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Abstract: Ubiquitination is an important environmental stress response, and E3 ubiquitin ligases play
a major role in the process. T-DNA insertion mutants of rice, Oscbe1-1, and Oscbe1-2, were identified
through the screening of cold stress tolerance at seedling stage. Oscbe1 mutants showed a significantly
higher cold stress tolerance in the fresh weight, chlorophyll content, and photosynthetic efficiency
than wild type. Molecular prediction showed that OsCBE1 (Oryza sativa Cullin4-Based E3 ubiquitin
ligase1) encoded a novel substrate receptor of Cullin4-based E3 ubiquitin ligase complex (C4E3).
Whereas Oscbe1 mutants had fewer panicles and grains than wild type in the paddy field, the over-
expression lines of OsCBE1 had more panicles and grains, suggesting that OsCBE1 is involved in
the regulation of both abiotic stress response and development. Oscbe1 mutants also showed ABA
hypersensitivity during seed germination, suggesting OsCBE1 function for the stress response via
ABA signaling. In silico analysis of OsCBE1 activity predicted a CCCH-type transcription factor,
OsC3H32, as a putative substrate. Co-IP (Co-immunoprecipitation) study showed that OsCBE1
interacts with OsDDB1, an expected binding component of OsCBE1 and OsC3H32. Additionally,
expression of OsOLE16, OsOLE18, and OsBURP5 were negatively related with expression of OsCBE1.
These results suggest that OsCBE1 functions as a regulator of the abiotic stress response via CCCH as
a member of the C4E3.
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1. Introduction

Since plants are sessile, it is hard for a plant to escape from continually changing
environments. These external conditions are often unfavorable and the environmental con-
ditions strictly limit geographical distribution of plants and productivity in agriculture [1].
The productivity of crops decreases more than 50% from abiotic stress [2], and global
climate change is threatening plant habitats [3]. Therefore, the understanding of the abi-
otic stress response of plants is necessary to meet the global food demand under global
climate change.

In stress condition, there are various changes in plants, such as gene expressions and
metabolite composition [4]. To make these changes, the stress sensing-signaling process
is required, and a few putative stress sensors such as OSCA1 [5] and COLD1 [6] have
been reported. In the stress signaling, phytohormone abscisic acid (ABA) is one of the
most important signaling molecules. Binding of ABA to PYR/PYL/RCAR families [7] and
PP2Cs [8] evokes signaling cascades regulating PP2Cs [8] and SnRKs [9]. Then, at the end
of the signaling cascades, various transcription factors of the bZIP [10], MYB/MYC [11],
CBF/DREB [12], and NAC [13] families regulate expression of stress-responsive genes.
Some CBF/DREB [14,15] and MYB [16] family members are regulated by ABA-independent
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signaling pathway. Consequently, physiological and molecular changes occur to adapt and
survive in harsh conditions.

Post-translational modifications of proteins, such as phosphorylation and ubiquiti-
nation, have a vital role in the signal transduction of abiotic stress response as well [17].
Ubiquitination regulates various biological functions in plants. Ubiquitination occurs with
three steps: 1. ATP dependent activation of ubiquitin by E1 ubiquitin-activating enzyme.
2. Transfer of ubiquitin to E2 ubiquitin-conjugating enzyme. 3. Transfer of ubiquitin to
target and forming covalent bonds between lysin residues in ubiquitin and target by E3
ubiquitin ligase [18]. There are various kinds of ubiquitination, including mono- or poly-
ubiquitination, and each ubiquitination may cause different kinds of regulation, such as
protein degradation by 26S proteasome, activation, and localization [19].

In the plant species, rice has 1483 putative E3 ubiquitin ligase genes (4.3% of protein-
coding genes in rice), and Arabidopsis has 1424 putative E3 ubiquitin ligase genes (5.4%
of protein-coding genes in Arabidopsis) [20–23]. Monomeric E3 ubiquitin ligases of HECT,
U-box, and RING work alone [24]. Meanwhile, multimeric E3 ubiquitin ligases of SCF
complex [25], APC/C- [26], cullin 3- [27], and cullin 4- [23], work with cullin or other com-
ponents as complexes. Since the cullin 4-based E3 ubiquitin ligase complex (C4E3) was first
reported in Arabidopsis [28], various functions of C4E3 have been elucidated, including reg-
ulation of photomorphogenesis [28], embryogenesis [29], flowering [30], immunity [31],
and stress signaling [32]. The C4E3 consists of cullin 4, RBX1, DDB1, and a substrate
receptor named DCAF (DDB1 Cullin4 Associated Factor) [33]. DCAFs commonly have a
conserved 16-17 amino acid motif called DWD box (DDB1 binding WD40), which gives
a binding site for DDB1 [29]. DCAFs containing only WDxR motifs, which are 13–16th
residues of the DWD box, have also been reported as non-DWD DCAFs, where WDxR is
crucial for the binding of the DCAFs to DDB1 [34]. It has been estimated that there are 151
and 119 DCAFs in rice and Arabidopsis, respectively [22,23], although most of them remain
to be characterized.

In this study, we studied an abiotic stress tolerant mutant, Oscbe1, and characterized it
at the molecular level. OsCBE1, a putative novel DCAF protein, was further characterized
for its physiological role in the regulation of abiotic stress tolerance and crop productiv-
ity. Furthermore, an in silico identification of OsCBE1 substrate, OsC3H32, was further
characterized in detail.

2. Results
2.1. Identification of Cold Stress Mutant Oscbe1

To investigate the function of E3 ubiquitin ligase on the abiotic stress response, we have
screened a mixed pool of transgenic rice with T-DNA tagged mutation of putative E3
ubiquitin ligase genes for the cold stress tolerance. A cold tolerant mutant Oscbe1-1
(PFG_4A-50680) was identified (Figure 1a), and the T-DNA tagging loci (LOC_Os01g09020)
was confirmed by inverse PCR. The corresponding gene was named Oryza sativa Cullin4-
Based E3 ubiquitin ligase1 (OsCBE1). An allelic mutant line (Oscbe1-2, PFG_4A-01910) of
Oscbe1-1 was identified from RiceGE (http://signal.salk.edu/cgi-bin/RiceGE), and the
T-DNA insertion loci was confirmed on the 3′-UTR of CBE1 (Figure 1b). From the T2
generation of both Oscbe1 mutants, homozygote T-DNA tagging mutants were identified
by genotyping, as shown in Figure 1c, and were confirmed via checking the expression of
OsCBE1 (Figure 1d). In addition, OsCBE1 overexpression (Ox) lines were made to study
the function of the gene. Of several Ox lines obtained, Ox8 and Ox15 were selected and
further examined with the Oscbe1 mutants. As shown in Figure 1d, OsCBE1 Ox8 and Ox15
showed 1.23 and 5.55 times stronger expression of OsCBE1, compared to the wild type,
respectively. The expression of the OsCBE1 gene during development was examined in
various tissues by RT-PCR. As shown in Figure 1e, OsCBE1 was highly expressed in the
callus and mature leaves, but barely detected in the seedlings. OsCBE1 contains 1539 bp of
the open reading frame and encodes 512 amino acid-long polypeptides. Using the NCBI
conserved domain search tool [35], seven WD repeat domains were found in the OsCBE1.

http://signal.salk.edu/cgi-bin/RiceGE
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These domains were predicted to have a seven bladed β-sheet propeller-like structure
(Figure 1f) using Robetta server [36]. Even though DWD box was not detected in OsCBE1,
one of the seven WD domains of OsCBE1 at the position of amino acid 360 showed a WDxR
motif (Figure 1g). These indicate that OsCBE1 has conserved sequences of DCAF and may
work as a non-DWD DCAF, where WDxR is crucial for the binding of the DCAF to DDB1.

Figure 1. Screening of Cold tolerant E3 ubiquitin ligase line. (a) Survival rates of 7d rice seedlings after low temperature
treatment. (b) Map depicting the tagging position of two allelic T-DNA insertion mutant lines of OsCBE1. Exons (blue
boxes), 5′UTR (green box), 3′UTR (pink box), and introns (lines) are indicated. (c) Identification of Oscbe1 T-DNA insertion
mutants (d) Expression profile of OsCBE1 in mutant and overexpression lines. (e) Expression profile of OsCBE1 in different
tissues of rice. Ca, callus; Ss, shoots at 7 days after germination (DAG); Sr, roots at 7 DAG; Lf, mature leaves; Ls, flag leaf
sheaths; Ih, the highest internode at pre-heading stage; P1, 1–2 cm panicles; P2, 3–8 cm panicles. (f) Predicted seven bladed
beta propeller structure of WD domains in OsCBE1 protein. Image colored by rainbow N-to C-terminus. (g) WD domain of
OsCBE1 with WDxR motif.

2.2. OsCBE1 Negatively Regulates Stress Response and ABA Signaling

To investigate the role of OsCBE1 in abiotic stress, various stress tolerance of Oscbe1
mutants with Ox lines were estimated as survival rates after the recovery from the stress of
salt, drought, and cold. For salt stress, the survival rates of both Oscbe1-1 and Oscbe1-2 were
more than 40%, whereas the rate was 12.3%, 11.5%, and 5.5% for the wild type, OsCBE1 Ox8
(1.23 times overexpressed than wildtype), and OsCBE1 Ox15 (5.55 times overexpressed
than wildtype), respectively (Figure 2a). For drought stress, more than 35% of both Oscbe1-1
and Oscbe1-2 seedlings survived, whereas the rate was 18.3%, 18.3%, and 10.9% for the
wild type, Ox8, and Ox15, respectively (Figure 2b). For cold stress, the survival rates of
both Oscbe1-1 and Oscbe1-2 were more than 50%, whereas those of the wild type and Ox
lines were less than 30% (Figure 2c). For the tested abiotic stresses, both Oscbe1-1 and
Oscbe1-2 showed significantly higher survival rate than that of the wild type, as estimated
by Chi-square analysis with p < 0.05. Whereas OsCBE1 Ox8 showed similar survival
rate to wild type, the OsCBE1 Ox15 line showed significantly lower survival rate to salt
stress and slightly lower survival rate to cold and drought stress. During the cold stress
treatment up to four days, Fv/Fm, an indicator of the quantum yield of photosystem II,
was rather slowly decreased in Oscbe1 mutants, compared to either wild type or OsCBE1
Ox lines. While Fv/Fm of Oscbe1-1 and Oscbe1-2 were 0.35 and 0.34, respectively, the value
of OsCBE1 Ox15 declined to 0.17 after four days of cold treatment (Figure 2d). After seven
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days of recovery from the cold stress treatment, the chlorophyll contents of both Oscbe1
mutants were about 4.21 ± 1.21 mg/g of fresh weight (FW), which was higher than that
of the wild type (1.0 mg/g FW). OsCBE1 Ox15 had a much lower chlorophyll content of
0.23 ± 0.07 mg/g FW, although, OsCBE1 Ox8 had similar chlorophyll content to the wild
type (Figure 2e). Regarding salt stress of 250 mM NaCl for 84 h, the average FW of Oscbe1-1
after seven days of recovery was 139.1 ± 8.6 mg. Meanwhile, the value of the wild type
was 77.4 ± 5.1 mg (Figure 2f). These physiological changes after abiotic stress treatment
suggest that OsCBE1 work as a negative regulator of abiotic stress tolerance.

Figure 2. Phylogenetic traits of CBE1 lines. Abiotic stress tolerance was analyzed with survival rate in OsCBE1 lines.
Before stress treatment, each plant was grown in soil for seven days. (a) Salt stress was treated for 84 h by irrigating
with 250 mM NaCl solution. Survival rate was analyzed, after 7 days of recovery. (b) Drought stress treatment for
36 h by withholding water. Survival rate was analyzed after seven days of recovery. (c) Cold stress treatment for 96 h
under 4 ◦C and 130 µMm−2s−1 light intensity. Survival rate was analyzed after seven days of recovery. (d) Decrease
of chlorophyll florescence (Fv/Fm) of OsCBE1 lines during cold stress in 4 ◦C and 130 µMm−2s−1 light intensity was
analyzed. (e) Chlorophyll contents of OsCBE1 lines after cold stress in 4 ◦C and 130 µMm−2s−1 light intensity for four
days were analyzed. (f) Fresh weights of OsCBE1 lines after salt stress in 250 mM NaCl treatment for 84 h were analyzed.
(g) Germination rate of transgenic lines of OsCBE1 were analyzed in a 1

2 MS, 27 ◦C, dark condition after 50% bleach treatment
for 40 min. (h) Germination rate of transgenic lines of OsCBE1 were analyzed in 1

2 MS, 5µM ABA, 27 ◦C, dark condition
after 50% bleach treatment for 40 min. *, significant difference from wild type (Chi-square test with p < 0.05); Error bar,
± Standard error.

In addition, leaf disc assay was performed to analyze salt stress and cold stress
tolerance of mature plants (≈60 DAG). Leaf disk assay, under various concentrations of
NaCl, revealed that more chlorophyll remained in leaf discs of Oscbe1-1 and Oscbe1-2
than in the wild type (WT) plants (Figure S1a–c). After five days of salt stress treatment,
the chlorophyll contents in leaf discs in Oscbe1-1 and Oscbe1-2 were about 4.8 ± 1.12 mg/g
of FW and 1.06 ± 0.256 mg/g of FW, which were higher than that of the wild type



Int. J. Mol. Sci. 2021, 22, 2487 5 of 16

(0.9 ± 0.093 mg/g FW). Leaf discs of OsCBE1 Ox15 had a much lower chlorophyll content
of 0.36 ± 0.123 mg/g FW (Figure S1c). Additionally, Fv/Fm slowly decreased in leaf disks
of Oscbe1 mutants, compared to leaf disks of the wild type or OsCBE1 Ox lines. After five
days of floating on autoclaved water at 4 ◦C, Fv/Fm of leaf discs of Oscbe1-1 and Oscbe1-2
were 0.42 and 0.372, respectively. However, leaf discs of wild type and OsCBE1 Ox8 had
lower Fv/Fm of 0.195 and 0.190, respectively. Additionally, leaf discs of OsCBE1 Ox15 had
a much lower Fv/Fm of 0.097 (Figure S1d).

To analyze whether OsCBE1 was related to the ABA signaling pathway, we germinated
seeds of Oscbe1 mutants and Ox lines in agar media containing ABA. In the media without
ABA, germination rate was similar between the wild type and OsCBE1 lines (Figure 2g).
In the media with 5 µM ABA, germination delay was different in each line. Whereas Oscbe1
mutants showed hypersensitivity to ABA during germination, the Ox lines showed slightly
enhanced germination compared to either the wild type or Oscbe1 mutants (Figure 2h).

2.3. Expression of OsCBE1 Positively Related to Crop Productivity

The knockout mutants, Oscbe1-1 and Oscbe1-2, and the overexpression line Ox15 were
grown in a paddy field in the normal growth condition. Culm length were similar between
those mutants and the wild type (Figure 3a). However, Oscbe1 mutants had less tillers
than wild type and Ox15. The number of tillers per plant were 9–12 from Oscbe1 mutants,
versus 15 from wild type and Ox15 (Figure 3b,g). Whereas the number of filled grains per
panicle from Oscbe1 mutants were 10–20% less than those from wild type, Ox15 had over
40% more filled grains per panicle than wild type (Figure 3c,f). Similarly, compared to wild
type, the length of panicles was ≈10% shorter in Oscbe1 mutants and ≈30% longer in Ox15
(Figure 3d,f). Therefore, the grain yield per plant of Oscbe1 mutants and Ox15 were 34–38%
less and 45% more, respectively, than that of the wild type. (Figure 3e,g). Taken together,
the expression of OsCBE1 shows a positive relation to agronomical productivity in rice.

Figure 3. Agronomical traits of CBE1 lines. (a–e) Agronomical traits of OsCBE1 lines are presented. (a) Culm length;
(b) Number of tillers per hill; (c) Number of filled grains per panicle; (d) Panicle Length; (e) Number of filled grains per hill.
Each of the results are presented as means ± standard error. (f) Panicles from a single OsCBE1 line plant are presented.
(g) Single panicle of each OsCBE1 line are presented.

2.4. Functional Role of OsCBE1 and In Silico Identification of the OsCBE1 Binding Partners

Since OsCBE1 has conserved sequences of substrate receptor of C4E3, putative in-
teraction partner of OsCBE1 was examined in silico with biological evidence and protein
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docking simulation. From the STRING database [37], five candidate genes were identi-
fied based on co-expression, co-occurrence, and evidence of biological relation between
genes (Figure S2, Table S1), although there was no experimental evidence. Therefore,
interaction modeling with OsCBE1 was performed using both Phyre2.0 server and ROSIE
server docking2 protocol for further analysis [38,39]. The energy distribution analysis
from the docking simulation with only one candidate, OsC3H32, showed a funnel-shaped
distribution (Figure 4a–e). Since DCAFs in C4E3 interact with both substrate and DDB1,
the structure of the C4E3 complex was predicted in silico as well. The predicted structure
of OsCBE1 looks like a “ladle” with a “bowl” composed of a seven-bladed β-propeller
and “handle” composed of several α-helixes. A simulated complex with the lowest energy
showed that OsC3H32 binds to the “handle” of OsCBE1. Since the WDxR motif is placed in
the “bowl” of OsCBE1, the predicted complex, OsDDB1-OsCBE1-OsC3H32, formed with-
out conformational hindrance (Figure 4f). Therefore, OsC3H32 was selected as a putative
substrate of OsCBE1 and further characterized.

Figure 4. In silico identification of the OsCBE1 binding partners. (a–e) Energy plot of interaction energy between OsCBE1
and five putative substrates, LOC_Os01g03060.1 (a), LOC_Os07g32420.1 (b), LOC_Os05g38830.1 (c), LOC_Os04g24170.1
(d), and LOC_Os04g57600.1 (e), and Root-mean-square deviation of atomic positions (RMSD). Energy diagram of
LOC_Os01g03060.1, LOC_Os07g32420.1, and LOC_Os05g38830.1 have horizontal distribution. Energy diagram of
LOC_Os04g24170.1 has three downward plots, but most of the distribution is horizontal. Only the energy diagram
of LOC_Os04g57600.1 shows funnel-like distribution (marked with black lines). (f) Predicted structure of OsCBE1 and
OsDDB1-OsCBE1-OsC3H32 complex.
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2.5. Physical Interaction of OsCBE1 with OsDDB1 and OsC3H32

In order to examine whether OsCBE1 was a substrate receptor of C4E3, the binding
of OsCBE1 with OsDDB1 was examined. Both expression vectors of Myc-tagged OsCBE1
and HA-tagged OsDDB1 were constructed using pGA3817 and pGA3818, respectively.
The vectors were co-transformed by electroporation into rice protoplasts prepared from
the suspension cells of Dongjin wild type. Protein extracts from the transformed cells
were used for Co-IP (Co-immunoprecipitation) analysis (See Materials and Methods).
As shown in Figure 5, the OsDDB1 of 120 kD was immunoprecipitated with the 61 kD
OsCBE1. However, the HA tag, negative control, was not immunoprecipitated with the
OsCBE1 (Figure S3). We further examined whether OsCBE1 interacted with OsC3H32,
the in silico predicted substrate in this study. An expression vector of HA-tagged OsC3H32
was constructed using pGA3818 and then co-transformed into rice protoplast with the
Myc-tagged OsCBE1 vector. The OsC3H32 of 77 kD was also immunoprecipitated with the
OsCBE1 (Figure 5), indicating that OsC3H32 could be a substrate of OsCBE1.

Figure 5. Co-IP with OsCBE1 and predicted substrate. To confirm whether the putative substrate
from the in silico method can interact with OsCBE1, we performed Co-IP using transient expressed
Myc tagged OsCBE1 and HA tagged predicted substrate in rice suspension cell.

2.6. Oleosin Genes and an ABA Responsive Gene Are Negatively Regulated by OsCBE1

Based on the fact that OsC3H32 could be a substrate of OsCBE1, the function of the
OsC3H32 was studied in the literature. Since the function of OsC3H32 has not been re-
ported, an Arabidopsis homologue was searched using BLAST. It was reported that AtC3H17
is a homologue of OsC3H32 with an amino acid identity of 35.4% [40]. AtC3H17 was re-
ported to upregulate oleosin genes, AtOLEO1 and AtOLEO2, which had a pleiotropic
function in development [41] and salt stress tolerance via ABA signaling pathway [40].
Therefore, the corresponding homologues of AtOLEO1 and AtOLEO2 were found in rice
first. OsOLE16 and OsOLE18 were obtained as homologues of AtOLEO1 and AtOLEO2,
respectively. Then, the expression of OsOLE16 and OsOLE18 were analyzed in the Oscbe1
and OsCBE1-Ox lines by qRT-PCR. As shown in Figure 6a, whereas the expression of
OsOLE16 and OsOLE18 were increased in Oscbe1-1, the expression of OsOLE16 was de-
creased in OsCBE1-Ox15. The expression of OsOLE18 in the Ox line was similar to the wild
type. We also examined the expression of OsBURP5, a rice homologue of the well-known
ABA responsive gene AtRD22. The OsBURP5 mRNA was increased in Oscbe1 mutants,
but barely detected in the Ox line, indicating OsCBE1 might positively regulate OsBURP5
in rice (Figure 6b).
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Figure 6. Regulation of OsOLE16, OsOLE18, and OsBURP5 in OsCBE1 lines. (a) Expression of OsOLE16 and OsOLE18 in
OsCBE1 lines are presented. OsOLE16 and OsOLE18 are up-regulated in KO line. OsOLE16 are down-regulated in the
overexpression line. (b) Expression of OsBURP5 in OsCBE1 lines are presented. OsBURP5 is upregulated in KO lines.

3. Discussion

In this study, we showed abiotic stress tolerance of Oscbe1 and the stress sensitivity
of OsCBE1-Ox15, with various stress markers such as survival rates and chlorophyll
fluorescence. ABA responses, germination delay, and ABA responsive gene expression
were increased in Oscbe1 and were decreased in OsCBE1-Ox15, suggesting that OsCBE1
negatively regulates abiotic stress response through at least part of ABA pathway.

OsCBE1 belongs to non-DWD DCAFs, which was first shown in rice. It has been
reported that DCAFs of ABD1 [42], ASG2 [43], DET1-DDA1 complex [44,45], DRS1 [46]
DWA1, DWA2 [32], DWA3 [47], HOS15 [48], RAE1 [49], and WDR55 [50] regulate the ABA
signaling pathway. With ABD1, OsCBE1 is another non-DWD type DCAF protein related
to the ABA pathway. Recently, it was shown that a rice cullin4 gene, OsCUL4, was also
induced by ABA, drought, and salt stress [51].

Most DCAFs, including OsCBE1, negatively regulates the ABA pathway, except DRS1
and WDR55 [46,50]. The functional regulation of DCAFs on the ABA pathway seems
due to the character of C4E3. DDA1, the substrate receptor of C4E3, also negatively
regulates the ABA pathway itself [52]. Whether the negative regulation on ABA pathway
by DDA1 is related to the structural stabilization of C4E3 by interacting with DCAFs
needs further studies. Similarly, most U-box E3 ubiquitin ligases negatively regulate
the ABA pathway [53–60]. Contrary to C4E3, many RING-type E3 ubiquitin ligases
positively regulate the ABA pathway [56,60]. Therefore, this bias of E3 ubiquitin ligases on
ABA regulation pathway would be tuned and established during molecular evolution of
this enzyme.

Photosynthetic efficiency is one of the major metabolic factors for increasing biomass.
More than 90% of crop biomass is derived from photosynthetic products [61]. Although our
Oscbe1 mutants showed overall abiotic stress tolerance (Figure 2), they showed a reduction
in crop productivity in the normal paddy field (Figure 3). In many cases, rice production
is limited by grain number [62,63]. Oscbe1 showed reduced tiller numbers and, therefore,
reduced grain numbers compared to the wild type. It is remarkable that OsCBE1-Ox15
showed high yield increase compared to the wild type. OsCBE1-Ox15 showed increased
production of agronomic traits, such as panicle length and grain numbers, than the wild
type. We suggest that OsCBE1 acts as a positive regulator for tiller formation and grain
ripening. The stress tolerance and productivity were often reversed. Overexpression of
OsPYL/RCAR5, an ABA receptor in rice, enhanced drought tolerance but severely reduced
yields [64]. The knockout of the OsPYL family, which were drought sensitive, showed an
increase in crop yield in normal conditions [65].

In this study, we found a substrate of OsCBE1 (Figures 4 and 5). One of the reasons that
only a few E3 ubiquitin ligases were functionally characterized is the difficulty in finding
their substrates. Many tools, including yeast-2-hybrid screening, mass spectrometry-based
proteomics, substrate trapping proteomics, global protein stability profiling, protein mi-
croarray, phage display, and high-throughput quantitative microscopy, have been used
and developed for decades [66–72]. However, these are laborious and time-consuming.
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Additionally, there are many hurdles to identify substrate: 1. Too weak and short interac-
tions between substrates and E3 ubiquitin ligases. 2. Delicate regulation of ubiquitination
depends on various environments. 3. Rapid degradation and low cellular content of
substrates [73]. These increase failure probability for finding out substrates and makes E3
ubiquitin ligase characterization difficult. In silico prediction tools, which are faster and
less laborious, were successfully used in this study to find an interacting partner, OsC3H32,
a CCCH family zinc finger protein. The in silico prediction was performed in three steps:
1. Interacting partner candidate sorted with biological evidences. 2. Protein docking simu-
lation. 3. Docking funnel analysis and complex structure analysis. There are many available
E3 ubiquitin ligases related OMICS database, including co-expression, co-occurrence, co-
localization, protein interaction network and related phenotypes in transgenic lines, and E3
ubiquitin ligase-substrate interface database. In this study, five substrate candidates were
sorted with co-expression and co-occurrence from the STRING database [37]. Recently,
a new platform [74] which analyzes biological evidence by analyzing sequences and inter-
actome databases was developed and would be helpful for sorting out substrate candidates.
Co-IP data showed that OsCBE1 indeed binds to OsC3H32 in living rice cells (Figure 5). Al-
though the function of OsC3H32 has not been characterized in rice, an Arabidopsis ortholog,
AtC3H17, increased the expression levels of oleosin genes, AtOLEO1 and AtOLEO2 [41].
The expression levels of OsOLE16 and OsOLE18 were also increased in the Oscbe1 mutants.
Moreover, Seok et al. reported that expression level of the ABA responsive gene, RD22 was
increased by AtC3H17 [40]. We similarly confirmed that the expression of OsBURP5, a ho-
mologue of RD22, was increased in the Oscbe1 mutants (Figure 6). Furthermore, OsOLE16
and OsOLE18 are known as ABA responsive genes too [75]. These results suggest that
OsCBE1 act as a positive regulator for oleosin synthesis, and a negative regulator for ABA
signaling by inhibiting the function of OsC3H32 (Figure 7).

Figure 7. Model of OsCBE1 functioning in regulating abiotic stress response in rice. The arrow
represents activation while the flat arrow represents inhibition. The dotted arrow and question mark
represent hypothesis about how it works.
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Rice OsCBE1 is induced by abiotic stress and then ubiquitinates and may destabilize its
substrate OsC3H32, by promoting its degradation through the 26S proteasome. OsC3H32
are downregulated under abiotic stress, following which inhibition of downstream genes
(OsBURP5, OsOLE16, and OsOLE18) were lifted which resulted in abiotic stress tolerance.

CCCH family zinc finger proteins are widely found in various eukaryotes [76–80].
In plants, many CCCH family transcription factors are related to ABA pathways [80–82].
In rice, OsC3H47 was highly induced by various stresses and ABA treatment, but the
transcripts level of OsC3H32 was not highly changed (less than twofold) in those stress
conditions [83]. Therefore, it is suggested that OsC3H32 might be regulated at post-
translational level, and OsCBE1 would be a major regulator of OsC3H32.

4. Materials and Methods
4.1. Plant Growth and Stress Tolerance Test

Rice plants were grown as previously described with small modifications [84]. Briefly,
rice seeds (Oryza sativa ssp. japonica cv. Dongjin) were sterilized in 0.05% Spotak solution
overnight at RT with rocking. Then, seeds were transferred to the sterilized wet paper tower
and germinated in the dark at 28 ◦C for 2 days. Germinated seedlings were transferred to
soil and cultured in a walk-in growth chamber (Koencon, Hanam, Korea) with 16 h of light
(28 ◦C, 70% RH, 50 µmol/m2·s of light intensity) and 8 h of dark (22 ◦C, 70% RH).

For stress tolerance test for seedlings, cold, salt, and drought stress were treated as
previously described with small modifications [84–86]. Briefly, seedlings 7 days after ger-
mination (DAG) were used. These were cold stress treated in a low-temperature chamber
(Koencon, Hanam, Korea) with 16 h of daytime condition (4 ◦C, 60% RH, and 50 µmol/m2·s
of light intensity) and 8 h of nighttime condition (4 ◦C, 60% RH, and 0 µmol/m2·s of light
intensity); and salt stress treated in 250 mM of NaCl solution. Both salt stress and drought
stress were treated in a growth chamber under the same conditions as the growth condition.
Survivor rate was analyzed after seven days of recovery in the growth chamber.

To examine stress tolerance of mature plants, a leaf disc assay was conducted as
previously described with small modifications [84]. Fully expanded leaves of healthy
mature plants (≈60 DAG) were washed in deionized and autoclaved water. From these
leaves, ≈8 cm diameter leaf disks were cut. For salt stress treatment, 100 mg of leaf discs
were floated for 6 days in a 10 cm diameter petri dish filled with a 30 mL solution of various
concentrations of NaCl (0, 250, and 500 mM). For cold stress treatment, 100 mg of leaf discs
were floated in a 10 cm diameter petri dish filled with 30 mL of autoclaved water. Then,
these were incubated for 5 days in a low-temperature chamber (Koencon, Hanam, Korea)
with 16 h of daytime condition (4 ◦C, 60%RH, and 50 µmol/m2·s of light intensity) and 8 h
of nighttime condition (4 ◦C, 60% RH, and 0 µmol/m2·s of light intensity).

4.2. Analysis of Chlorophyll Content and Fluorescence

The third leaf from each cold treated rice seedling adapted in the dark for 40 min.
After dark-adaptation, chlorophyll fluorescence was measured with a Plant Efficiency
Analyzer (Hansatech, King’s Lynn, UK). After stress treatment and 7 days of recovery,
chlorophyll from each sample was extracted and quantified, as described previously [87].

4.3. PCR and RT-PCR Analysis

For genomic DNA extraction, 100 mg of young leaves from the seedling were collected
and ground in an MM300 Mixer Mill (Retsch, Haan, Germany). DNA was extracted
using the method of Chen and Roland [88] and the genomic DNA was amplified by PCR,
as described previously [89].

Total RNA was extracted using an RNA Plants Kit (Machery-Nagel, Düren, Germany)
from 200 mg of young leaves from the seedling collected. cDNA was synthesized from
extracted RNA using TOPscript™ cDNA Synthesis Kit (Enzynomics, Daejeon, South Korea)
and amplified for RT-PCR, as described previously [84]. Primer information for PCR and
qRT-PCR analysis is in Table S2. Expression level of OsCBE1 was analyzed with ImageJ [90].
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4.4. Vector Construction

To construct OsCBE1-overexpression vector, a full-length open reading frame of Os-
CBE1 was amplified from cDNA using Phusion High-Fidelity DNA Polymerase (Thermo
Fisher Scientific, Waltham, MA, USA) with CBE1_Mlu1-F and CBE1_HindIII-R primer
(Table S2). The amplified cDNA was introduced between the MluI and HindIII sites of
pGA3436 binary vector under a maize ubiquitin promoter [91]. For the construction of
Myc-tagged OsCBE1 expression vector, the full-length open reading frame of OsCBE1
amplified with CBE1_HindIII-F and CBE1_KpnI-R primer was inserted between the HindIII
and KpnI sites of pGA3817 vector [92]. For the construction of HA-tagged OsDDB1 vec-
tor and HA-tagged OsC3H32 vector, each ORF amplified with their respective primer
(Table S2) was inserted into pGA3818 [92].

4.5. Generation of OsCBE1 Overexpression Lines

OsCBE1 overexpression vector was transformed to calli of ‘Dongjin’ rice by Agrobac-
terium-mediated transformation methods, as described previously [84]. The transgenic
plants were transferred to a paddy field in Kyung-Hee University (Suwon, Korea) for
further growth.

4.6. Germination Test

To examine ABA sensitivity, rice seeds were germinated as described previously41

with small modifications [93]. Briefly, the 100 seeds per line were surface sterilized for
40 min and then transferred to 1

2 MS media, supplemented with 5 µM ABA, and germinated
in the dark at 28 ◦C. Germinated seeds were counted every 12 h.

4.7. Evaluation of Agronomic Traits

Rice plants were grown at the LMO paddy field of Kyung-Hee University, Suwon,
South Korea (permission number: RDA-가A-2011-039) from May to October. Five plants
from each line were evaluated for agronomic traits, including the numbers of tillers,
panicles, filled grain per plant, and the number of filled grain per panicle. Additionally,
we measured lengths of the panicles of each plant.

4.8. In Silico Analysis

Co-expression, co-occurance data, and substrate candidate were retrieved from the
STRING database with low criteria option [37]. Protein structure was predicted using the
PHYRE 2.0 server with intensive mode protocol [39]. In silico docking was performed using
the ROSIE server with merged PDB file [38,94]. To interpret docking results, IRMS (Interface
Root-Mean-Square Deviation) of the docked complex was calculated with dockQ, and in-
teraction energy was calculated with Rosetta3 [95,96]. The OsDDB1-OsCBE1-OsC3H32
complex structure was predicted using ZDOCK, and the WDxR motif of was OsCBE1 set
as a binding site between OsCBE1 and OsDDB1 [97]. Every protein structure in this paper
was illustrated using PYMOL [98].

4.9. Co-IP Analysis

For protein interaction analysis, Myc-tagged OsCBE1 vector and HA-tagged OsDDB1
or OsC3H32 vector were co-transformed into rice calli using electroporation methods,
as described previously [99]. After 16h from transfection, transfected cells were collected
and Co-IP was performed, as described previously [100]. Briefly, 1 µL of anti-Myc antibody
(Cell Signaling, 9B11), 10 µL protein A beads (Thermo Fisher Scientific, Waltham, Mas-
sachusetts, United States), and 10 µL protein G beads (Thermo Fisher Scientific, Waltham,
MA, USA) were mixed in 1 mL of binding buffer (50 mM Tris-HCl, 75 mM NaCl, 5 mM
EDTA, 1 mM DTT, 0.1 M PMSF, and 1% Triton X-100) for 3 h using a tube rotator. To extract
total protein, transfected cells were incubated in the IP buffer (binding buffer with 1 X
protease inhibitor cocktail, Roche, Basel, Switzerland). The extracted protein mixtures were
precleared with 10 µL of protein A/G beads mixture for 1 h. Then, supernatant mixed with
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the anti-Myc antibody-bound protein A/G beads was incubated for 5 h on the tube rotator.
Then, the beads were collected and washed, and the bound proteins were eluted in 20 µL
of IP buffer. After immunoprecipitation, a western blot was performed with horseradish
peroxidase conjugated Myc-tag mouse mAb (9B11, Cell Signaling Technology, Beverly, MA,
USA) and HRP conjugated HA-tag mouse mAb (6E2, Cell Signaling Technology, Beverly,
MA, USA).

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/14
22-0067/22/5/2487/s1, Table S1: Information of primer sets for genotyping, vector construction
and expression analysis, Table S2: Information of predicted substrates, selected by STRING score,
Figure S1: Leaf disc assay of OsCBE1 lines under salt and cold stress, Figure S2: Co-expression and
Co-ocurrence data between OsCBE1 and putative substrates, Figure S3: Negative control for OsCBE1
binding assay.
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