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1. Introduction

Mumps is an infection of the RNA virus, which is primarily transmitted through contact with breathing droplets (CDC,
2023; ChinaCDC, 2023; Latner & Hickman, 2015; Sane et al., 2014). The best way to reduce children's risk is through
mumps vaccine. Since its introduction in 1967, there has been a decline in mumps cases (CDC, 2023). However, the mumps
vaccine is not effeetive in addressing the high level of mumps antibodies alone. Most developed countries have already
implemented a two-dose vaccination program against mumps, but even such measures proved ineffective in controlling
mumps transmission (Barskey et al., 2012; Connell et al., 2020; Hanna-Wakim et al., 2008; van der Maas et al., 2016). Vaccine
failure is a major reason for mumps relapse (Hamami et al., 2017; Liu et al., 2018; Vygen et al., 2016). A number of mathematic
models have been established for the spread of mumps (Hamami et al., 2017; Kitano, 2019; Li et al., 2018; Liu et al., 2018;
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Magpantay, 2017; Qu et al.,, 2017; Zhao et al., 2017; Zhou et al., 2019) and its influence on the epidemic (Deeks et al., 2011;
Gomes et al., 2004; Magpantay et al., 2014, 2016; Takla et al., 2014; van Boven et al., 2013).

The first simplified mathematics model for mumps was the homogenous classic model, which did not consider the effects
of age or vaccination (Li et al., 2018; Qu et al., 2017). In classical infectious disease models, individuals are assumed to be
uniformly mixed (homogenous), ignoring population heterogeneity (priority, activity, etc.). This hypothesis might lead to the
deviation of the Ry (basic reproduction number). Age is crucial in capturing mixing patterns when constructing mathematical
models. Individuals in different age groups show significant differences in key characteristics like birth, mortality and contact
rate. For example, children who suffer from childhood diseases are more likely to encounter their peers. Children are most at
risk for malaria, leading to high mortality. The highest rate of HIV infection was between 20 and 45 years of age. Therefore, the
study of heterogeneous mathematical models based on age plays an important role in understanding disease transmission
and epidemic mechanism.

In our latest paper (Azimagin et al., 2022), we developed a discrete age-structure model for mumps, which is theoretically
difficult to analyze. In this paper, a heterogeneous and continuous age-structured model of mumps was constructed, and
theoretical analysis was performed without periodical parameters.

There are nine sections in this paper. In the next section, we present a heterogeneous age-structured mumps model with
vaccine. The normalized system and the Cauchy problem are established. In section 3, an explicitly computed formula of Ry for
heterogeneous preferential mixing case is defined. In section 4 and 5, the uniqueness, local and global stabilities of steady
states are obtained In section 6, numerical examples are given in support of the theoretical results. In the end, the paper is
summarized and discussed briefly in last Section.

2. Heterogeneous model
The overall population can be divided into 10 classes: susceptible (S), exposed (E), severely infected (1), mlldly infected (L),
recovered (R), vaccinated (V), vaccinated susceptlble( ), vaccinated exposed (V), vaccinated severely mfected( ), vaccinated

mildly infected (L ). The number of whole population is

N(t,a)2[S+V+S+E+I+L+V+T1+L+R|(t,a).

The following continuous model of mumps can be obtained from the flow chart (Fig. 1) and the discrete age-structured
model (4) in (Azimaqin et al., 2022):

(24 295 = ~((t,0) + q(a))s,

> +%>v = ~(B2(0) + 05)(t.0) + q(@)V.

(225 = @V - ie.a) +q@)s,

(2 DIE= At ) (0+ q(@)E,

(a‘9 6t)‘7 At,a)(03V +S) — (0 +q(a)V, o
(ot 2l = K — (1 + q(@)1

<§+—ﬁ = K8V (v + (@),

(2 291 = (1~ k)0 — (v + q(@)L.

(2 =1 k)oV — (v + q(@)L.

(6‘1 :t)R y(I+T+L+1L) - q(a)R,

with boundary condition
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Fig. 1. Flowchart of mumps.

a

5(t,0) = (1 —b1p) /0 w(o)N(t,0)do, V(t,0) = 61p /0 ‘ w(o)N(t, 0)do,
X(t,0)=0,X = (S,E,V,ILI,L,L,R),
and initial condition
X(0,a) = Xo(a),X = (S,V,S,E,V,I.T,L,L,R).

where 0 is the incubation rate (from virus invasion to before clinical symptoms appear), y is recover rate, kq is the rate moving
from E to I, k; is the rate moving from Vtol, w(a) is the birth rate, g(a) is the drop out rate of school of children at the age a.
There are four parameters associated with the vaccine: p is vaccine coverage for children, 4 is a primary vaccine failure (the
fraction of vaccine that fails to provide any initial vaccine protection), f2(a) is vaccine wane (vaccine protection ceases after
some time), A3 is vaccine leakiness (vaccine reduces the potential for infection, but does not eliminate), please refer to
(Azimaqin et al., 2022; Magpantay, 2017). The infection rate is

A(t,a):/(; Sa.0) (l—s)I(t,o)Jr(l75)1134(52)0)+L(t,a)+04L(t,0)da, 22)

where ¢ is isolation rate (some serious infections are isolated because of the high infection rate of mumps) and 4, is relative
infectivity (transmission rate of a vaccinated person to that of an unvaccinated). Function

B(a,0) = Bc(a)n(a)d(a, o) + (1 —n(a))m(t, o)), (23)

is transmission rate between the members in age a contacting with individuals in age ¢, where § is the per contact infection
rate, c(a) is the average physical contact rate in age group a (activity) that can be measured from empirical data (see (Azimaqin
et al., 2022; Glasser et al., 2012; Grijalva et al., 2015; Mossong et al., 2008)), n(a) € [0, 1] is the preferences (rate of contacts
reserved in one's own group). Function m(t, b) is a activity-weighted proportional mixing described by

m(t, o) = .a(lfn(d))C(o)N(t,o) ‘
/ (1= n(0)c(@)N(t, 0)do

0

The density function at age a can be described by the Gaussian kernel function (Dirac delta function) d(a, b) (see (Feng et al.,
2015; Glasser et al., 2012)) as

d(a,b) =

1
V2ma(a) expl 202(a)

This kind of transmission function f(a, b) is called heterogeneous preferential mixing and has five special types (see (Cui et al.,
2019; Feng et al., 2015; Glasser et al., 2012)).

(i) Proportional Mixing: n(a) = O for all ages a0, a;
(ii) Isolated Mixing: n(a) = 1 for all ages a<[0, a);
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(iii) Preferential Mixing: 0 < n(a) < 1 for some age a0, dl;
(iv) Homogeneous Preferential Mixing: n(a) = n for all ages a<10,dJ;
(v) Heterogeneous Preferential Mixing: if n(a) # n(b) for some age a#b,a,b<|0,q).

It is called Separable mixing if (a, b) = $1(a)B2(b) (see (Huang, Kang, Lu, Ruan, & Zhuo, 2022; Inaba, 1990; Khan & Zaman,
2018; Kuniya, 2019; Tian & Wang, 2020)). Separable mixing means there is no direct relationship between a person who is
infected at the age of b and a susceptible person at a. For the separable case, the existence and stability results of the age-
structured model can be given by the explicit formula of Ry, see (Huang, Kang, Lu, Ruan, & Zhuo, 2022; Okuwa et al.,
2019). Defining the explicit formula of Ry and analyzing stability of the heterogeneous age-structured model is a chal-
lenging problem.

Theoretical analysis of system (2.1) requires the following assumptions based on the biological significance of parameters.
Proportional Mixing is a kind of separable mixing.

Hypothesis 1. We assume that

(i) p(a),62(a),n(a) €L (0,4),c(a) €C(0, al.

Without losing generality, it may be assumed that the host population density N(t, a) has already reached population
steady state, that is

[S+V+S+E+I+L+V+I1+L+R|(t.a) = N(a).

By adding the equations in system (2.1), we can obtain that

N = —q(a)N(a),
- (2.4)
N(0) = /0 w(s)N(s)ds.

Solving the system, we obtain

Substituting (2.5) into (2.4), we have

1= /0[1 u(a)ei -/Oa q(a)doda-

then

(s+v+S+et+e+i+i+l+I+r)(t,a)=1,

and system (2.1) becomes standard system
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i) d

(% &)s— —A(t,a)s

90,9 62(a) + 632(t,a
(%Jr&) (62(a) + b3A(t, )
i) 0 ~ ~
(%Jra)s = fr(a)v — A(t, a)s,

a d

(%+at) A(t,a)s — de

9 Oy At.a)b 5
(54 T+ ap)€ = Alt,a)(b3v +5) — oe
d

(aa at)l = kq0e —

a

Ga* at)’_kzée

i)

(aa )l* (1 —kq)de — vl

i)

(aa at)lf(l — k)08 — 71,
((;LJF Iyr=x(i+v+1+1),

with boundary condition

s(t,0) = (1 —61p),v(t,0) = 01p,x(t,0) =

and initial condition

x(0,a) = xg(a),x = (s,v,5,e,¢, i1, r).

The age-specific infection rate (2.2) is
a
At a) = Be(a) / K(a,s)h(t, s)ds,
0

where

and

Define the state space for (i, r)-system as

B={(v5,e¢iillreE =L xL x

Infectious Disease Modelling 10 (2025) 75—-98

07x = (/5\7 e7 67 i7 i7 17 l7 r)7

h=(1=e)i+ (1—efgi+1+04l

~xLj0<v3e il r<1}.

Then, B is a convex closed subset of Banach space E°. Define operators .4 and F on E° by

(Ad)(a) = — (¢ (a), ¢5(a), #(a), &4 (@), $5(a), ¢i5(a), By (a), 5 (), $h(a) ).

and
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(02(‘1) + 6’3 (@) (a)
— Na)go(a),
(1 - Zm) — d¢3(a
k=1
Fl)@) = | M O3¢1(a) +d2(a)) — dgala

kydp3(a) - 7¢5( ),
kadga(a) — yde(a),
(1 —k1)dgs(a) — y¢7(a),
(1 —ka)dg4(a) — vos(a),
v(¢5(a) + ¢6(a) + ¢7(a) + ¢g(a)),

where ¢, €D(A) = {¢ €E°|¢ €AC|0, ], $(0) = 0}, AC|0,d] is absolutely continuous on [0, @]. Then the abstract semilinear
Cauchy problem of system (2.6)

u(t) = Au(t) + 7 (u(t)),u(0) = up, (2.8)

where operator A is an infinitesimal generator of Co-semigroup {T(t)},5 o = {€/},. o, Operator F is Lipschitz continuously on
E°. Similar to previous analyses (Huang, Kang, Lu, & et al, 2022; Inaba, 1990; Webb, 1985), we can obtain that system (2.8) has
a unique solution on E°,

3. Basic reproduction number

Assume that M* = (s*,v",5",e",¢",i",1 ,I") is the nontrivial ESS (endemic steady state) of system (2.6), then M* satisfying
following system

d* * %
@s =15,

d * ok
@U =7(02(a)+03/.\ W

d o
ad =0y(ayw" —2'S,

d .
d—e =5 — e,

d . o
dat =2 (050" +s) oe , (3.1)

d ok * ok
ad = ke — i,

d
adt _kz(Se 771,

d * * *
gl = (1= knde" =o',

d * o e
d—l =(1-ky)oe —~vl.

with boundary condition
$"(0) = (1—6;p),v"(0) = B1p.x"(0) = 0,x = (5,e,8,1,1.1,1,7),
where
a
— Be(a) / K(a,0)h" (o)do, (3.2)
0
and
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M=1-e¢i"+(1- 6)04?* +I + 047*. (3.3)

Solving system (3.1), we have

- aa* d
=(1-6ip)e /o (7)do

-/ “(02(0) + 651 (0))do

ag
) « [ Ow) + 650 dw/A
o oo /0(2() 5
0

a
e = / X (0)s* (0)e 0@2dg
0
~F a * * ¥ (3‘4)
e = [ 2(0)(b30(0) +5 (0))e %@ 9dg,
JO
a

i"=kio [ e'(o)e " dg,
0

P a
i ko / & (0)e 1@ dg,
0
a
I'=(1—k)o / e’ (a)e "9 dg,

:1—1(26/ Je~a-0)dg.

Substituting the expression of i*f ,l*,T into (3.3) and (3.2), we get

¥ a o, 7/ )L*(W)dw
A (a) = (1 — 6](1)(1 — 0]]))5/ / A (T)e 0 e*@(ﬂ*T)dTe—y(afa)da,
JO JO
+ 050" dw
+(1 = €ky)b1pl40 [93/ / 1 -/0 ) + 854 (W) e300 dre~10-0) g (35)

[ Ba(p) + 052" (0))d / 7
+/a /a / by (w /0 2(p) + 034 (p)) /J dwe—é(afr)dTe*“{(ﬂ*‘T)dg .
o Jo

Then get a fixed point problem
¢(a) = D(¢)(a) (3.6)

about the ¢ £ A*, where

B(p)(a) 2 bc(a) /Kaa (¢)(0)do

and

=~ 4 - o(w)dw
&(¢)(a) 2(1— eky)(1 - 0;p)0 / ’ / #(T)e /0 WAW o) gre-Ta-0dg
0 Jo
+0 ¢
(1 —6k2 191p04(3|:(93/ / ¢ / ) 3 ( )) e 6(U*T)d7-e*7(a*0)do-

. [ @+ 300040~ [ o(p)d
+/ / / 0y (w)e / 200 p ) ’ dwe-30-")dre=1a-0 dg]
0o Jo

The Fre chet derivative of Operator ® about ¢ at zero is K £®'[0],
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K(¢)(a) = Be(a) /Oa K(a,0)K (¢)(0)do, (3.7)

72 a ro
K)o 21— ci)1 = tup [ [7 e e 10 0do
T
a ro — [ fr(w)ydw
+(17ek2)01p046[03/ / d)(r)e/o 2(W) e-00-T) gre-70-0)dq
0 Jo

a o - | fh(w)dw
+/ / ¢(T)<l —e /0 () )e“s(""')dre‘“a‘”da .
Jo Jo

Operator K is the next generation operator (the age distribution of secondary cases) of the system (see (Inaba, 2017; Okuwa

et al., 2019)). The spectral radius r(K) equals to Ry 2 r(K) (see (Inaba, 2017; Okuwa et al., 2019)).
Next, we define the Ry of the heterogeneous preferential mixing case of system (2.6). It can be seen that

éﬁ/o K(a,0)K (c)(9)da

is an eigenvalues corresponding to the eigenvectors c(a) of operator K, where

~ a o
K(c)(a) = (1 —eky)(1 - 61p)d /0 /0 c(r)e T T dre 109 dg
T
a ro 7/ 02(W)dW o o
Jr(] 76k2)01p646|:63/ / C(T)e 0 e (o T)d‘re v(a U)da-
0 Jo

a ro - G(w)dw
4 / / cn)(1-e /o 2() Je i dre 14 dg |
o Jo
That is

{/Kaa a)da}()

Then, the maximum eigenvalue r(a) is the Rg of system (2.6), that is

-a b o
Ro =(1—eky)(1— 0113)66/ maxae[ova]K(a,b)/ / c(r)e %" dre 7= dgdb
0 o Jo

;
a b ro - | f(w)dw

+(1€kz)6'1p0455[03/ maxae[O,ﬁ]K(avb)/ / C(T)e/O 2(W) e 90" dre-7b-2)dgdb (3.8)
0

b (
/ max,e(o.4K(a,b) / / 1—e / "3("’7)d7e’7(b"’)dodb .

Rp can be explained under different mixed modes and vaccine.

(i) By taking n(a) = 0, we can define the Ry of proportional mixing case (see (Wang et al., 2019)):

(3.9)

Rop = Rop + R op + R op,
=0),

where Rj,, R op, R gp is the Ry corresponding to the no vaccine (p = 0), with vaccine but no vaccine wane (p # 0, fi5(a)
with vaccine and vaccine wane (p # 0, fx(a) = 0) as
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a b ro
1 = (1— ckp)(1— 01p)o8 /O m(b) /0 /0 c(r)e~00-dre~1b-9) dgdb,
T
o a b o 7/ b (w)dw 50— 4mry(b0)
Rgp = (1 — €ky)01p0s0863 [ m(b) c(r)e 0 e dre dodb,
0 0

a O (
R gp = (1 — eky)f; pladB / / / (1-e / )e 0" dre= 10 dgdb.
0

(ii) By taking n(a) = 1, we can define the Rg of isolated mixing case:

Roi = max, ¢ gRoi(a), (3.10)

where R;(a), R o;(a), R ;(a) is the Ro corresponding to the no vaccine (p = 0), with vaccine but no vaccine wane (p # 0, 62(a) =
0) with vaccine and vaccine wane (p = 0, #(a) # 0) as

a b ro
Ryi(@) = (1 — ekq)(1 — 61p)dp / d(a,b) / / c(r)e % dre "P-?dgdb,
Jo .

, a b ro / 192
R 0i(a) = (1 — ckey)fs pBa80s / d(a,b) / / c(r)e 30-7) dre~10-9)dgdb,
0 0

b
"0i(@) = (1 — eky)81 pBadB / d(a,b) / / (1-e / “5(‘7‘7)d7e‘7(b“’)dodb,
and

Roi(a) = Rpy(a) + R gi(a) + R gi(a).

(iii) The Ro of heterogeneous preferential mixing case can be defined by the combination of Roi(a) and Rop:

Ro = max, 0, 4[n(@)Roi(a) + (1 —n(a))Rop]. (3.11)

The explicit formula of Ry that given by (3.11) is essential for the uniqueness and stability of ESS. The numerical calculations
in Section 6 are a further proof of the conclusion.

4. Existence and stability of the DFSS

For the DFSS (disease-free steady state) E% of system (2.6), it is clear that

N | ~0 ~0
V=007 =0=7 =10 =0,

-0
so A =0.59,105" are can be solved as

a a
- [ 6y(0)do _/ 9-(o\do
O = (1—t1p).1° = b1pe /o 2(0) 7§J:9]p<1_e ol ) )

so the DFSS EV exists and is unique.
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4.1. Local stability of the DFSS
To give the local stability of DFSS, we make a translation transformation to system (2.6) by

x=X+x"x=(s,v,5,eeiillr).

Then linearizing the system at E° to obtain

Jd J._ T
Ggtas=-010- 01p)A,
a
9 9. ~ 7/ 0, (o)do -
(34 3¢)7 = ~f2(@7 — b1pe Jo (62(a) + 034),
ae ﬂe

P [ heey AT
(ot mi =@ (vrtpe o ) amp(1-e b 2T,
d 4. T

(%+a—t)e = (1-01p)A — de,

a 41

9 9 —gpa(1+ 0 17/062(0)&7 o8 o
(ot 2 = 00pA(1+ (83~ e ).

d 0.z _ <

(% +&)1 = kyde — vi,

[i} .= = >
(% +&)1 = kyde — vi,

d 0. _ 5
(Gg Tapl= (1 —ki)oe -1,

Jd 0d05 = =
(%Jr&)l = (1—ky)oe —vl,

with boundary conditions

X(t,0) = 0,x = (s,v,5,e,8,i,1,1,1),

where

A(t,a) = Bc(a) /OaK(a,u)E(t,u)du, B=(1—e)i+(1—eai+I+ 04l

Let

X =x(a)ef x = (s,v,5,e,€,i,1,1,1,7).

Substituting it into system (4.1) yields
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d

das+ £5=—(1-01p)A,

7/ 0, (o)da -
7+ £0=—f(a)y - 61pe Jo (02(a) + 032),

d= /19 o)do /62 )do
da +Es_02(a)(v+61pe ) Mlp( —e ),

d_ . =
ae+§e:(l — 01p)A — de,

a
_ _ - 05 (0)do _
%@Jrg@elm(n(@—ne/o 2(7) )-5@,

S

d: . s
ﬁl—&—fl:k]ﬁe—’\/l,

+Ei = kyde — 7,
T+El=(1—ky)oe—7l,

T+ = (1—ky)de(a) — 1,

?
d
da
d=
da

with initial value conditions

X(0)=0,x = (s,v,5,e,8,i,1,1,

)7

where

a _ _ . = =
2a) = 6c(a)/ K@, wh@dy, k= (1-ei+(1—efai+1+ 0,1
0
The solutions f,?, fjof system (4.2) can be solved as
a po_ B B
= (=)o [ [ dae 0 Naue 9167,
0 Jo

a
= 0 (w)dw _ i
i= Blpkzé/ (63 —1)e /0 2(W) ) /a Au)e~ Er0e-wqye-E+n@-ods
0

T= (1= 01p)(1 —ks [ [“2we D0 tdue-€rve-oigy

= a 7/ h(wydw, po_ ,
I =0,p(1 —ky)d / <l+(0371)e 0 ) / uye~ ErOle-wdye-E+n@-odg,
JO JO

then

=
~

Q
=

= (1—¢€ky)(1 - 01p) 6/ / Au)e EX)E-t)qye-E@a-ods

a 7/ 02(W)dW g_ B ;
+(1 — eky)01p040 {63/ e Jo / /\(u)e*(”‘”("*“)due*@ﬂ’)(a*f’)dg
0 0

"7
+ /a<1 - ei/O v (w)dw) /0X(u)e’@*‘”("’“)due’<5+7><a’”)da .

0 0
Letting A(a)2 [¢K(a,0)h(0)da, we have A(a) = Bc(a)A(a). Substituting the hi(a) into A(a), we have
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Aa) =(1—¢ky)(1—0;p) 66/ K(a,b) / / A(u)e~ EH-U dye=E+ G- dgdp,
a a — [ fGy(w)dw ;o
+(1fek2)01p046{036/ K(a,b)/ e /0 20) / c(u)A(u)e~ErO@-wdye-ENb-0dsdp
0

/K(ab/ 1—e /62 dw)

Taking maximum both sides and dividing by Kémaxae[o.a]A(a) > 0, we get the following characteristic equation of &

/ c(u)A(u)e-EDE dye-ENb-0dadp |
JO

G(¢)-1=0,
where
G(EY2(1 = eky)(1 = 01p) (56/ max,e o.K(a,b) / / c(u Ero) - dye-EHNb-9)dgdp,
a a - [ f(w)ydw ,o
+(1 —ek2)01p046{035/ maxae[o‘a]l((a,b)/ e /0 2(w) / cu )Aj(zl) ~(E+0)(0-uw) que—E+N -9 d4db
Jo Jo

0 ( dw
/maxana]K(ab/ e / 2 / ()Q E+0)0-1) dye~ENG-0dgdb |.

Theorem 4.1. The DFSS of system (2.6) is locally asymptotically stable if Ry < 1.
Proof. G(£) is monotone decreasing function of £ and
lim;_, _G(§) = +o0,lim;_,  ,G(§) = 0.
We get G(0) < R, since AW < 1. The Ry < 1 implies that G(¢) = 1 has a unique negative real root £* in (—oo, 0), see Fig. 2.
Next, we prove that alf'the complex solutions of G(¢) = 1 have negative real parts when £* < 0. Let z = u + iv(v # 0) be an

arbitrary complex solution of G(£) = 1. Notice that

G(E") =1=|G(u+iv)| < G(u),u<¢ <0.

4.2. Global stability of the DFSS

We discuss global stability of the DFSS.
Theorem 4.2. The DFSS E° of system (2.6) is globally asymptotically stable if Ry < 1.

Proof. Integrating equations i1, i,? of system (2.6) along the characteristic lines t — a = constant, gives

a u
i= k16/ / At —u+w,w)s(t —u+w, W)eﬂS(uiW)dwe,ﬂa,u)dw
o Jo

R a ru
i= kzé/ / Mt —u+w,w) (O30t — u+w, W) +S(t — u+w,w))e @ Wdwe Y@ Udy
0 Jo

o (4.3)
I=(1-k )5/ / Mt —u+w, w)s(t — u+w, w)e *UWdwe Y@ dy,
0 JoO
— a ru
I=(1- kz)é/ / At — u+w,w)(O3u(t — u+w, W) + St — u+w, w))e W dwe (@ Wdy.
0 Jo
where
a
A(t,a) = Bc(a) / K(a,u)h(t,u)du, (44)
0
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Fig. 2. Local stability of DFSS.

and
h=(1-e)i+(1—efal+1+ 04l

Define a function
a

glta)2 / K(a, b)h(t, b)db,
0

then A(t, a) = Bc(a)g(t, a) in (2.7). By putting (4.3) into (4.4), using the fact

/6‘2 W)dw /02 w)dw
s<1-—0ip,v<bipe (1—e >

and taking maximum both sides of the equation, we obtain

Infectious Disease Modelling 10 (2025) 75—-98

a
gt < {3/0 maXxg e oqK(a, wh(t, u)du, (4.5)
where g(t) £ max,c o 48(t,a) and
h — (1 eky) 1—01p(3/ / gt — o+ uje TV dge 1 dg
-y taw
+(1 — eky)fy plad [63/ / g(t— o+ u)e b(0-1) dye=1(a-0)dg
/ b, (w)dw
/ / 2(t— 0+ u) (1 —e )e*‘s("*“)due’“/(a’”)da ,
Applying the supermum limit on both sides of (4.5), we get
lim; -, | oo SUp g(t) < Rolim;—, o sup g(t). (4.6)

As we supposed that Ry < 1, the only way inequality (4.1) holds is

lim_, yosup g(t) = 0.

This means lim;—, ;,h(t, a) = 0, thatisi =i =1 = T =0, hence proves the theorem.

5. Uniqueness and stability of ESS
We investigate the uniqueness and local stability of the ESS of system (2.6).
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5.1. Existence and uniqueness of the ESS

Assume that M* is the ESS of system (2.6) and the fixed point problem (3.6) holds. Define function

a /0 " K(a.0)" (0)do.

then, by equation (3.2), we get A*(a) = fc(a)g*(a). Substituting it into equation (3.5), we have

0= " K(a.0)H(g")(0)do, (5.1)
where
Hi(@)(@ 2(1 - da)(1 - )38 | ’ I cwgwe A T WA ) era-o)gg
(1 de)0iptsas |8 [ [ cwa' e /ou(%(w) + BT OOy 1) yeto-g (52)

a o — | (02(p) + 038c(p)q (p))dp ﬂ/ Be(p)
+/ / c(u) / tr(w / 2P) 05 dwe*‘“"*“)due*“f("*”)da .
0 JO

Taking maximum both side of (5.1) and dividing by ﬁémaxag[o,ﬁ]q*(a) >0, we get the following equation

H(g') ~1=0, (5.3)
where
2 / maxge 04K (@ 0)Ha(q")(0)do, (54)
0
and
Hy(q")(@)2 (1 — eky)(1 — 01p)08 / / () ie ’ / Y et que-ra0 g

a a * _ 0 0 B d
+(1 —€k2)01P945[93/ / c(u) %e /o (B2 (w) + B38c(w)q () W b0 que—1a-0)dg
0 Jo
a gt [ f/ L (p) + 03Bc(p)q (p))dp ﬂ/ ot e
+/0 /0 c(u) 3 /0 f,(w)e Jo dwe |

It can be observed that the existence and uniqueness of ESS is associated with the positive solution g* of equation (5.3).
Theorem 5.1. If Ry > 1, then normalized system (2.6) has at most one ESS, while there is no ESSif Rp < 1.

Proof. By the definition of g*(a), we know that g*(a) is continuous distribution function of a. The distribution of g*(a) can be
seen as a uniform distribution g (maximum value of the g*(a)) approximately, see Fig. 3(A). Then H(q*) can be written as

H(@) = maxge o /0 K(a,)H(d)(0)do,

where
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(A) (B)

.
A0 ROJBK

I\> Ak »
‘ a 14 q

Fig. 3. Existence and uniqueness of ESS. (A) Uniform distribution g*(a); (B) Existence and uniqueness of a*.

>

U
_B4 d
e O g

H(d)(a) £(1 - da)(1 - 01p)08 | ’ / "

U

a o - 0, (w) + B03c(w)q)dw
+(1 7€/<2)01p045[036/ / c(u)e /0 (alw) 3¢W)d) e~0e-u)qye-r@-0)dy
0 Jo

a o u _ " [ 0 q)dp —8q ! d
[ e [rme | a0+ B8scoap aa [ ctordo
0 JoO JO

H(q) is monotone decreasing about g and
limqaﬂoH(ﬁ) =0, liquOH(a) =Rg.
Thus, Rg > 1 implies that there exists unique positive number a* (see Fig. 3(B)) such that

H@G)-1=0. (5.5)
On the contrary, H(G) — 1 = 0 has no positive solutions if Ry < 1 (see Fig. 3(B)). That is, there is no ESS if Ry < 1.

5.2. Forwardly bifurcates of the ESS

In this subsection, we obtain following bifurcation results of ESS of system (2.6) using a similar approach introduced in
(Okuwa et al., 2019).

Theorem 5.2. The DFSS of system (2.6) is unstable if Ry > 1 and the ESS forwardly bifurcates from the DFSS when Ry crosses unity.

Proof. Letr > 0 be a bifurcation parameter and suppose that c(a) = rci(a), where the ci(a) is chosen such as Ry =1 if r = 1.
Then, by the (3.8), it holds that

a b ro
1 =(1—eky)(1 - 01p)66/ maxae[oﬁ]K(a,b)/ / c1(w)e % due~7b=% dgdb
0 ' 0 Jo

u
- a A b o 7/ b (w)dw Somt) g sr(b0)
+(1 — eky)01p0403 |03 | maxye(oqK(a,b) ci(ue Jo e due dodb
0 o Jo

u
+ / " max aK(a,b) ! e (u) 1787/0 Palw)dw e W due~7b-9dgdb
Jo acl0d™ = g Jo ! '

The continuous distribution of g*(a) can be seen as uniform distribution g as before (see Fig. 3(A)), then equation (5.3) can be
rewritten as

a
W(G,r) 2 fmaxge o /0 K(a,0)¥,(g.r)(c)do —1=0,

where
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u
R a o —ﬁ‘/ c1(w)dw
Wy (@) @2 (1)1 tp)ir [ [“ciwe " Jo WY o) gyerio-01gg
o Jo
u
a o — [ (2(w) + BOsrci (w)q)dw
+(1*€k2)51p945f{03/ / ci(ue /0(2( )+ ra W e W dye@-9dg
0 Jo

w u
a o u - 0 (p) + Bb3rc pf]dp—ﬁdc/cpdp
+/ / c1(u)/ b, (w)e /0 (G2(0) 311(0)0) e w 1) dwe?( 1 dque10-0) (4,
o Jo 0

W(q,r) satisfies W(0,1) = Ry — 1 =0 and 2£(0,1) <0.
By the implicit function theorem, g = qfr) is the function of r and q(1) = 0. It can be observed that

ow
o (0D =Ro=1,

and
. oW “low
7m=-(5z00) Fons0

which implies that g(r) >0 if |r — 1| is small enough. Then ESS forwardly bifurcates as r = Ry = 1.

5.3. Local stability of the ESS
In this subsection, we provide the local stability of ESS of system (2.6). Let
X=%+x"x=(s,v,5,e2,iilLr),

then the normalized system (2.6) is

i) 0~
(@Jra—t)s

J J - * *Y
(g T 3p7 = ~(02(@) + 031" )7 — O3"A,

Jd 0J.= o xX
(%+&)s:02(a)v—/\ S—5 A,

0 0.~ e 4T
(%-‘r&)efﬂ S+5s A— ode,

= 552,

Jd  Jd ~ o~
(%-i-&)l = (1-Kkq)oe —vl,

d 45 x =
(%‘f‘&)l = (1 —ky)oe — v,

with
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X(t,0)=0,x= (s,v,5,e,8,i,i,1.1,7),
where
a s _*
V) = 6c(a)/ Ka,wh' @du, B =1 —ei' +(1—ebsd +1"+ 0,1,
0
and
~ a - ~ ~ =~ - =
it a) :5c(a)/ Kawht,wdu,  h=1—ei+(1—efa+1+ 04l
0
Let
X =x(a)ef x = (s,v,5,e,2,i,1,1,1,r).
Substituting it into system (5.6) yields
L S |
da n ’
%m G = —(By(a) + 051" )i — 303,

L A T

da
L S
da % )
%? 458 = (057 +3) + (630" +5)i— b8, (5.7)
d’?‘ >4 ~ ~
@1+51:k166771(a),
d=z = ~ =
@Hrfl:kzée—yz,
dg. El=(1-kp)oe — 7l
da ’
T A1k —yl
da ° ’

with

where

Aa) = Be(a) /O ‘ K(a,u)h(u)du.

The solutions of system (5.7) is
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LR v
E:_/ s"(0)A(0)e (@ )e /a ()
0
¢ ~ — | (6,(0) + 6517 (6))do
5:—03/ v (0)A(0)e E@-)e /,, (62(0) + 054 (6))df
JO

s @i [ by
§=*/O E*(UM(U)*ﬁz(a)ﬂ(g)]e—i(a_g)e /J () d

e= /a[/\* (0)s(0) + S*(a)i(g)]e*(gﬂn(a—a)da’
0

““h 2" (0)(639(0) +5(0)) + (630" (0) + 5" (0))A(a)]e~¢+)@= do,

~ ra .
i= ko / &(0)e-ENE-9)gq.
0

= a .
i= 1(26/ E(g’)e*(€+7)(a*‘7)dg7
0

~ a .
I=(1—-k)o [ e(o)e”EM@-9dg,
0

= a . .
I=01- k2)6/ /é(g')e*(ﬁﬁ’)(a*ﬂ')da-'
0

Substituting these solutions into expression of H(a), we have

h(@) = (1—eky) / / U) A1 () + s (w)A(u))e~ErO U qye-E+na—o)dq

Infectious Disease Modelling 10 (2025) 75—-98

+(1 76k2)94(3[(93/ / A (u)A2(u)+U*(u)}(u)]e—(;ﬁré)(a—u)dae—(;’+7)(a—a)do_
o Jo

a o N - ;
+ / / 2 (W)As () + 5 (u)A(u))e" EFTWdge-EME@-0dg|
0o Jo

where
u *
o L K 08
A2 —/ s"(w)A(w)e {t-We Jw dw,
0
u
(B2(0) + 051" (6))df
Ay — 03 / F(w)A(w)e fu-We / dw,
I
/ 5" (w — by (W) Ay (w)e =" We dw.
Denoting A(a fo K(a,u h(u)du, we have I(a) = Bc(a)A(a). Substituting H(a) into A(a), taking maximum both side and
dividing by A maX,e o4 A(a) >0, we get the following characteristic equation of £,
Q¥ -1=0,
where

92



N. Azimagqin, Y. Li and X. Liu Infectious Disease Modelling 10 (2025) 75—-98

Q) = (1—eky) (5/ max,c .z K(a,b) / / A (u ]Eu + 5" (u)Bc(u )A%u)]e’@*é)(”’“)due’@”)(b’”)dadb
+(1 — €ky)040 {03/ MaXgepqK(a,b / / Aiiu +v* (u)Bc(u) %}e*(ﬂé)(‘f*“)doe*(fﬂ)(b*")dadb
a b ro
+ / Max,e o, K(a,b) / / A (u As) (u)Bc( )ﬂ}e’<5+‘”<"’“>dae*<5”)<b*”)dodb ,
0 ’ 0 Jo A
and
u
u X (0)do
M B[ s (w)c(w) AW —u-we S @ dw,
A 0
u
u — [ (62(0) + 634" (6))do
A2 7035/ v*(w)c(w)we‘f(““’”e /w( 2(0)+0540) dw,
A 0 A
u 2(
22— [T ) 28— y(w) A2t oo

Theorem 5.3. The ESS of system (2.6) is locally asymptotically stable if Ry > 1.
Proof. The Q(0) can be split into two parts as

Q0) =J1 +J2,

where

a b ro
A= k) / max,c o4 K(a,b) / / 3 () 21 W g-dl0-0) qye—1(-0) g
0 o Jo A
a b o
+(1 — eky)040 [03/ max, e (o,gK(a, b)/ / A*(u)AZT(mefé(afu)daefv(bfa)dadb
0 ’ o Jo

/maxae(,a ab/ / 3 () 23 o0 gge—vb-0)ggdp |

and
a b (o
L 2 —ek1)6/ maxae[o‘a]K(a,b)/ / s*(u)ﬁc(u)A( )e=0(0-1) que=Yb-0)dgdb

+(1 — eky)040 [03/ Max,eo,gK(a,b) / / A(u) e~ 0= qge=70-9)dgdb

/ max,c o4k (a,b) / / ) e~0(0-) dge—1b-0)dgdb|

The J; < 0 since
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u [ x
Al(u):—ﬁ s*(w)c(w)%e /w ©) dw<0,

u - "0 0) + 631" (0))dd
0 _ g [ e L |, ea0)bsi e

U
[ X(0)as
A3(u / 5" (w)Be(w) == ( )_ (W)%}e /w dw<0.
According to the expression of H(a*) in (5.5) and solution of s™, v*,5" in (3.4), we have
H@) (1 — eky) (3/ maX,e o gK(@ b)/ / u)Bc(u)e " Wdue~ -9 dgdb
+(1 — eky)f40 [03/ maxge o,qK(a, b)/ / v (u)Be(u)e " Wdge~ b= dgdb
Jo ’ Jo Jo
a b o,
+/ maxae[ova]K(a,b)/ / § (u)Bc(u)e " Wdge P9 dgdb
0 0o Jo

Then, using the fact & ) <1, we get
Q(O) < 1 +.]] <17

and
Q) <(1—eky) 6/ max,c o K (a,b) / / (u)Bc(u)e -t dye-EMb-2)dsdh
+(]—ek2)046[03/ maxae[oﬁ]K(mb)/ / v (u)Be(u)e~ EHI0O-1 dge-Er1 (-0 dgdh
0 ' o Jo
a b po , . B
+/ maxae[oya]K(a,b)/ / 5 (u)Bc(u)e EHOdgeENb-0)dsdh | 2g(£).
0 0 Jo

It can be seen that g(£) is a monotone decreasing function of £ and
limg_, _g(§) = +oo,limg_,  ,g(§) = 0.

Then, one has Q () <g(0) = H(ﬁ*) =1,Re > 0.Q(£) = 1 hasroots only in the region Reé < 0. Then, if Rg > 1, all roots of Q(§) =1
have negative real parts. The proof is similar to that of Theorem 4.1 and the approximate graph about Q(£) as Fig. 2.

6. Numerical simulations

Assuming that the total number of children is N = 500000, the maximum age of the children is @ = 20, 10% of severely
infected individuals are isolated (setting e = 0.1), the average incubation rate of mumps is 19 (15—24) days (setting 6 = 30/19),
the recovery rate of mumps is 12 (10—15) days (setting 6 = 30/12), the 20—40% of mumps infections are asymptomatic (setting
k1 = 0.7), the 50% of vaccinated mumps infections are asymptomatic (setting k, = 0.5), primary vaccine failure is #; = 0.9,
vaccine wane per month is f, = 0.3/12, vaccine leakiness 3 = 0.5, relative infectivity is 4 = 0.9. Consider the physical contact
rate as

c(a) = Bp(3.19 — 1.57cos(a) + 3.88sin(a) — 0.98cos(2a) — 0.5sin(2a)), a0, a),
where (g is an undetermined constant, see (Azimagqin et al., 2022). The initial value function is fixed as

Ip= 1> +20a+20,Sg =N —Ip,Xo = 0,X = (V,S",E,E",I",L, I, R).

6.1. Proportional mixing case
For proportional mixing case (n(a) = 0), the Ry can be calculated by formula (3.9) without and with vaccine respectively.
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If p = 0 (there is no vaccine) and g = 0.438, we obtain Rg = 0.9987 < 1. If p = 0.5 (there is a vaccine) and §y = 0.545, we
obtain Ry = 0.9921 < 1. Figs. 4(A) and 5(A) show that, with time evolution, the infected population tends to zero. In fact, by
Theorem 4.1, the DFSS is globally stable if Ry < 1.

On the other hand, if p = 0 and §p = 0.448, we obtain Ry = 1.0215 > 1. If p = 0.5 and o = 0.561, we obtain Rg = 1.0212 > 1.
Figs. 4(B) and 5(B) indicate that with the evolution of time, the infected population tends to a positive equilibrium. In fact, by
Theorem 5.3, there exists a locally stable ESS if Ry > 1. The numerical results show that the ESS is globally stable.

6.2. Isolated mixing case

In case of isolated mixing (n(a) = 1), The Rg can be calculated by formula (3.10) without vaccination. Similar results are can
be achieved for cases with vaccines.

If p = 0 and 8 = 0.324, then we get the figure of Ry(a) and the maximum value Ry = 0.9921 < 1, see Fig. 6(A). As time
evolves, the infected population tends to zero, see Fig. 7(A). In fact, by Theorem 4.1, the DFSS is globally stable if Ry < 1.

On the other hand, if p = 0 and 8 = 0.334, then we get the figure of Rg(a) and the maximum Ry = 1.0212 > 1, see Fig. 6(B). As
time evolves, the infected population tends to positive equilibrium, see Fig. 7(B). In fact, by Theorem 5.3, there exists a locally
stable ESS if Rg > 1. The numerical results show that the ESS is globally stable.

6.3. Homogenous preferential mixing case

In case of preferential mixing (n(a) = 0.5), it is possible to calculate the Ry using formula (3.11) without vaccination. Similar
results are can be achieved for cases with vaccines.

If p=0and § = 0.37, then we get the figure of Ry(a) and the maximum value Ry = 0.9952 < 1, see Fig. 8(A). As time evolves,
the infected population tends to zero, see Fig. 9(A). In fact, by Theorem 4.1, the DFSS is globally stable if Rg < 1.

On the other hand, if p = 0 and § = 0.393, then we get the figure of Rg(a) and the maximum Ry = 1.0571 > 1, see Fig. 8(B). As
time evolves, the infected population tends to positive equilibrium, see Fig. 9(B). In fact, by Theorem 5.3, there exists a locally
stable ESS if Rg > 1. The numerical results show that the ESS is globally stable.

7. Discussion

For the heterogeneous age-structured model, it is not yet known whether the ESS is unique or stable, because it's hard to
derive the explicit formula for Ry (Okuwa et al., 2019). (Huang, Kang, Lu, & et al, 2022) studied the existence and uniqueness of
ESS based on the explicit formula the Ry in the separable mixing case, it is shown that the steady state is locally stable under

—

Fig. 4. Proportional mixing, p = 0. (A) 8o = 0.438, Ry = 0.9987 < 1; (B) fo = 0.448, Ry = 1.0215 > 1.

Fig. 5. Proportional mixing, p = 0.5. (A) 8o = 0.545, Ry = 0.9921 < 1; (B) o = 0.561, Ry = 1.0212 > 1.
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Fig. 6. Ro(a) for isolated mixing. (A) § = 0.324, Ry = 0.9921 < 1; (B) 8 = 0.334, Ry = 1.0212 > 1.

Fig. 7. Isolated mixing, p = 0. (A) fo = 0.324, Ry = 0.9921 < 1; (B) o = 0.334, Ry =~ 1.0212 > 1.
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Fig. 8. Ro(a) for preferential mixing. (A) fo = 0.37, Ry = 0.9952 < 1; (B) fp = 0.393, Ry = 1.0571 > 1.

Fig. 9. Preferential mixing, p = 0. (A) o = 0.37, Ry = 0.9952 < 1; (B) fo = 0.393, Ry = 1.0571 > 1.

some additional conditions. The global stability of the steady states of age-structured model remains an open issue even in the

separable mixing case.

In this paper, we defined the explicit formula of Ry for heterogeneous age-structured model of mumps under the various
mixing case (isolation, proportional and heterogeneous) with or without the vaccine. It is shown that the disease free steady
states is global stable if Ry < 1, the ESS is unique and locally stable if Ry > 1 without any additional conditions. A number of
numerical examples are given to support the theory. Studying on global stability of endemic steady state will be a challenge in

the future.
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Mumps continues to be one of the greatest public health issues around the world, and vaccine is still the best way to
prevent and control it. Four vaccine-related parameters were taken into account in our heterogeneous age-structured model.
Mathematical models are applied to improve vaccine policy. For future extension of our model, we present an age-structured
model with periodic parameters (seasonality) for mumps, the existence and stability of the periodic solution are also dis-
cussed. The age-structured model of mumps provides a detailed framework for understanding the mechanisms by which the
disease spreads among different age groups. This model can be applied not only to mumps but also to many other common
infectious diseases in children, such as measles, thus revealing the epidemiological characteristics of these diseases and the
similarities and differences in prevention strategies. In this way, we can better address childhood infectious diseases and
reduce their public health impact.
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