2w(q) + w(2q). It is possible, therefore, to estimate the anticipated frequencies of all the modes that can be ration-
alized from crystal momentum conservation. Numerically, the excited frequencies of the energy exchange rate 
can be computed by evaluating the normalized Fourier transform of the deviation of the energy associated with 
each mode involved in any given interaction. In Fig. 3, we compare the numerical and the theoretical values of 
energy oscillations for the 2q mode (left) and the −2q mode (right). Impressive agreement is observed between 
the theoretical predictions and the results from the simulations for the particular frequency set: 2w(q) ± w(q), 
which corresponds to ±2q modes. Although not shown, we have verified that the conformity is excellent for the 
other pathways in the FPU systems and graphene. Thus we can identify the frequencies of the energy oscillations 
of the normal modes that participate in different anharmonic interactions using simulations, as well as predict 
them with reasonable fidelity from the structure of the anharmonic Hamiltonian that is cast using the real asym-
metric normal mode amplitudes. While the conservation of crystal momentum can allow several possibilities, 
the frequency analysis of the anharmonic energy oscillations can assist in isolating the pertinent normal mode 
interactions.

Quantum-like energy exchange among the normal mode interactions.  The structure of the 
anharmonic Hamiltonians also embodies information on energy exchange between different modes. With Eq. (1)  
as reference, it is evident that for H3(t) to remain finite on an average, the arguments of the cosine functions 
should tend to become zero. The simulations demonstrate that the mean value of H3(t) is finite and nearly a con-
stant when averaged over a certain time period or different initial phases (see Fig. 2); in this regard, the simulated 
FPU systems are ergodic with the chosen parameters across the period of observation. With vanishing cosine 
arguments we observe the emergence of quantum-like frequency conditions: w1 ± w2 ± w3 = 0. Interestingly, this 
so-called resonant condition cannot be satisfied for finite wave-vectors for a FPU-α lattice along a particular 
phase space trajectory. However, the normal mode interactions, when averaged over time (or phase space), can 
mimic the distinctive energy conservation rule for quantum phonon interactions.

One final question that remains is on the energy interchange between the discrete normal mode interactions 
in any given phase space trajectory. Taking advantage of the symmetry but not the equivalence between ±nq 
modes, we now proceed to make a quantitative comparison of the ratio of energies exchanged in specific sets 
of normal mode interactions. We now go back to the protocol that has generated the modes shown in Fig. 1 
where each mode q is independently perturbed by excess energy Ex. The externally perturbed mode q can hold 
on to this energy Eq only momentarily as plane wave modes cannot be sustained indefinitely in an anharmonic 
lattice. When the crystal momentum conditions are satisfied, the modes interact through the time-dependent 
anharmonic Hamiltonian that takes finite values. Since the normal modes exchange energy continuously, 
only a global energy balance can be performed; we therefore choose the most dominant modes following the 
excitation. The energy transfer for the dominant ±2q modes in the FPU-α lattice, and ±q and ±3q modes in 
the FPU-β lattice is depicted pictorially in Fig. 4. For the FPU-α lattice, the energy conservation is stated as: 
Eq = Ex + ΔEG(q) − ΔEL(q), where ΔEG(q) and ΔEL(q) are the energy gained by mode q in creating the −2q 

Figure 3.  Comparison between the theoretical and computed frequencies of the modal energy oscillations 
in a FPU-α lattice. The left panel corresponds to the energy of mode 2q due to the merging interaction: 
q + q → 2q + g and the right panel corresponds to the energy of mode −2q from the simultaneous creation 
of three normal modes: 0 → q + q + (−2q) + g. The expected theoretical frequencies are depicted by the open 
circles while the computed frequencies are delineated by the short horizontal line segments, which are mostly 
coincident with the open circles. The color scale corresponds to the magnitude of the normalized Fourier 
transform of the deviation of the energy associated with the 2q mode (left) and the −2q mode (right).
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mode, and the energy lost by the mode q in establishing a 2q mode, respectively. The energies of ±nq modes are 
not the same with the real asymmetric normal mode amplitudes but the symmetry of the dispersion relationship 
grants the condition: λ = ΔEG(2q)/ΔEL(q) = ΔEG(−2q)/ΔEG(q). Note that we have only assumed that the energy 
exchanged by a particular normal mode is a unique function of its frequency. We thus can express λ, which is the 
ratio of energy exchanged during the modal interactions as: λ−1 = (Eq − Ex)/(ΔEG(−2q) − ΔEG(2q)). The ques-
tion that we are seeking now is whether this ratio is proportional to the ratio of the corresponding frequencies as 
prescribed by the quantum theory.

In Fig.  5 (left), we plot λ for different excited modes along with the expected frequency ratio 
ζ = w(2q)/2w(q) = w(−2q)/2w(q) that is accessible from the phonon dispersion relationship. We can observe an 
impressive agreement between the ratios λ and ζ. We further test the proportionality of energy interchange in 
a FPU-β lattice, for which ±3q and ±q modes are most prominent (see Figs 1 and 4). The energy balance now 
has to account for both the interactions that have similar energies and can be written as: Eq = Ex + ΔEG1(q) + Δ
EG2(q) − ΔEL(q), where ΔEG1(q) and ΔEG2(q) are the energies gained by mode q in forging the −3q mode and 
−q mode, respectively, and ΔEL(q) is the energy lost by mode q in establishing a 3q mode. As before, by letting 
λ = ΔEG(3q)/ΔEL(q) = ΔEG(−3q)/ΔEG1(q), and ΔEG2(q)/ΔEG(−q) = 1, we arrive at: λ−1 = (Eq − Ex − ΔEG(−q))/
(ΔEG(−3q)  − ΔEG(3q)). In Fig. 5 (right panel), we compare the value of λ with ζ = w(3q)/3w(q) = w(−3q)/3w(q); 
Both ratios are accessible, λ from the simulations and ζ from the phonon dispersion relationship. The ratios again 
show a near-perfect agreement, which highlights the quantum-like proportionality of energy exchange between 
the normal modes for the FPU-β lattice. If the observation window is extended, more interactions would take 
place and a similar analysis would need a careful consideration of all the dominant processes. The remarkable 
agreement between the two ratios λ and ζ for all excited modes (q) reveals a rather curious nature of normal 

Figure 4.  Pictorial representation of the energy transfer for the dominant ±2q modes in the FPU-α 
lattice (left), and ±q and ±3q modes in the FPU-β lattice (right), immediately following a single mode (q) 
perturbation.

Figure 5.  (Left) Ratio (λ) of the energy gained by mode 2q in the Class I merging process: q + q → 2q + g to that 
lost by mode q, or of the energy gained by mode −2q in the simultaneous creation event: 0 → q + q + (−2q) + g 
to that gained by mode q, in a FPU-α lattice. The quantum-like expected ratio (ζ) is depicted by the open 
squares. (Right) Corresponding ratios for the FPU-β lattice with the dominant processes q + q + q → 3q + g, 
0 → q + q + q + (−3q) and q → q + q + (−q). The agreement between the energy ratio and the expected 
frequency ratio ζ shows a surprising quantum-like energy exchange between the normal modes.
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mode interactions. Although the energy of the normal modes is proportional to the square of the eigen frequencies, 
the energy exchanged during discrete interaction events is proportional to the corresponding frequencies. Thus the 
ratio of energy interchange among the participating normal modes appears in the same proportion as that stip-
ulated by quantum rules. 

Discussion
While phonons are doubtless quantum objects, their roots are embedded in the vibrational normal modes that 
exchange energy continuously. A fundamental question naturally arises: under what conditions can the nor-
mal modes be treated as perfect quantum entities? In the quantum scattering theory, energy is not continuously 
exchanged and the discrete events that materialize from interactions are not necessarily well-defined. Several 
approximations are made in the scattering theory – the main one being the existence of well-defined quantum 
states before and after scattering. Therefore, the scattering theory presumes a well-defined set of plane waves 
changing sharply to another following an idealized scattering event, conserving both energy and momentum3. 
The theory, however, does not stipulate the nature of the event or the time duration for such an event to take place; 
thus multiple virtual states that can violate energy conservation are naturally accommodated within a composite 
scattering event that includes several multi-phonon processes. Although the elementary phonon interactions are 
usually limited to first order in the perturbing Hamiltonian, higher order perturbation expansions can lead to 
multi-phonon processes. For example, an overall or composite four-phonon interaction can take place by com-
bining two three-phonon interactions via an intermediate state3. While energy is conserved for the composite 
event, it is not, in general, for the virtual or intermediate states.

As highlighted in this work, the Hamiltonians (H2, H3, H4, etc.) of an anharmonic vibratory system, even at 
low thermal energies, are time-dependent by nature, and can generate a large number of pathways for normal 
modes to interact. A straightforward incorporation of the time-dependent Hamiltonians, say, from high-fidelity 
ab initio atomistic dynamics simulations at finite temperatures, into the quantum phonon scattering theory 
can provide a direct correspondence to the normal mode interactions. However, by taking advantage of the 
near-constancy of the Hamiltonians (H2, H3, etc.) over time or with different phase-space averaging – both are 
equivalent for ergodic systems – an alternate approach can be construed that is identical to the current method of 
using time-independent Hamiltonians. The interpretation of a phonon scattering event then becomes different. 
Instead of an elementary phonon event that is characterized by a first order process, say, a three phonon merging/
decaying process that can be described with an exact time-independent Hamiltonian H3, the composite phonon 
interaction with an ensemble-averaged constant Hamiltonian <H3> will now include all possible elementary 
phonon events. It can also include those which are traditionally considered impossible such as the simultaneous 
creation or annihilation of normal modes as intermediate processes, whose presence is significant as shown by 
the simulations of FPU lattices and graphene in this work. Because a composite event corresponds to a constant 
Hamiltonian, energy conservation can be formalized using the standard Dirac delta function for the overall pro-
cess. Interestingly, a recent work recommends the use of a heavy-tailed continuous Lorentz distribution (for 
regularizing the Dirac delta function), which physically corresponds to energy conservation encompassing all 
three-phonon interactions54.

Concluding remarks.  We have demonstrated in this work that the normal modes, which can be extracted 
in atomistic systems using real asymmetric normal mode amplitudes, have the ability to discern both normal 
and Umklapp processes. Although the normal modes exchange energy continuously, they are localized in the 
reciprocal (q, w) space and engage in discrete interactions that comply with the conservation of crystal momen-
tum. The mathematical structure of the time-varying third order anharmonic Hamiltonian reveals that the nor-
mal modes, on an average, exchange energy with the quantum-like frequency condition w1 ± w2 ± w3 = 0. More 
remarkably, we observe that the energy interchanged in a particular normal mode interaction is proportional to 
the corresponding frequencies for both cubic and quartic anharmonicities – a singularly important property that 
establishes a close correspondence to phonons. The normal mode interactions, however, differ from the phonon 
modes on the usual interpretation of energy conservation – the similarities and differences between them are 
listed in Table 1.

The time dependent Hamiltonians (H2, H3, H4…) – an intrinsic property of all anharmonic lattices, even at 
low temperatures, can allow a multitude of elementary normal mode interactions that may not conserve energy. 
We anticipate that such additional scattering channels, yet to be discovered with more complex Hamiltonians 
through the current approach, can be treated theoretically without further difficulty within the quantum phonon 
scattering theory. The numerical experiments on FPU-α/β lattices (and graphene) provide weighty evidence for 
considering normal modes as analogues of quantum phonon modes, and they open up a new mode of theoretical 
and numerical inquiry into phonon interactions.

In the framework of Peierls-Boltzmann equation (PBTE), the thermal conductivity of a solid dielectric mate-
rial is governed by the phonon scattering channels, particularly by the Umklapp processes that determine the 
thermal dissipation in a material. While normal processes are non-resistive, they can create additional pathways 
for the Umklapp processes. The current work shows that atomistic simulations can probe and enumerate the 
scattering pathways, which emerge naturally without any prior assumption on the order or the type of scattering. 
In the case study with FPU lattices and graphene (see Supplemental Information), our method identifies the 
commonly known scattering channels; additionally, several new pathways, both normal and Umklapp, are also 
observed that can impact the thermal conductivity. We anticipate that our work will aid in the development of 
next-generation Peierls-Boltzmann transport simulations that can access all the pertinent normal mode scatter-
ing pathways from finite temperature ab initio simulations.
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Methods
Real asymmetric normal mode amplitudes.  Normal mode representations are not unique1; they only 
have to transform the coupled Hamiltonian to a set of independent harmonic oscillators2. Several descriptors of 
normal modes exist1,2,55 but not all of them are appropriate for probing the interactions among modes. Assuming 
that the equilibrium displacement of each atom j of the unit-cell l at any time t can be constructed as a sum of 
independent travelling waves = ∑ .α αu j l t Q p t e p iq q q r( , , ) ( , , ) ( , )exp( ( ))p N m n j lq,

1
,

u j

56, the most frequently 

employed normal modes, which are complex, are given by:

∑= − .
∂
∂

= −
α

α α
⁎ ⁎Q p t

N
m i e p

t
u j l t Q p tq q r q q( , , ) 1 exp( ( )) ( , ) ( ( , , )) ( , , )

(2)
n

u jl
j l j

n

n n,

where Qn represents the nth derivative of the normal mode coordinates (for example, n = 0 corresponds to the 
standard positional normal mode coordinates), α is the spatial component of the displacement, and p and e rep-
resent the polarization index and the eigenvector of the dynamical matrix, respectively. The normal mode coor-
dinate Qn does not uniquely represent a wave traveling in the +q or −q direction, instead it denotes an average of 
both directions. Thus Qn and the complex conjugate ∗Qn, which are not independent of each other, cannot resolve 
an elementary wave separately into +q or −q directions55; the initial work to extract phonon-like interactions 
from atomistic simulations49 also noted the difficulty in unambiguously identifying N or U processes using the 
standard complex normal mode coordinates.

The heart of our approach rests on identifying and using a set of normal modes that can distinguish a 
right-going wave from a left-going wave with independent modal amplitudes and frequencies. To this end, we 
expand the atomic displacements as55:

∑= . − + . +α + −u j l t
m

e p A p t i w p t A p t i w p tq q q r q q q r q( , , ) 1 ( , )[ ( , , )exp( ( ( , ) )) ( , , )exp( ( ( , ) ))]
(3)j p

j a l l
q,

,

where +A p tq( , , ) and −A p tq( , , ) are the amplitudes of plane waves moving along +q and −q directions, respec-
tively. After some algebra, the real displacement can be written as a superposition of cosine waves, each offset by 
an appropriate phase; it is given by:

∑ φ φ= . − + +α α α( )u j l t
m

A p t e p w p t p pq q q r q q q( , , ) 1 ( , , ) ( , ) cos ( , ) ( , ) ( , )
(4)p j

j l j
q,

, ,

where A(q, p) denotes the real amplitude (that can acquire negative values) of a wave travelling along the +q 
direction with an initial phase φ, and A(−q, p), which is not equal to A(q, p), delineates the amplitude of the wave 

Normal Modes Phonon Modes

Energy exchange Continuous. Discrete.

Scattering events
Local in (q, w) space. Theoretically described through 
real asymmetric normal mode amplitudes that can resolve both 
N and U processes.

Local in (q, w) space. Theoretically described through 
the second quantization operators.

Crystal momentum Conserved. Conserved.

Interaction Hamiltonians 
(H2, H3, H4…)

Inherently time-dependent for all anharmonic lattices at finite 
temperatures; H(t) is the only instantaneous constant of motion. 
Each Hamiltonian approaches constancy with ensemble or 
time averaging.

Time-invariant harmonic and anharmonic 
Hamiltonians (H2, H3, H4…) are generally assumed. 
Within the scattering theory, perturbative or non-
perturbative, this condition can be relaxed.

Simultaneous creation and 
annihilation processes

Emerge naturally by borrowing or forfeiting energies from/to  
H2. Responsible for negative backscattering modes, which 
provide additional scattering pathways.

Theoretically allowed but discarded on the basis 
of strict energy conservation for each operating 
Hamiltonian.

Energy conservation and 
frequency relationship 
with cubic anharmonicity§

Theoretically, a finite H3 corresponds to the frequency 
condition: w1 ± w2 ± w3 = 0, on an average. For discrete 
events, normal modes exchange energy proportional to their 
frequencies● similar to phonon modes.

Energy conservation is enforced, separately, for 
merging/splitting scattering events, which leads to the 
condition w1 ± w2 ± w3 = 0. Intermediate processes that 
can violate energy conservation are allowed.

Statistics
Average properties are governed by the Boltzmann statistics, 
and thus strictly applicable above the Debye temperature (ΘD). 
Bose-Einstein statistics can be theoretically incorporated with 
quantum baths or through path integral molecular dynamics.

Phonon are governed by Bose-Einstein statistics which 
collapse to Boltzmann statistics at high temperatures.

Attributes

Interactions emerge naturally in atomistic systems governed by 
any order of anharmonicity. No foreknowledge is needed on the 
order of interactions or scattering avenues. Finite temperatures 
can be accommodated easily. Accuracy of the interactions 
largely depends on the fidelity of the anharmonic interatomic 
forces; individual Hamiltonians are not needed except when 
required for further analysis. To better understand the processes, 
more work is needed on complex systems.

Anharmonic force constants are needed to enumerate 
the phonon interactions. Prior knowledge on the 
order of interaction is typically needed and there are 
no general theoretical ways to estimate the highest 
operating anharmonicity or the associated scattering 
routes that proliferate with increasing anharmonicity. 
Usually limited to temperatures lower than ΘD; 
renormalization allows theoretical extension to higher 
temperatures. Higher order anharmonicties (above H3) 
typically incur heavy computational expense.

Table 1.  Characteristics of normal mode and phonon mode interactions. §Analogous contributions arise 
for higher order anharmonic terms. ●Demonstrated numerically for both cubic and quartic interactions in a 
FPU lattice.
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traveling along the −q direction. The normal mode amplitude A(q, p, t) is real, unlike the complex Q(q, p, t), and 
more importantly, has the ability to resolve the +q and −q directions separately, making it  most apposite for 
probing phonon-like scattering mechanisms. The complex Qn is related to the generalized mode amplitude An as:

=

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 +
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where Nu is the number of unit cells. When n = {0, 1}, the conjugate variables that are used in the evaluation of An 
are the displacements and velocities; when the time dependence is also included, they are referred to as the real 
normal modes of the second kind, following Born and Huang2. The other combinations of n are new and may 
offer some advantages in certain situations. For example, the set of n = {1, 2}, which corresponds to velocities and 
accelerations, is better suited when there are uncertainties in ascertaining the equilibrium displacements but not 
for other dynamic variables. Now, with ≡A p t A p tq q( , , ) ( , , )0 , the harmonic energy with the sign-preserved 
formulation can be written as:

= =H p t E p t N w p A p tq q q q( , , ) ( , , ) 1
2

( , ) ( , , ) (6)u2 0
2 2

Thus the modal energy is proportional to the square of the modal amplitude, and the total harmonic energy is 
simply the sum of E0(q, p, t) over all vibrational modes. In general, ≠ −E p t E p tq q( , , ) ( , , )0 0  as +q and −q cor-
respond to two different waves. It is also instructive to note that Qn is a linear combination of An(q, p, t) and 
An(−q, p, t), and thus complex Qn(q, p, t) cannot be associated with a positive or negative q direction. The illumi-
nating relationship below shows that the modal energies computed using Q0(q, p, t) and Q1(q, p, t) is actually the 
average of the energy associated with the modes traveling along opposite directions.
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Equations (6) and (7) bring out the essential difference between the real asymmetric (A) and the complex 
symmetric (Q) normal mode representations.

Atomistic simulations.  We perform atomistic simulations on a one-dimensional FPU50–52 lattice of N (100) 
atoms using periodic boundary conditions; we have verified that the dynamical behavior is ergodic and 
size-independent. The atoms are allowed to interact with only the first nearest neighbors, for both harmonic and 
anharmonic potentials. The anharmonic interactions are evaluated from the two-parameter (σ, ε) Lennard-Jones 
(LJ) potential57. For small displacements about the equilibrium position σ=r 20

1/6 , the LJ interaction can be 
approximated as:

α βΔ ≈ − + − + −
� ����� ����� � ����� ����� � ����� �����

U r C r r r r r r( ) 1
2

( ) 1
3

( ) 1
4

( ) (8)LJ

H H H

0
2

0
3

0
4

2 3 4

where εσ= −C 36 4 23 . The FPU-α system interacts only through the cubic Hamiltonian (H3) while the FPU-β 
system interacts only with the quartic Hamiltonian (H4). The parameters α and β are such that they satisfy the 
Taylor approximation of the LJ interaction and they take the constant values α εσ= − −378 2 3 and 
β εσ= −2226 2 43 . The lattice parameter a is set to the equilibrium separation r0. All the results that are reported 
are in standard reduced units57 using atomic mass m, length σ and energy ε; for example, the reduced time that is 
reported is given by τ σ ε −m( / )2 1/2, where τ is the physical time. We further note here that a large number of inves-
tigations, both theoretical and numerical, have been reported on FPU lattices since the seminal discovery of 
recurrence by Fermi, Pasta and Ulam58. It is now known that above a stochastic threshold, equipartition of energy 
among the different modes can be enforced in FPU lattices50. Recent theoretical work59 also shows that even the 
original FPU lattices studied by Fermi, Pasta and Ulam can be thermalized from higher order resonant interac-
tions for arbitrarily small linearity. As elucidated earlier, the chosen system length and other parameters allow 
complete thermalization and equipartition of energy among the normal modes for the FPU lattices that are con-
sidered in this work.

Two kinds of simulations are performed in this investigation. To probe the normal mode interactions (as 
shown in Fig. 1), the atoms which are initially placed at the equilibrium positions (rj), are perturbed by a normal 
mode with a direction-dependent wave-vector q (with an excess energy Ex). This is achieved by perturbing all the 
atoms (j) by an initial displacement and velocity given by:

φ= . +u
m

Aq q q r q( ) 1 ( )cos( ( ))
(9)j j

φ= . +v
m

A wq q q q r q( ) 1 ( ) ( )sin( ( ))
(10)j j
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where the initial phase φ(q) is randomly sampled from 0 to 2π. The initial velocities are required to perturb the 
modes in the chosen direction; otherwise, if only the displacements are initialized with zero initial velocities, 
normal modes would be excited along both +q and −q directions, thereby creating a standing wave. The rate 
of change of modal amplitudes is assumed to be small relative to the change in the time phase factor under the 
assumption that the normal mode lifetimes span several vibrational time periods43. The external perturbation, 
which corresponds to an excitation energy Ex as depicted in Fig. 4, is used to generate a phonon mode with a 
direction-dependent wave-vector q. The system then responds to the external perturbation and several addi-
tional normal modes are generated. The external perturbation is then repeated for different q vectors. Figure 1 
shows both the modes that are perturbed (along the y-axis) and the modes that are generated or excited (along 
the x-axis).

Newton’s equations of motion are integrated with the symplectic velocity-Verlet algorithm using a timestep 
of 0.0002 and the normal modes are identified after 0.4 time units. This brief time period allows detection of the 
primary interactions among the normal modes arising directly from the external perturbation. Thus, the chosen 
observation window corresponds to the order of τD, the Debye timescale (0.30 time units) defined as 2a/c, where 
a is the lattice spacing and c is the speed of sound. The results portrayed in Figs. 1 and 5 are realized through 
the aforesaid perturbation protocol. The Fourier transform data presented in Fig. 3 is obtained using a similar 
approach, but with a timestep of 0.001, and the mode energies, evaluated every 0.03 time units, are collected for a 
total of 300 time units. Temperature is not controlled in the perturbation protocol.

Ensemble and time-averaged simulations, results of which are depicted in Fig. 2, are performed at a finite tem-
perature, however, without using an external thermal bath or rescaling. Ensemble averages are computed by var-
ying the initial conditions (positions and velocities) and taking an average over several sets of initial conditions. 
Starting with all the atoms at their equilibrium positions – this corresponds to a state with the minimum potential 
energy – the initial velocities of the atoms are sampled from the Maxwell-Boltzmann distribution with a mean 
kinetic energy of kBT per atom. The system is then allowed to evolve in an NVE ensemble and letting the energy 
to redistribute between the potential and kinetic degrees of freedom. The system thus is driven to an equilibrium 
state at a temperature T with an average potential and kinetic energy of kBT/2, respectively, per atom. We have 
verified that the system reaches thermal equilibrium obeying equipartition of energy among different phonon 
modes without giving preferential excitation to any modes. The FPU lattices are first equilibrated for 15,000 time 
steps at a temperature of 0.01 with a time step of 0.002 in reduced units; equilibrium data is then collected for a 
time period of 30 units. We also adopt the same numerical procedure for graphene60, which is discussed in the 
Supplemental Information.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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