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Abstract: Dental remineralization represents the process of depositing calcium and phosphate ions
into crystal voids in demineralized enamel, producing net mineral gain and preventing early enamel
lesions progression. The aim of the present study was to qualitatively and quantitatively compare
the remineralizing effectiveness of four commercially available agents on enamel artificial lesions
using Scanning Electron Microscopy (SEM) combined with Energy Dispersive Spectroscopy (EDS)
techniques. Thirty-six extracted third molars were collected and randomly assigned to six groups
(n = 6), five of which were suspended in demineralizing solution for 72 h to create enamel artificial
lesions, and one serving as control: G1, treated with a mousse of casein phosphopeptide and
amorphous calcium–phosphate (CPP-ACP); G2, treated with a gel containing nano-hydroxyapatite;
G3, treated with a 5% SF varnish; G4, treated with a toothpaste containing ACP functionalized
with fluoride and carbonate-coated with citrate; G5, not-treated artificial enamel lesions; G6, not
demineralized and not treated sound enamel. G1–G4 were subjected to pH cycling over a period of
seven days. Analyses of the specimens’ enamel surfaces morphology were performed by SEM and
EDS. Data were statistically analyzed for multiple group comparison by one-way ANOVA/Tukey’s
test (p < 0.05). The results show that the Ca/P ratio of the G5 (2.00 ± 0.07) was statistically different
(p < 0.05) from G1 (1.73 ± 0.05), G2 (1.76 ± 0.01), G3 (1.88 ± 0.06) and G6 (1.74 ± 0.04), while there
were no differences (p > 0.05) between G1, G2 and G6 and between G4 (2.01 ± 0.06) and G5. We
concluded that G1 and G2 showed better surface remineralization than G3 and G4, after 7 days
of treatment.

Keywords: enamel; dental caries; remineralizing agents; CPP-ACP; fluoride varnish; nano-hydroxyapatite;
SEM-EDS

1. Introduction

Dental caries is the most prevalent chronic disease in children and adults worldwide,
remaining the principal challenge in dentistry [1]. Dental caries is a biofilm-mediated, diet
modulated, multifactorial, non-communicable, dynamic disease resulting in net mineral
loss of dental hard tissues [2]. The modern concept of caries formation is based on the
recurrence of various cycles of demineralization and remineralization phases, inducted by
acid-producing bacteria in the oral micro-environment [3,4].

Indeed, the bacterial metabolism of fermentable carbohydrates, producing acids,
causes the dissolution of mineral ions such as calcium and phosphate, which make up
enamel hydroxyapatite crystals [5]. Thus, enamel demineralization can expose the dentine
to the dentinal hypersensitivity related to the movement of fluids in dentinal tubules
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and the onset of caries disease [6]. However, the demineralized enamel prism possibly
regenerates to its primordial stage if it is exposed to the oral conditions that promote
remineralization [7].

Moreover, tooth decay is highly preventable and reversible at an early state, and
the halt of enamel and dentin demineralization is possible with the inhibition of biofilm
formation [8] and salivary protective factors [9]. In recent years, the focus in caries research
has shifted to the development of methodologies for the non-invasive management of
early caries lesions through remineralization to preserve tooth structure [10]. Indeed,
remineralization can occur naturally, through the saliva buffering system, or biologically,
induced by remineralizing agents [11].

Therefore, the scientific literature confirms that demineralization can be counteracted
or reversed through several remineralization agents in non-cavitated carious lesions [6].

Several types and concentrations of remineralizing agents containing fluoride, calcium
and phosphate ions are commercially available [12]. These agents release active ions which
bond stably to the crystalline enamel structures, giving rise to newly formed crystals and
reconstructing the damaged ones.

Fluoride ions represent the major mechanism in preventing enamel demineralization
due to the formation of fluorapatite in enamel in the presence of calcium and phosphate
ions produced during enamel demineralization by plaque bacterial organic acids [13–15].
Fluoride solutions come in low concentrations for daily use, such as toothpastes and
mouthwashes, and higher concentrations for professional application, such as gels and
varnishes [16].

Moreover, other compounds containing calcium and phosphate have been intro-
duced, such as casein phospho-peptide and amorphous calcium–phosphate (CPP-ACP)
and biomimicry hydroxyapatite, all of which have shown promising results.

CPP-ACP, a milk protein derivative, was commercially introduced since it has been
proven to have anticariogenic effects [17]. CPP stabilizes high concentrations of calcium and
phosphate ions with fluoride ions at the tooth surface by binding to pellicle and plaque [18].
ACP applies calcium ions (e.g., calcium sulphate) and phosphate ions (e.g., ammonium
phosphate, sometimes in the presence of fluoride ions) separately so that ACP or amorphous
calcium fluoride phosphate (F-ACP) forms intra-orally [15]. Evidence shows that the
application of CPP-ACP may prevent demineralization and enhance remineralization
through calcium and phosphate ion activities, thereby stabilizing ACP within the dental
plaque in neutral or alkaline pH conditions and maintaining a state of supersaturation with
respect to the enamel [19,20].

Another important source of mineral ions for the remineralization is nano-hydroxyapatite
(N-HA), which presents crystals ranging in size between 50 and 1000 nm. N-HA was found
to possess similar properties as a biological apatite [21]. The N-HA has a characteristic bond
ability attributable to the size of nanoparticles, which considerably increases the bonding
surface area, allowing available calcium or phosphate ions to bind to the enamel surface and
filling the porosities of carious lesions [22,23]. N-HA crystals penetrate enamel pores and act
as a template in the precipitation process, promoting crystal integrity and growth [24].

Nowadays, there is a gap in the literature regarding the short-term effect of these
agents [25,26]. Therefore, we decided to analyze these products’ effects after 7 days of
treatment as directed by the manufacturer of the tested agents.

There are still doubts and inaccuracies about their behavior, time and method of
application. Despite the plethora of remineralizing agents, it is important to study new
strategies and analyze different agents to improve the remineralization process.

The enamel hydroxyapatite crystals’ morphology and surface chemical composition
are analytical indicators of dental tissue’s state of health. In particular, Scanning Electron
Microscopy (SEM) is used to obtain high-resolution images, which give qualitative in-
formation on the enamel prism morphology of the samples [27], and Energy Dispersive
Spectroscopy (EDS) allows us to quantify the main enamel components, such as calcium
(Ca) and phosphorus (P), and their stoichiometric ratio [28,29].
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Thus, in the present study, we aimed to analyze and compare the remineralizing
effectiveness of four different commercially available agents on artificial human enamel
lesions after seven days of treatment, by means of SEM combined with EDS.

2. Materials and Methods
2.1. Specimen Preparation

A total of 36 healthy human third molars were used. These teeth were extracted
for orthodontic and periodontal reasons from the Department of Clinical Sciences and
Stomatology of Polytechnic University of Marche. All patients were informed in advance
that their extracted teeth would be used for scientific purposes, and written consent was
obtained before the experiment. The collected teeth were screened for the presence of
cracks, hypoplasia or white spot lesions and were excluded for having one of these. In
selected teeth, remaining soft tissues, debris and stains were removed with hand-scaling
instruments and stored in 0.5% w/w chloramine solution (NH2Cl) at room temperature.
One single operator performed all procedures to avoid operator bias. Afterwards, samples
were randomly allocated (n = 6) into six equal groups:

(1) G1 (Mousse Group): demineralized as explained in Section 2.2 and then treated using
GC Tooth Mousse (Recaldent GC, Europe), a mousse of CPP-ACP.

(2) G2 (Nano-Hydroxyapatite Group): demineralized as in Section 2.2, and then treated
with Biorepair Desensitizing Enamel Repairer (Coswell oral care professional Spa,
Italy), a gel containing zinc–hydroxyapatite.

(3) G3 (Duraphat Group): demineralized as in Section 2.2, and then treated with Du-
raphat (Colgate-Palmolive, USA), a varnish containing sodium fluoride (SF) 5%.

(4) G4 (Biosmalto Group): demineralized as in Section 2.2, and then treated with Bios-
malto (Curasept Spa, Italy), a mousse containing F-ACP.

(5) G5: group demineralized as in Section 2.2, and then stored in artificial saliva (Biotene
Oralbalance Gel, GSK, England).

(6) G6: group without any treatment, stored in artificial saliva (Biotene Oralbalance Gel,
GSK, England).

The precise compositions of materials used in this study are listed in Table 1.

Table 1. Chemical composition of the tested materials.

Material Manufacturer Ingredients

GC Tooth Mousse (G1) Recaldent Europe

Pure water, glycerol, casein phosphopeptide–amorphous
calcium–phosphate, D-sorbitol, sodium carboxymethyl
cellulose, propylene glycol, silicon dioxide, titanium
dioxide, xylitol, phosphoric acid, flavoring, zinc oxide,
sodium saccharin, ethyl p-hydroxybenzoate, magnesium
oxide, guar agam, propyl p-hydroxybenzoate,
butyl p-hydroxybenzoate.

Biorepair Desensitizing Enamel
Repairer (G2) Coswell Spa, Italy

Aqua, zinc hydroxyapatite, hydrated silica, silica, sodium
myristoyl sarcosinate, sodium methyl cocoyl taurate,
sodium bicarbonate, aroma, sodium saccharin,
phenoxyethanol, benzyl alcohol, sodium benzoate, citric
acid, menthol.

Duraphat
varnish (G3) Colgate-Palmolive

Sodium fluoride, ethanol, white wax (E901), shellac (E904),
rosin, putty, saccharin (E954), raspberry essence (containing
ethyl butyrate, geraniol, iris resinoid, isoamyl acetate,
absolute jasmine, vanillin and propylene glycol).

Biosmalto (G4) Curasept Spa, Italy

Glycerin, PEG-8, silica, strontium acetate, calcium
phosphate carbonate citrate fluoride,
hydroxypropylcellulose, xylitol, acrylates/C10-30 alkyl
acrylate crosspolymer, PEG-40 hydrogenated castor oil,
sodium hyaluronate, potassium acesulfame, p-anisic acid,
aroma, sodium hydroxide.
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A schematic representation of this study design is presented in Figure 1. The outline
represents significant steps in the experiment process.
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Figure 1. Schematic representation of experimental study design. G1 (Mousse Group), G2 (Nano-
Hydroxyapatite Group), G3 (Duraphat Group), G4 (Biosmalto Group), G5 (group treated with the
demineralizing solution), G6 (group without any treatment).

2.2. Artificial Enamel Lesion Production

All groups, except G6, were immersed for 72 h in a demineralizing solution [30], con-
taining 0.1 M lactic acid adjusted to pH 4.4 [31], in order to create an artificial initial lesion
on the enamel surface [30]. After lesion formation, samples were thoroughly washed with
deionized water and dried. For the entire period of the study, to simulate the oral cavity
condition, after the demineralizing process, G5 was left in artificial saliva (Biotène Oral bal-
ance, GSK, England) composed of purified water, hydrogenated hydrolyzed starch, xylitol,
hydroxyethylcellulose, polymetrhacrylate, beta-d-glucose, lactoperoxidase (12,000 units),
lysozyme (12 mg), lactoferrin (12 mg), glucose oxidase (12,000 units), potassium thiocyanate
and aloe vera, without any remineralizing treatment.

2.3. pH Cycling Condition

The pH cycle (demineralization–remineralization) was used to simulate pH fluctuation
patterns in the oral cavity [30,32]: a demineralization cycle with 0.1 M lactic acid (adjusted
to pH 4.4) for 6 h (30 mL for each sample) was performed, and secondly, a remineralization
cycle with the agent’s application (2 min) in a thin layer using a microbrush on enamel
surfaces was executed according to the manufacturer’s instructions.

The tested remineralizing agents’ pH levels were as follows: G1 (pH 6.7), G2 (pH 8.0),
G3 (pH 5.7), G4 (pH 7.1).

The pH cycle was repeated once a day for seven days and samples were stored in
solution in artificial saliva.

Finally, after the treatment procedures, all samples were carefully cleaned and dehy-
drated for evaluation using SEM-EDS.

2.4. SEM and EDS Analyses

Samples were air-dried, mounted on aluminum stubs and then observed by a TESCAN
VEGA 3 LMU scanning electron microscope (Centre for Electron Microscopy—(CISMIN)
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Department of SIMAU, Polytechnic University of Marche, Ancona, Italy). SEM images
were acquired to investigate the morphology of enamel and to search for surface damage
at different magnifications: 200×, 500× and 1000×.

The chemical surface characterization was performed by means of EDS using EDAX
Element Microanalysis (AMETEK Gmbh, EDAX Business Unit, Weiterstadt, Germany).
EDS analysis was carried out on 3 sample areas with the following operating parameters:
working distance of 15 mm, acceleration voltage of 25 kV and 500× magnification. The
degree of remineralization was assessed by measuring the amount of phosphorus (P) and
calcium (Ca) and calculating their ratio (Ca/P) in treated specimens after immersion in the
artificial saliva. Results are reported as average value (AV) and standard deviation (SD).

2.5. Statistical Analysis

The EDS results were analyzed using descriptive statistics, and statistical inferences
between experimental groups were determined by one-way ANOVA (analysis of vari-
ance) followed by Tukey’s test, using the statistical software Prism8 (GraphPad Software,
San Diego, CA, USA). The group size was set to n = 6 for all experimental groups and
significance was p < 0.05.

3. Results

Scanning electron micrographs at different magnifications displayed distinct mor-
phologies of the enamel surface for each group (Figures 2–7).

SEM images of G6 displayed the typical regular aspect of the intact enamel crystalline
structure (Figure 2). In G5, the integrity of the enamel prisms was severely affected,
displaying an irregular surface with an early stage of the destruction of the interprismatic
substance (Figure 3). G1 and G2 micrographs showed the partial recovery of the enamel
prism crystals with the presence of a slight interprismatic dissolution (Figures 4 and 5).
G3 and G4 SEM micrographs presented an irregular enamel surface with residues of the
material evident on the surface (Figures 6 and 7).

The results of the statistical analysis of the Ca/P ratio assessed using EDS analysis
are shown in Figure 8. The Ca/P ratio (AV ± SD) of the G5 (2.00 ± 0.07) is statistically
different from G1 (1.73 ± 0.05), G2 (1.76 ± 0.01), G3 (1.88 ± 0.06) and G6 (1.74 ± 0.04)
(p < 0.05). Contrarily, there are no significant differences between G6 and G1 and G2
(p > 0.05). Furthermore, G4 (2.01 ± 0.06) showed no statistically significant differences from
G5 (p > 0.05).
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Figure 2. Scanning electron micrographs of G6 (group without any treatment): (a) the presence
of perikymatas on the enamel surface (white arrows) at 200× magnification; (b,c) the crystalline
structure composed of enamel prisms and the intact interprismatic area (black arrow) at 500× and
1000× magnification, respectively.
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Figure 3. Scanning electron micrographs of G5 (group treated with the demineralizing solution):
(a) an irregular surface with the presence of cracks and an early stage of destruction of the interpris-
matic substance (white arrows) at 200× magnification; (b,c) the “honeycomb structure” characterized
by the selective dissolution of the apatite crystals inside the prisms, typical of the enamel demineral-
ization morphology, at 500× and 1000× magnification, respectively.
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Figure 4. Scanning electron micrographs of G1 (Mousse Group): (a) intact morphology of the enamel
surface (black arrows) at 200× magnification; (b,c) the partial recovery of the prism crystals (red
asterisks) with the presence of a slight interprismatic dissolution (white arrows) at 500× and 1000×
magnification, respectively.
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Figure 5. Scanning electron micrographs of G2 (Nanohydroxyapatite group): (a) a non-homogeneous
surface with intact interprismatic areas (red asterisk) alternated by cracks in the enamel (black arrows)
at 200× magnification; (b,c) the presence of enamel prisms with partially intact crystals with slight
dissolution of the interprismatic area (white arrows) at 500× and 1000× magnification, respectively.
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Figure 6. Scanning electron micrographs of G3 (Duraphat Group): (a) an irregular surface (red
asterisk) with residues of the material evident on the surface (black arrows) at 200× magnification;
(b,c) the presence of the enamel prisms with partially intact crystals and an almost restored structure
of the interprismatic area at 500× and 1000× magnification, respectively.
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comparison test; p < 0.05 is significant. Results are reported as average value and standard deviation.
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(Mousse Group), G2 (Nano-Hydroxyapatite Group), G3 (Duraphat Group), G4 (Biosmalto Group),
G5 (group treated with the demineralizing solution), G6 (group without any treatment).
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4. Discussion

The era of preventive and minimally invasive dentistry dictates the need to develop
new approaches to remineralize initial enamel lesions. Nowadays, many products, con-
taining calcium, phosphate and fluoride in their bioavailable forms, are widely used to
remineralize enamel structure and prevent dentin hypersensitivity in the form of tooth-
pastes, mouth rinsing and gels [33]. In this in vitro study, the efficacy of four different
agents on the enamel surface, after exposure to the acidic environment, was evaluated
and compared.

The results demonstrated that by treating the demineralized enamel surface, the rem-
ineralizing agents provided ions that favored the subsurface mineral gain in different ways.

Compared to other studies in the literature [20,24,34], it is noteworthy that this exper-
imental study is the first to analyze four different active ingredients commonly used in
remineralizing agents (CPP-ACP, N-HA, SF, F-ACP) in order to assess the remineralization
process of initial enamel lesions.

We used the SEM-EDS combined analytical technique for the qualitative investigation
of the enamel surface morphology and the quantification of the Ca/P ratio as indications of
enamel health [24]. Therefore, crystalline structure integrity and Ca/P values are important
indicators of the agents’ effects on the enamel remineralization of several samples in the
tested groups [35,36].

The stoichiometric form of hydroxyapatite is shown as Ca10(PO4)6(OH)2, and its Ca/P
ratio is 1.67 [37], similar to that of G6 (1.74 ± 0.04), which is sound, not demineralized and
untreated enamel. Indeed, as a result of the demineralization process, the amount of P
decreases, as also found by Aoba et al. [38], thus resulting in the increase in the Ca/P ratio
of G5 demineralized enamel (2.00 ± 0.07). Then, according to our results, the Ca/P ratio
is inversely related to the health condition of the enamel. This result could probably be
attributed to the action of lactic acid, used to perform demineralization, which acts on the
phosphate component, increasing the ratio value.

SEM results of the demineralized enamel in G5 show an irregular morphology of
the surface (Figure 3), defined as a “honeycomb structure”, with voids and numerous
micropores due to the complete loss of prismatic structure integrity, which is preserved,
instead, in G6 images (Figure 2) [39].

The four agents tested were compared with the Ca/P ratio values of sound enamel
in G6. The closest values to G6 mean that the remineralizing treatment achieves a good
percentage of enamel mineralization recovery.

Based on our results, among the tested products (G1–G4), CPP-ACP (G1) and N-HA
(G2) are able to remineralize the enamel surface in a short time (7 days), returning to values
very close to those of sound enamel (G6). SF (G3) differs slightly from G6, while F-ACP
(G4) shows results that are similar to those of demineralized enamel (G5) in terms of the
Ca/P ratio.

After seven days of treatment, SEM observations of G1 (Figure 4), treated with CPP-
ACP, and G2 (Figure 5), treated with synthetic N-HA, highlight an almost complete rem-
ineralization of the enamel structure similar to the smooth sound enamel, as shown in
Figure 2. Furthermore, regarding the EDS chemical analysis of G1 and G2, Ca/P ratios
increasingly approached the G6 value that has not undergone demineralization, thus show-
ing no significant differences between these three groups. In agreement with Yu et al. [40],
our results suggest that the Tooth Mousse (G1) has a considerable effect on increasing
the remineralization of enamel. In a study conducted by Li et al., CPP-ACP was able to
remineralize primary lesions in contrast to placebo; however, contrary to our results, its
effects are not significant compared to fluoride [41].

The specimens treated with N-HA(G2) exhibited a surface Ca/P ratio close to that of the
biological enamel (G6) in comparison with SF and F-ACP, according to other studies [42–44].
In addition, in vitro dynamic pH cycling experiments have shown that N-HA has the potential
to remineralize initial enamel lesions with a comparable or even superior efficacy to that of
fluoride [45,46].
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Since the cariostatic effects of fluoride have been discovered, caries prevention has
largely relied on the ability of fluoride ions to inhibit enamel dissolution and enhance
remineralization of incipient lesions [47]. Gao et al. showed that the use of a 5% SF varnish
can remineralize incipient caries lesions, thus making this option an important method
to inhibit enamel demineralization [48]. G3, treated with a varnish containing 5% of SF,
showed a slight remineralization, but the Ca/P ratio (1.88 ± 0.06) remains slightly higher
than that of G6 (1.74 ± 0.04) and presents statistical difference from all other groups. As
confirmed by our study at seven days of treatment, 5% SF is less effective than other
remineralizing products tested [49]. In contrast to our results, some studies state that 5%
SF represents the maximum effective agent for remineralization [50,51].

It has been demonstrated that the F-ACP complex nanoparticles are able to attach to
dental surfaces and to crystallize into hydroxyapatite in the oral environment, forming
a new mineral phase contiguous to the biogenic one, and hence restoring the deminer-
alized tissue into its native structure [52]. These findings are partially accepted in this
study, since quantitative EDS results of G4 showed that Ca/P ratio (2.01 ± 0.06) does
not present statistically different results compared to G5 (Figure 8), although scanning
electron micrographs display an apparently partial intact structure of the enamel (Figure 7).
Therefore, this treatment could benefit the partial restoration of the crystalline structure,
while not affecting the amount of phosphorus. It is possible that the morphological shift of
the surface precedes the compositional one (Ca/P). The capability of the F-ACP complex to
remineralize the enamel surface is probably related to the time of the agent’s application.

One of the limitations of this research is the timing of the protocol study because after
seven days, G4 was the only group that presented a non-statistical difference from G5.
Therefore, the remineralization effectiveness of the tested agents applied for longer time is
a stimulating concept emerging from our findings and will be taken as a starting point in
future studies. In addition, we must consider the limits of the present in vitro study, as it is
still far from simulating conditions present in the oral cavity. Nevertheless, the provided
findings remain encouraging and, most importantly, demonstrate that the beneficial action
of certain remineralizing products on dental enamel reorganization occurs at seven days.

5. Conclusions

Clinical significance: The initial enamel demineralization surface may be treated with
topical use of remineralizing agents, achieving an almost complete remineralization of the
surface and a reorganization of the prismatic structure of the enamel. In all groups tested,
after seven days of remineralizing agents’ application, complete remineralization was not
obtained, but rather a reorganization of the enamel structure from both quantitative and
qualitative points of view. CPP-ACP (G1) and N-HA (G2) gave better results compared to
SF (G3) and F-ACP (G4).
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