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Abstract
We introduce a new representation and feature extraction method for biological sequences.

Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors

(ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene

sequences, this representation can be widely used in applications of deep learning in prote-

omics and genomics. In the present paper, we focus on protein-vectors that can be utilized

in a wide array of bioinformatics investigations such as family classification, protein visuali-

zation, structure prediction, disordered protein identification, and protein-protein interaction

prediction. In this method, we adopt artificial neural network approaches and represent a

protein sequence with a single dense n-dimensional vector. To evaluate this method, we

apply it in classification of 324,018 protein sequences obtained from Swiss-Prot belonging

to 7,027 protein families, where an average family classification accuracy of 93% ± 0.06% is

obtained, outperforming existing family classification methods. In addition, we use ProtVec

representation to predict disordered proteins from structured proteins. Two databases of

disordered sequences are used: the DisProt database as well as a database featuring the

disordered regions of nucleoporins rich with phenylalanine-glycine repeats (FG-Nups).

Using support vector machine classifiers, FG-Nup sequences are distinguished from struc-

tured protein sequences found in Protein Data Bank (PDB) with a 99.8% accuracy, and

unstructured DisProt sequences are differentiated from structured DisProt sequences with

100.0% accuracy. These results indicate that by only providing sequence data for various

proteins into this model, accurate information about protein structure can be determined.

Importantly, this model needs to be trained only once and can then be applied to extract a

comprehensive set of information regarding proteins of interest. Moreover, this representa-

tion can be considered as pre-training for various applications of deep learning in bioinfor-

matics. The related data is available at Life Language Processing Website: http://llp.

berkeley.edu and Harvard Dataverse: http://dx.doi.org/10.7910/DVN/JMFHTN.
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Introduction
Nature uses certain languages to describe biological sequences such as DNA, RNA, and pro-
teins. Much like humans adopt languages to communicate, biological organisms use sophisti-
cated languages to convey information within and between cells. Inspired by this conceptual
analogy, we adopt existing methods in natural language processing (NLP) to gain a deeper
understanding of the “language of life” with the ultimate goal to discover functions encoded
within biological sequences [1–4].

Feature extraction is an important step in data analysis, machine learning and NLP. It refers
to finding an interpretable representation of data for machines that can increase performance
of learning algorithms. Even the most sophisticated algorithms would perform poorly if inap-
propriate features are used, while simple methods can potentially perform well when they are
fed with the appropriate features. Feature extraction can be done manually or in an unsuper-
vised fashion. In this paper, we propose an unsupervised data-driven distributed representation
for biological sequences. This method, called bio-vectors (BioVec) in general and more specifi-
cally protein-vectors (ProtVec) for proteins, can be applied to a wide range of problems in bio-
informatics, such as protein visualization, protein family classification, structure prediction,
domain extraction, and interaction prediction. In this approach, each biological sequence is
embedded in an n-dimensional vector that characterizes biophysical and biochemical proper-
ties of sequences using neural networks. In the following, we first explain how this method
works and how it is trained from 546,790 sequences of Swiss-Prot database. Subsequently, we
will analyze the biophysical and the biochemical properties of this representation qualitatively
and quantitatively. To further evaluate this feature extraction method, we apply it in classifica-
tion of 7,027 protein families of 324,018 protein sequences in Swiss-Prot. In the next step, we
use this approach for visualization and characterization of two categories of disordered
sequences: the DisProt database as well as a database of disordered regions of phenylalanine-
glycine nucleoporins (FG-Nups). Finally, we classify these protein families using support vector
machine (SVM) classifiers [5]. As a key advantage of the proposed method, the embedding
needs to be trained only once and then may be used to encode biological sequences in a given
problem. The related data and future updated will be available at: http://llp.berkeley.edu and
Harvard Dataverse: http://dx.doi.org/10.7910/DVN/JMFHTN.

Distributed Representation
Distributed representation has proved one of the most successful approaches in machine learn-
ing [6–10]. The main idea in this approach is encoding and storing information about an item
within a system through establishing its interactions with other members. Distributed repre-
sentation was originally inspired by the structure of human memory, where the items are
stored in a “content-addressable” fashion. Content-based storing allows for efficiently recalling
items from partial descriptions. Since the content-addressable items and their properties are
stored within a close proximity, such a system provides a viable infrastructure to generalize fea-
tures attributed to an item.

Continuous vector representation, as a distributed representation for words, has been recently
established in natural language processing (NLP) as an efficient way to represent semantic/syn-
tactic units with many applications. In this model, each word is embedded in a vector in an n-
dimensional space. Similar words have close vectors, where similarity is defined in terms of both
syntax and semantic. The basic idea behind training such vectors is that the meaning of a word is
characterized by its context, i.e. neighboring words. Thus, words and their contexts are consid-
ered to be positive training samples. Such vectors can be trained using large amounts of textual
data in a variety of ways, e.g. neural network architectures like the Skip-grammodel [10].
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Interesting patterns have been observed by training word vectors using Skip-gram in natural
language. Words with similar vector representations showmultiple degrees of similarity. For

instance, King
�! �Man

�! þWoman
�!

resembles the closest vector to the wordQueen
�!

[11].
In this work, we seek unique patterns in biological sequences to facilitate biophysical and

biochemical interpretations. We show how Skip-gram can be used to train a distributed repre-
sentation for biological sequences over a large set of sequences, and establish physical and
chemical interpretations for such representations. We propose this as a general-purpose repre-
sentation for protein sequences that can be used in a wide range of bioinformatics problems,
including protein family classification, protein interaction prediction, structure prediction,
motif extraction, protein visualization, and domain identification. To illustrate, we specifically
tackle visualization and protein family classification problems.

Protein Family Classification
A protein family is a set of proteins that are evolutionarily related, typically involving similar
structures or functions. The large gap between the number of known sequences versus the amount
of known functional information about sequences has motivated family (function) identification
methods based on primary sequences [12–14]. Protein Family Database (Pfam) is a widely used
source for protein families [15]. In Pfam, a family can be classified as a “family”, “domain”,
“repeat”, or “motif”. In this study, we utilize ProtVec to classify protein families in Swiss-Prot
using the information provided by Pfam database and we obtain a high classification accuracy.

Protein family classification based on the primary structures (sequences) has been per-
formed using classifiers such as support vector machine classifier (SVM) [16–18]. Besides the
primary sequence, the existing methods typically require extensive information for feature
extraction, e.g. hydrophobicity, normalized Van der Waals volume, polarity, polarizability,
charge, surface tension, secondary structure and solvent accessibility. The reported accuracies
of a previous study on family classification have been in the range of 69.1–99.6% for 54 protein
families [16]. In another study, researchers used motifs from protein interactions for detecting
Structural Classification of Proteins (SCOP) [19] families for 368 proteins, and obtained a clas-
sification accuracy of 75% at sensitivity of 10% [20]. In contrast, our proposed approach is
trained based solely on primary sequence information, yet achieving high accuracy when
applied in classifications of protein families.

Disordered Proteins
Proteins can be fully or partially unstructured, i.e. lacking a secondary or ordered tertiary
three-dimensional structure. Due to their abundance and the critical roles they play in cell biol-
ogy, disordered proteins are considered to be an important class of proteins [21]. Several stud-
ies have focused on disordered peptides and their functional analysis in recent years [22–24].

In the present work, we introduce ProtVec for the visualization and characterization of two
categories of disordered proteins: DisProt database as well as a database of disordered regions
of phenylalanine-glycine nucleoporins (FG-Nups) [25].

DisProt is a database of experimentally identified disordered proteins that categorizes disor-
dered and ordered regions of a collection of proteins [26]. DisProt Release 6.02 consists of 694
proteins presenting 1539 disordered, and 95 ordered regions. FG-Nups dataset is a collection
of FG-Nups disordered sequences [27]. Nucleoporins form the nuclear pore complex (NPC),
the sole gateway for bidirectional transport of cargo between the cytoplasm and the nucleus in
eukaryotic cells [28]. Since FG-Nups are mostly computationally identified, only 10 sequences
out of 1,138 disordered sequences exist in Swiss-Prot. A recent study on features of FG-Nups
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versus DisProt showed biophysical differences between FG-Nups and average DisProt
sequences [29].

We further propose using protein-vectors for the visualization of biological sequences. Sim-
plicity and biophysical interpretations encoded within ProtVec distinguishes this method from
the previous work [30, 31]. As an example, we use ProtVec for the visualization of FG-Nups,
DisProt, and structured PDB proteins. This visualization confirms the results obtained [29] on
the biophysical features of FG-Nups and typical disordered proteins. Furthermore, we employ
ProtVec to classify FG-Nups versus random PDB sequences as well as DisProt disordered
regions versus disport ordered regions.

Methods

Protein-Space Construction
Our goal is to construct a distributed representation of biological sequences. In the training
process of word embedding in NLP, a large corpus of sentences should be fed into the training
algorithm to ensure sufficient contexts are observed. Similarly, a large corpus is needed to train
distributed representation of biological sequences. We use Swiss-Prot as a rich protein data-
base, which consists of 546,790 manually annotated and reviewed sequences.

The next step in training distributed representations is to break the sequences into sub
sequences (i.e. biological words). The simplest and most common technique in bioinformatics
to study sequences involves fixed-length overlapping n-grams [32–34]. However, instead of
using n-grams directly in feature extraction, we utilize n-gram modeling for training a general
purpose distributed representation of sequences. This so-called embedding model needs to be
trained only once and may then be adopted in feature extraction part of specific problems.

In n-gram modeling of protein informatics, usually an overlapping window of 3 to 6 resi-
dues is used. Instead of taking overlapping windows, we generate 3 lists of shifted non-overlap-
ping words, as shown in Fig 1. Evaluating K-nearest neighbors in a 2xfold cross-validation for
different window sizes, embedding vector sizes and overlapping versus non-overlapping n-
grams showed a more consistent embedding training for a window size of 3 and the mentioned
splitting.

The same procedure is applied on all 546,790 sequences in Swiss-Prot, thus at the end we
obtain a corpus consisting of 546,790 × 3 = 1,640,370 sequences of 3-grams (3-gram is a “bio-
logical” word consisting of 3 amino acids). The next step is training the embedding based on
such data through a Skip-gram neural network. In training word vector representations, Skip-
gram attempts to maximize the probability of observed word sequences (contexts). In other

Fig 1. Protein sequence splitting. In order to prepare the training data, each protein sequence will be
represented as three sequences (1, 2, 3) of 3-grams.

doi:10.1371/journal.pone.0141287.g001
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words, for a given training sequence of words we would like to find their corresponding n-
dimensional vectors maximizing the following average log probability function. Such a con-
straint allows similar words to assume a similar representation in this space.

argmax
v;v

1

N

XN

i¼1

X

�c�j�c;j 6¼0

log pðwiþjjwiÞ

pðwiþjjwiÞ ¼
exp ðv0Twiþj

vwi
Þ

PW
k¼1 exp ðv0Twk

vwi
Þ ;

ð1Þ

where N is the length of the training sequence, 2c is the window size we consider as the context,
wi is the center of the window,W is the number of words in the dictionary and vw and v0w are
input and output n-dimensional representations of word w, respectively. The probability p(wi

+j|wi) is defined using a softmax function. Hierarchical softmax or negative sampling are effi-
cient approximations of such a softmax function. In the implementation we use (Word2Vec)
[10] negative sampling has been utilized, which is considered as the state-of-the-art for training
word vector representation. Negative sampling uses the following objective function in the cal-
culation of the word vectors:

argmax
y

Y

ðw;cÞ2D
pðD ¼ 1jc;w; yÞ

Y

ðw;cÞ2D0
pðD ¼ 0jc;w; yÞ; ð2Þ

where D is the set of all word and context pairs (w, c) existing in the training data (positive

samples) and D0 is a randomly generated set of incorrect (w, c) pairs (negative samples).
p(D = 1|w, c; θ) is the probability that (w, c) pair came from the training data and p(D = 0|w,

c; θ) is the probability that (w, c) did not come from the training data. The term p(D = 1|c, w; θ)
can be defined using a sigmoid function on the word vectors:

pðD ¼ 1jw; c; yÞ ¼ 1

1þ e�vc �vw
;

where the parameters θ are the word vectors we train within the optimization framework: vc
and vw 2 Rd are vector representations for the context c and the word w respectively [35]. In Eq
(2), the positive samples maximize the probabilities of the observed (w, c) pairs in the training
data, while the negative samples prevent all vectors from having the same value by disallowing
some incorrect (w, c) pairs. To train the embedding vectors, we consider a vector size of 100
and a context size of 25. Thus each 3-gram is presented as a vector of size 100.

Protein-Space Analysis
To qualitatively analyze the distribution of various biophysical and biochemical properties
within the training space, we project all 3-gram embeddings from 100-dimensional space to a
2D space using Stochastic Neighbor Embedding [36]. Mass, volume, polarity, hydrophobicity,
charge, and van der Waals volume properties were analyzed. The data is adopted from [37]. In
addition, to quantitatively measure the continuity of these properties in the protein-space, the
best Lipschitz constant, i.e. the smallest k satisfying is calculated:

df ðfpropðw1Þ; fpropðw2ÞÞ � k� dwðw1;w2Þ; ð3Þ

where f is the scale of one of the properties of a given 3-grams (e.g., average mass, hydrophobic-
ity, etc.), d is the distance metric, df is the absolute value of score differences, and dw is Euclid-
ian distance between two 3-grams w1 and w2. The Lipschitz constant is calculated for the
aforementioned properties.
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Protein Family Classification
To evaluate the strength of the proposed representation, we set up a classification task on protein
families. Family information of 324,018 protein sequences in Swiss-Prot is extracted from the
Protein Family (Pfam) database, resulting in a total of 7,027 distinct families for Swiss-Prot
sequences. Each sequence is represented as the summation of the vector representation of over-
lapping 3-grams. Thus, each sequence is presented as a vector of size 100. For each family type,
the same number of instances from Swiss-Prot are selected randomly to form the negative exam-
ples. Support vector machine classifiers are used to evaluate the strength of ProtVec in the classi-
fication of protein families through 10 × fold cross-validations. We perform the classification
over 7,027 protein families consisting of 324,018 sequences. For the evaluation we report specific-
ity (true negative rate), sensitivity (true positive rate), and the accuracy of family classifications.

Sensitivity ¼ TP rate ¼ TP
TP þ FN

Specificity ¼ 1� FP rate ¼ TN
FP þ TN

Accuracy ¼ TP þ TN
P þ N

Visualization and Classification of Disordered Proteins
Two databases of disordered proteins are used for disordered protein prediction: DisProt data-
base (694 sequences) and FG-Nups dataset (1,138 sequences).

FG-Nups Characterization. To distinguish the characteristics of FG-Nups, a collection of
1,138 FG-Nups and two random sets of 1,138 structured proteins from Protein Data Bank
(PDB) [38] are compared. Since PDB sequences on average have a shorter length than disor-
dered proteins, the two sets are selected from PDB in such a way that they have an average
length of 900 residues, the same as the average length of the disordered protein dataset. For
visualization purposes, the ProtVec is reduced from 100 dimensions to a 2D space using Sto-
chastic Neighbor Embedding [36].

We quantitatively evaluate how ProtVec can be used to distinguish between FG-Nups ver-
sus typical PDB sequences using a support vector machine binary classifier. The positive exam-
ples were the aforementioned 1,138 disordered FG-Nups proteins and the negative examples
(again 1,138 sequences) are selected randomly from PDB with the same average length of dis-
ordered sequences (� 900 residues). We present each protein sequence as a summation of its
ProtVecs of all 3-grams. Since the average length of structured proteins is shorter than
FG-Nups, and to avoid trivial cases, the PDB sequences are selected in a way to maintain the
same average length.

DisProt Characterization. To distinguish the characteristics of DisProt sequences, we use
DisProt Release 6.02, consisting of 694 proteins presenting 1539 disordered and 95 ordered
regions, and perform the same experiment as for FG-Nups with DisProt sequences.

Results

Protein-Space Analysis
Although the protein-space is trained based on only the primary sequences of proteins, it offers
several interesting biochemical and biophysical implications. In order to study these features,
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we visualized the distribution of different criteria, including mass, volume, polarity, hydropho-
bicity, charge, and van der Waals volume in this space. To do so, for each 3-gram we conducted
qualitative and quantitative analyses as described below.

Qualitative Analysis. In order to visualize the distribution of the aforementioned proper-
ties, we projected all 3-gram embeddings from 100-dimensional space to a 2D space using Sto-
chastic Neighbor Embedding (t-SNE) [36]. In the diagrams presented in Fig 2, each point
represents a 3-gram and is colored according to its scale in each property. Interestingly, as can
be seen in the figure, 3-grams with the same biophysical and biochemical properties were
grouped together. This observation suggests that the proposed embedding not only encodes
protein sequences in an efficient way that proved useful for classification purposes, but also
reveals some important physical and chemical patterns in protein sequences.

Quantitative Analysis. Although Fig 2 illustrates the smoothness of protein-space with
respect to different physical and chemical meanings, we required a quantitative approach to
measure the continuity of these properties in the protein-space. To do so, we calculated the
best Lipschitz constant. For all 6 properties presented in Fig 2, we calculated the minimum k.
To evaluate this result we made an artificial space called “scrambled space” by randomly

Fig 2. Normalized distributions of biochemical and biophysical properties in protein-space. In these plots, each point represents a 3-gram (a word of
three residues) and the colors indicate the scale for each property. Data points in these plots are projected from a 100-dimensional space a 2D space using t-
SNE. As it is shown words with similar properties are automatically clustered together meaning that the properties are smoothly distributed in this space.

doi:10.1371/journal.pone.0141287.g002
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shuffling the labels of 3-grams in the 100 dimensional space. Table 1 contains the values of
Libschitz constants for protein-space versus the “scrambled space” with respect to different
properties and also their ratio.

Normally if k = 1 the function is called a short map, and if 0� k< 1 the function is called a
contraction. The results suggest that the protein-space is on average 2-times smoother in terms
of physical and chemical properties than a random space. This quantitative result supports our
qualitative observation of the space structure in Fig 2, and suggests that our training space
encodes, 3-grams in an informative manner.

Protein Family Classification
In order to evaluate the strength of ProtVec, we performed classifications of 7,027 protein fam-
ilies and obtained a weighted average accuracy of 93 ± 0.06%, which exhibits a more reliable
result than the existing methods. In contrast to the existing methods, our proposed approach is
trained based on primary sequence information alone.

Table 2 shows the sensitivity, specificity, and the accuracy for the most frequent families in
Swiss-Prot. These results suggest that structural features of proteins can be accurately predicted
from the primary sequence information solely. The results for all 7,027 families can be found
in Supplementary Information, see S1 File. The average accuracy for the first 1,000 (261,149
sequences), 2,000 (293,957 sequences), 3,000 (308,292 sequences), and 4,000 (316,135
sequences) frequent families were respectively 94% ± 0.05%,93% ± 0.05%, 92% ± 0.06%, and
91% ± 0.08%. To compute the overall accuracy for all 7,026 families, we calculated the weighted
average accuracy, because for the families with number of instances less than 10, the validation
set are not statistically sufficient and they should have less contribution in the overall accuracy.
The weighted accuracy of all 7,027 families (weighted based on the number of instances) was
93% ± 0.06%.

Disordered Proteins Visualization and Classification
Due to the functional importance of disordered proteins, prediction of unstructured regions of
disordered proteins and determining the sequence patterns featured in disordered regions is a
critical problem in protein bioinformatics. We evaluated the ability of ProtVec to characterize
and discern disordered protein sequences from structured sequences.

FG-Nups Characterization. In this case study, we used the FG-Nups collection of 1,138
disordered proteins containing disorder regions with a fraction of at least one third of the
sequence length. For comparison purposes, we also collected two sets of structured proteins
from Protein Data Bank (PDB).

Table 1. Using Lipschitz number to evaluate the continuity of ProtVec with respect to biophysical and biochemical properties.

Lipschitz Number

Property protein-Space The scrambled space Ratio

Mass 0.3137 0.6605 0.4750

Volume 0.3742 0.6699 0.5586

Van Der Waal Volume 0.3629 0.6431 0.5643

Polarity 0.4757 1.2551 0.3790

Hydrophobicity 0.608 1.448 0.4203

Charge 0.8733 1.3620 0.6412

Average 0.50 1.01 0.51

doi:10.1371/journal.pone.0141287.t001
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Table 2. Performance of protein family classification using SVM and ProtVec over some of the most frequent families in Swiss-Prot. Families are
sorted with respect to their frequency in Swiss-Prot.

Training instances Classification Result

Family name # of positive
sequences

# of negative
sequences

Specificity Sensitivity Accuracy

50S ribosome-binding GTPase 3,084 3,084 0.95 0.93 0.94

Helicase conserved C-terminal domain 2,518 2,518 0.83 0.80 0.82

ATP synthase alpha-beta family, nucleotide-binding domain 2,387 2,387 0.98 0.97 0.97

7 transmembrane receptor (rhodopsin family) 1,820 1,820 0.95 0.96 0.95

Amino acid kinase family 1,750 1,750 0.91 0.92 0.91

ATPase family associated with various cellular activities
(AAA)

1711 1711 0.92 0.90 0.91

tRNA synthetases class I (I, L, M and V) 1,634 1,634 0.97 0.97 0.97

tRNA synthetases class II (D, K and N) 1,419 1,419 0.88 0.83 0.85

Major Facilitator Superfamily 1,303 1,303 0.95 0.97 0.96

Hsp70 protein 1,272 1,272 0.97 0.97 0.97

NADH-Ubiquinone-plastoquinone (complex I), various
chains

1,251 1,251 0.97 0.97 0.97

Histidine biosynthesis protein 1,248 1,248 0.96 0.97 0.97

TCP-1-cpn60 chaperonin family 1,246 1,246 0.95 0.96 0.95

EPSP synthase (3-phosphoshikimate
1-carboxyvinyltransferase)

1,207 1,207 0.96 0.96 0.96

Aldehyde dehydrogenase family 1,200 1,200 0.93 0.94 0.94

Shikimate–quinate 5-dehydrogenase 1,128 1,128 0.87 0.89 0.88

GHMP kinases N terminal domain 1,120 1,120 0.88 0.92 0.90

Ribosomal protein S2 1,083 1,083 0.95 0.96 0.95

Ribosomal protein S4–S9 N-terminal domain 1,072 1,072 0.95 0.97 0.96

Ribosomal protein L16p-L10e 1,053 1,053 0.95 0.96 0.96

KOW motif 1,047 1,047 0.93 0.95 0.94

Uncharacterized protein family UPF0004 1,044 1,044 0.95 0.97 0.96

Ribosomal protein S12-S23 1,016 1,016 0.94 0.98 0.96

GHMP kinases C terminal 1,011 1,011 0.88 0.92 0.90

Ribosomal protein S14p-S29e 997 997 0.93 0.98 0.95

Ribosomal protein S11 980 980 0.96 0.98 0.97

UvrB-uvrC motif 968 968 0.94 0.96 0.95

Ribosomal protein L33 958 958 0.96 0.98 0.97

BRCA1 C Terminus (BRCT) domain 956 956 0.94 0.95 0.95

RF-1 domain 950 950 0.93 0.97 0.95

Ankyrin repeats (3 copies) 944 944 0.89 0.88 0.88

Ribosomal protein L20 932 932 0.96 0.99 0.97

RNA polymerase beta subunit 912 912 0.94 0.97 0.95

Ribosomal protein S18 908 908 0.93 0.97 0.95

ATP synthase B-B CF(0) 900 900 0.92 0.94 0.93

Peptidase family M20-M25-M40 889 889 0.92 0.93 0.93

Ribosomal protein L18e-L15 887 887 0.93 0.96 0.95

Glucose inhibited division protein A 886 886 0.95 0.96 0.95

NADH-ubiquinone-plastoquinone oxidoreductase chain 4L 885 885 0.94 0.97 0.96

lactate-malate dehydrogenase, NAD binding domain 880 880 0.92 0.94 0.93

HD domain 879 879 0.93 0.93 0.93

Ribosomal protein S10p-S20e 873 873 0.95 0.97 0.96

(Continued)
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Table 2. (Continued)

Training instances Classification Result

Family name # of positive
sequences

# of negative
sequences

Specificity Sensitivity Accuracy

Pyridoxal-phosphate dependent enzyme 870 870 0.91 0.91 0.91

Ribosomal L18p-L5e family 860 860 0.93 0.96 0.94

Ribosomal protein L3 855 855 0.94 0.97 0.96

tRNA synthetases class I (M) 843 843 0.94 0.96 0.95

UbiA prenyltransferase family 841 841 0.94 0.95 0.95

Ribosomal protein L4–L1 family 841 841 0.94 0.95 0.95

Ribosomal protein S16 840 840 0.93 0.97 0.95

Ribosomal protein S13-S18 840 840 0.94 0.97 0.95

MraW methylase family 837 837 0.95 0.98 0.96

Ribosomal L32p protein family 825 825 0.94 0.97 0.95

Elongation factor TS 819 819 0.94 0.97 0.96

Tetrahydrofolate dehydrogenase-cyclohydrolase, catalytic
domain

817 817 0.94 0.96 0.95

ATP synthase delta (OSCP) subunit 813 813 0.93 0.96 0.94

tRNA synthetases class I (C) catalytic domain 812 812 0.95 0.97 0.96

SecA Wing and Scaffold domain 805 805 0.95 0.97 0.96

Ribonuclease HII 795 795 0.93 0.94 0.93

Ribosomal protein L31 795 795 0.97 0.99 0.98

Ribosomal L27 protein 794 794 0.98 0.99 0.99

IPP transferase 794 794 0.93 0.95 0.94

GTP-binding protein LepA C-terminus 793 793 0.96 0.98 0.97

Ribosomal protein L17 791 791 0.92 0.96 0.94

Ribosomal protein L23 790 790 0.91 0.96 0.94

Ribosomal protein L10 781 781 0.90 0.92 0.91

Ribosomal protein L19 780 780 0.94 0.97 0.95

Ribosomal protein S20 774 774 0.95 0.97 0.96

Ribosomal protein L35 769 769 0.93 0.97 0.95

Phosphoglucomutase-phosphomannomutase, C-terminal
domain

768 768 0.92 0.96 0.94

AMP-binding enzyme 767 767 0.87 0.89 0.88

Ribosomal prokaryotic L21 protein 766 766 0.93 0.96 0.95

tRNA methyl transferase 759 759 0.94 0.96 0.95

Ribosomal L29 protein 757 757 0.95 0.97 0.96

Glycosyl transferase family, a-b domain 754 754 0.90 0.91 0.91

Translation initiation factor IF-2, N-terminal region 750 750 0.96 0.98 0.97

Ribosomal L28 family 749 749 0.93 0.98 0.95

Glycosyl transferase family 4 739 739 0.96 0.98 0.97

tRNA synthetases class I (R) 736 736 0.93 0.96 0.95

Bacterial trigger factor protein (TF) C-terminus 733 733 0.95 0.96 0.95

For the first 1,000 families 261,149 261,149 0.92 0.95 0.94

For the first 2,000 families 293,957 293,957 0.90 0.96 0.93

For the first 3,000 families 308,292 308,292 0.89 0.96 0.92

For the first 4,000 families 316,135 316,135 0.87 0.96 0.91

Weighted average for all 7,027 families 324,018 324,018 0.91 0.95 0.93

doi:10.1371/journal.pone.0141287.t002
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In order to visualize each dataset, we reduced the dimensionality of the protein-space using
Stochastic Neighbor Embedding [36, 39] and then generated the 2D histogram of all overlap-
ping 3-grams occurring in each dataset. As shown in Fig 3 (see column (b)), the two random
sets from structured proteins had nearly identical patterns. However, the FG-Nups dataset
exhibits a substantially different pattern. To amplify the characteristic of disordered sequences
we have also examined the histogram of disordered regions of FG-Nups (see Fig 3, column
(a)).

In the next step, we quantitatively evaluated how ProtVec can be used to distinguish
between FG-Nups versus typical PDB sequences using a support vector machine binary classi-
fication. The positive examples were the above mentioned 1,138 disordered FG-Nups proteins
and negative examples (again 1,138 sequences) were selected randomly from PDB with the
same average length of disordered sequences (� 900 residues). We represented each protein
sequence as a summation of its ProtVecs of all 3-grams. Since on average the length of struc-
tured proteins were shorter than FG-Nups, in order to avoid trivial cases, the PDB sequences
were selected in such a way as to maintain the same average length. But still, an accuracy of
99.81% was obtained with high sensitivity and specificity (Table 3). The distribution of the clas-
sified proteins in a 2D space is shown in Fig 4.

Fig 3. Visualization of protein sequences using ProtVec can characterize FGNUPs versus Disport disordered sequences and structured
sequences. Column (a) compares FG Nup sequences 2D histogram (at the bottom) with 2D histogram of FG Nup disordered regions (on top). Column (b)
compares 2D histogram two random sets of structured sequences with the same average length as the FG-Nups. Column (c) compares between 2D
histogram of DisProt sequences (at the bottom) and 2D histogram of DisProt disordered regions (on top).

doi:10.1371/journal.pone.0141287.g003
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DisProt characterization. In this part, we used DisProt consisting of 694 proteins present-
ing 1539 disordered, and 95 ordered regions. We performed the same analysis as we did for
FG-Nups with DisProt sequences (see Fig 3 column (c)). Since the size of DisProt was relatively
small compared to that of the FG-Nups, the scales of columns (a),(b) were not comparable
with column (c) (see Fig 3). The visualization of disordered regions of DisProt sequences (Fig 3
column (c), on top) revealed a different characteristic than FG-Nups disordered regions (Fig 3
column (a), on top). A visual comparison between Figs 3 and 2 suggest that the FG-Nups have
a significantly higher amount of hydrophobic residues and less polar residues in their

Table 3. The performance of FG-Nups disordered protein classification in a 10xFold cross-validation
using SVM.

Sensitivity Specificity Accuracy

0.9987 0.9974 0.9981

doi:10.1371/journal.pone.0141287.t003

Fig 4. Classification of FG-Nups versus PDB structured sequences. In this figure, each point presents a protein projected into a 2D space.

doi:10.1371/journal.pone.0141287.g004
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disordered regions than the experimentally identified disordered proteins in DisProt [27, 29].
Additionally, the DisProt disordered regions versus DisProt ordered regions can be classified
with 100% accuracy respectively using SVM and ProtVec.

Conclusions
An unsupervised data-driven distributed representation, called ProtVec, was proposed for
application of machine learning approaches in biological sequences. By training this represen-
tation solely on protein sequences, our feature extraction approach was able to capture a
diverse range of meaningful physical and chemical properties. We demonstrated that ProtVec
can be used as an informative and dense representation for biological sequences in protein
family classification, and obtained an average family classification accuracy of 93%.

We further proposed ProtVec as a powerful approach for protein data visualization and
showed the utility of this approach by providing an example in characterization of disordered
protein sequences vs. structured protein sequences. Our results suggest that ProtVec can char-
acterize protein sequences in terms of biochemical and biophysical interpretations of the
underlying patterns. In addition, this dense representation of sequences can help to discrimi-
nate between various categories of sequences, e.g. disordered proteins. Furthermore, we dem-
onstrated that ProtVec was able to identify disordered sequences with an accuracy of nearly
100%. The related data is available at: http://llp.berkeley.edu and Harvard Dataverse: http://dx.
doi.org/10.7910/DVN/JMFHTN.

Another advantage of this method is that embeddings could be trained once and then used
to encode biological sequences in any given problem. In general, machine learning approaches
in bioinformatics can widely benefit from bio-vectors (ProtVec and GeneVec) representation.
This representation can be considered as pre-training for various applications of deep learning
in bioinformatics. In particular, ProtVec can be used in protein interaction predictions, struc-
ture prediction, and protein data visualization.

Supporting Information
S1 File. The results of family classification task for all 7,027 families.
(XLSX)
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