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A B S T R A C T

Objective: The measurement of in vivo intervertebral disc (IVD) mechanics may be used to understand the etiology
of IVD degeneration and low back pain (LBP). To this end, our lab has developed methods to measure IVD
morphology and uniaxial compressive deformation (% change in IVD height) resulting from dynamic activity, in
vivo, using magnetic resonance images (MRI). However, due to the time-intensive nature of manual image seg-
mentation, we sought to validate an image segmentation algorithm that could accurately and reliably reproduce
models of in vivo tissue mechanics.
Design: Therefore, we developed and evaluated two commonly employed deep learning architectures (2D and 3D
U-Net) for the segmentation of IVDs from MRI. The performance of these models was evaluated for morphological
accuracy by comparing predicted IVD segmentations (Dice similarity coefficient, mDSC; average surface distance,
ASD) to manual (ground truth) measures. Likewise, functional reliability and precision were assessed by evalu-
ating the intraclass correlation coefficient (ICC) and standard error of measurement (SEm) of predicted and
manually derived deformation measures.
Results: Peak model performance was obtained using the 3D U-net architecture, yielding a maximum mDSC ¼
0.9824 and component-wise ASDx ¼ 0.0683 mm; ASDy ¼ 0.0335 mm; ASDz ¼ 0.0329 mm. Functional model
performance demonstrated excellent reliability ICC ¼ 0.926 and precision SEm ¼ 0.42%.
Conclusions: This study demonstrated that a deep learning framework can precisely and reliably automate mea-
sures of IVD function, drastically improving the throughput of these time-intensive methods.
1. Introduction

Changes in intervertebral disc (IVD) mechanics may be related to the
future development of discogenic low back pain (LBP) [1–3]. To this
point, recent studies examining IVDmechanics in vivo have demonstrated
that factors associated with the development of IVD degeneration and
LBP (e.g., IVD composition, BMI) are predictive of IVD function in
response to dynamic activity. As such, it is believed that studying re-
lationships between IVD mechanics and composition in vivo may be
useful for evaluating the etiology of LBP as it pertains to IVD function [4,
5]. However, because recent work examining in vivo IVD function often
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involves time-intensive manual image segmentations, the translational
viability of these methods remains limited.

Deep learning algorithms have the potential to ameliorate this
bottleneck by automating the segmentation process. In particular, u-net-
based algorithms have proven to be powerful tools for efficiently seg-
menting and classifying anatomy, including in the spine [6–8]. However,
limited data exists examining the utility of such models as a means for
deriving measures of IVD tissue mechanics directly from MR images,
without the need for manual intervention.

Thus, the objective of this study was to develop a deep learning model
to accurately segment IVD morphology. Subsequently, we sought to
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evaluate the reliability and precision of this method as a means for
deriving measures of uniaxial compressive deformations (% change in
IVD height) resulting from dynamic activity. To do so, we utilized two
commonly employed deep learning architectures (2D and 3D U-net) to
segment IVD tissues from MR images [6]. The performance of these
models was evaluated by comparing predicted IVD morphology (dice
overlap, surface distance) and functional (deformation) metrics to
manual (ground truth) measures. We hypothesized that automated seg-
mentations would provide sufficient morphological accuracy to reliably
and precisely measure uniaxial compressive deformations from MR im-
ages taken before and after a dynamic walking activity.

2. Methods

2.1. Study design

The present study utilizes pre -and post-exercise imaging data from 25
asymptomatic subjects (i.e., with no history of back pain, injury, or
surgery) who participated in an IRB approved study (Age (y): 19–63;
Height (m): 1.57–1.91; Mass (kg): 54.3–121.6; BMI (kg/m2): 19.3–37.1).
Imaging data from 18 of the 25 subjects in this study have been used to
evaluate IVD function in two previously publishedworks [4,5]. Briefly, to
minimize the effects of diurnal changes in IVD height, subjects were
instructed to lay supine for 45 min prior to the baseline (pre-exercise) MR
imaging scan [1]. Following the baseline scan, subjects walked on a
treadmill for 30 min at a constant speed after which they immediately
returned to the scanner to complete post-exercise imaging.

2.2. Image processing

MR images were collected on a single 3.0-T (Tim Trio, Siemens
Medical Solutions) and 12-channel spine matrix coil. MR images used for
this analysis were acquired using a Sagittal 3D T2-weighted SPACE (TE/
TR:223/2500 ms; resolution, 0.875 � 0.875 � 0.875 mm; matrix, 320 �
320 � 80 pixels [3]) sequence. Ground truth (manual) binary segmen-
tations were performed by two investigators (with 2 and 4 years of
experience) and independently reviewed by a musculoskeletal radiolo-
gist for accuracy (>30 years of experience). Segmentations [4,5] of the
L1-L2–L5-S1 IVDs from SPACE MR volumes were performed for both the
pre- and post-exercise scan as previously described [4]. IVD images (2D:
64x64) and volumes (3D: 64x64x80) were manually localized (such that
only one IVD is present in each image) and stored in separate files for
subsequent model development. Thus, because images were cropped to
contain only a single IVD, each subject effectively contributed 10 IVDs
(i.e., L1-L2 – L5-S1; pre- and post-exercise) to the dataset.

2.3. Model development and training

Two basic U-net architectures (2D/3D) [6] were developed to eval-
uate this problem. All model architectures were constructed with five
encoder-decoder steps using 16, 32, 64, 128 and 256 filters at each level,
respectively. 2D and 3D model architectures were trained and evaluated
using deidentified bitmap (2D), and NIfTI-1 images (3D). Within each
model architecture group, a grid search optimization was performed to
examine the effect of hyperparameters: learning rate (Adam optimizer:
1e-1,1e-2,1e-3,1e-4), kernel size (3,5,7,9,11,13) and training batch size
(2D: 4,8,16; 3D: 1,2,4) on model performance. Validation and test batch
sizes were held constant at n ¼ 2 (20 IVDs) and n ¼ 1 subjects (10 IVDs),
respectively, for 2D and 3D model architectures. Model predictions were
converted into predicted class probabilities and then binarized using the
argmax transformation.

Model segmentation performance was assessed during validation
and testing steps by measuring the mean Dice similarity coefficient
(mDSC) (equation (1)), where true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) pixels denote the agreement
between ground truth and predicted labels. Dice coefficient calculations
2

are inclusive of the background class. Similarly, a Dice coefficient loss
function (equation (2)) was utilized during model training. For the loss
function, background class predictions were included in calculation of
Dice loss.

Subject assignment to training, testing and validation groups was
done randomly; however, training, validation and testing data sets were
held constant across all model permutations. Three subjects’ data were
withheld from training (n¼ 22 subjects) and divided into validation (n¼
2 subjects) and testing (n ¼ 1 subject) datasets. All models were devel-
oped, trained, tested and analyzed using python (3.8) packages pytorch
(1.10.2), monai (0.9.dev2221), nibabel (3.2.2) and pydicom (2.3.0).
Training was performed for n ¼ 2000 epochs with early stopping initi-
ated after 200 epochs without improvement (minimummDSC delta¼ 1e-
4). Training and grid search optimization was conducted using a high-
performance computing cluster.

mDSC¼ 1
n

Xn

i¼1

2TP
ð2TPþ FPþ FNÞ (1)

DSCloss ¼ 1� mDSC (2)

ASDi ¼ 1
n

X

b2Pred
min
b2Pred

kai � bik1 (3)

Deformation¼Hpost � Hpre

Hpre
� 100 (4)

SEm ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
(5)

2.4. IVD morphology analysis

IVD morphological performance was assessed using mDSC and the
component-wise (i.e., x, y, z) average surface distance (ASD; equation
(3)). The component-wise ASD was defined as the average minimum L1
distance (mm) between the nearest neighboring point on the boundary of
the ground truth (ai) and predicted (bi) segmentations. The x, y and z ASD
components were defined along the anterior-posterior, superior-inferior
and medial-lateral, respectively.

2.5. IVD deformation analysis

Predicted segmentations from the top performing models during
testing were then used to evaluate uniaxial IVD deformation. IVD
deformation was defined as the percent change in IVD height from the
pre- (Hpre) to the post-exercise (Hpost) MR scan (equation (4)). To do so,
surface contours were extracted from the binary segmentations, yielding
point clouds of the IVD. Surface models were then constructed using a
modified Poisson reconstruction algorithm as implemented in open3D
(v0.15.1). IVD height was then analyzed by measuring the average dis-
tance between the superior and inferior surfaces of each IVD using a
custom algorithm which has been previously described and validated
[4]. Reliability and precision of automated deformation measurements
(L1-L2 – L5-S1; n ¼ 5 IVD pairs) were compared to manually de-
formations derived from manual (ground truth) image segmentation
volumes using an intraclass correlation coefficient (ICC; ICC(2,k)) and
standard error of measurement (SEm (RMSE); equation (5)), respectively.
SEm calculations were derived from the mean-squared error (MSE) term
of a repeated measures ANOVA to determine differences between auto-
mated and ground truth IVD [9].

2.6. Throughput analysis

Each of the five IVD pairs during testing was segmented, processed,
and stored 100 times to evaluate the mean time required to segment and
surface reconstruct the surface of an IVD pair. Individual segmentations



Table 1
IVD morphological accuracy, reliability, and precision comparison by model
architecture.

Model Morphology Deformation

mDSC ASDx

(mm)
ASDy

(mm)
ASDz

(mm)
ICC(2,k) SEm

(%)

2D U-Net 0.959 0.054 0.089 – 0.647 0.820
3D U-Net 0.982 0.068 0.034 0.033 0.926 0.420
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and deformation analyses were performed in series on CPU (Intel®
Xeon® W-2295 CPU; 128 GB RAM).

3. Results

Visual comparisons between ground truth and predicted segmenta-
tions can be seen in Fig. 1. Surface reconstructions of the manual and
automatically derived segmentations are depicted in Peak model per-
formance was obtained using the 3D U-net architecture kernel size of 3,
learning rate of 1e-3 and training batch size of 1 yielding a maximum
mDSC of 0.9824 and minimum ASDi of 0.033–0.068 mm (Table 1). In
comparison, the 2D model architecture achieved peak test performance
(mDSC ¼ 0.959, ASDi ¼ 0.054–0.089 mm) using a kernel size of 9,
learning rate of 1e-2 and training batch size of 4. Deformation analyses
from five IVD pairs (n ¼ 1 subject, L1-L2 – L5-S1) yielded an ICC(2, k) of
0.926 and corresponding SEm of 0.42% for predictions stemming from
the optimized 3D U-Net architecture. Processing time for the segmenta-
tion and surface reconstruction of a pre-post-exercise IVD pair took, on
average, 4.2 s per pair.

4. Discussion

The present study utilized deep learning to automate the segmenta-
tion of IVDs fromMR images. We quantified deformation reliability (ICC)
Fig. 1. (A) Segmentation and reconstruction comparison between ground truth (ma
performing 3D U-Net. Each panel depicts a different slice of the predicted (green) a
formance (mDSC ¼ 0.9824) indicates that 98.24% of voxels in the ground truth ar
parison. Ground truth (top row) and predicted (bottom row) segmentations from the
Poisson reconstruction algorithm.

3

and precision (SEm) in addition to measures of IVD morphology (mDSC,
ASD). Using the 3D model, it was observed that mean surface deviations
between ground truth and predicted segmentations were minimal,
particularly along the superior-inferior boundary of the IVD. This result
was reflected in the deformation analysis, which found automated
measures to be comparably reliable and precise when compared to
ground truth measures. Importantly, this study demonstrated that a
relatively simplistic deep learning framework can reliably automate
measures of IVD function, improving the throughput of these time-
intensive methods.

Morphological accuracy was quantified using two methods, mDSC
and the component-wise ASD. Overall, machine learned predictions
demonstrated excellent morphological similarity to ground truth,
manually derived, segmentations. Encouragingly, both 2D and 3D model
nual segmentation) and predicted (machine learned) IVD masks from the best
nd ground truth (blue) segmentation mask from a single IVD volume. Test per-
e contained in the predicted segmentation. (B) 3D Surface reconstruction com-
3D U-Net are depicted above. Surface reconstructions were performed using a
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architectures achieved morphological accuracy (Table 1) comparable to
those of previously reported autosegmentation-derived models [7,8,10].
Namely, prior works have reported mDSCs of 0.89–0.947, 8, 10, whereas
the two models developed here achieved mDSCs on the order of
0.96–0.98.

Additionally, we expressed ASD in a component-wise manner using
the L1-norm (as opposed to the more common L2-norm) to enable
directional characterization of the errors in the predicted masks. Overall,
while errors along the superior-inferior (ASDy ¼ 0.034 mm) and medial-
lateral directions (ASDz ¼ 0.033 mm) were smaller than those in the
anterior-posterior direction (ASDx ¼ 0.068 mm), all component-wise
ASDs are within 1% of total IVD length along their respective di-
rections. Variations in ASD may be related to differences in contrast
between tissues at the IVD boundary which render segmentation more
challenging. However, because our measures of IVD function (e.g., uni-
axial deformations) rely on precise quantification of IVD height, as
opposed to width, minimizing segmentation errors in the superior-
inferior direction is more crucial to the immediate success of this auto-
mation process [4,5].

The results of the automated deformation analysis supported this
finding, whereby the 3D model demonstrated excellent reliability (ICC
>0.9) [11] with a corresponding SEm ¼ 0.42%, which was roughly half
that of the 2D model's SEm ¼ 0.820%. Repeatability of IVD height mea-
surements have previously been estimated to be within 1% of measured
IVD height both between- (inter-rater) and within-raters (day-to-day)
[4]. Thus, provided that automated segmentation algorithms are deter-
ministic when deployed, the results of the present study suggest that
automated evaluation of IVD uniaxial deformations made using this new
technique may be comparably precise and potentially more reliable than
those made using manual methodologies.

In addition to providing both precise and reliable IVD segmentations,
we estimate that this method will greatly improve throughput compared
to manual techniques. Currently, careful analysis of a pre- and post-
exercise SPACE image set takes, on average, 10 h for manual segmen-
tations alone. In contrast, the present methods took an average of only 21
s (total) to segment, reconstruct and store 10 IVDs, representing an in-
crease in throughput of over 2 orders of magnitude.

To derive these functional models, we exclusively utilize anatomic
T2-weighted SPACE images. This sequence provides excellent contrast
for identifying IVD morphology and has been utilized to classify the
extent of IVD degeneration via Pfirrmann grading [12]. Traditionally,
the use of limited scanner and sequence modalities during model
development has been seen as a limitation to the external generaliz-
ability of a deep learning model. However, because this model is
intended to accomplish a specific purpose, the need for this model to
be robust to variability imposed by imaging factors (e.g., scanner
hardware, sequence modality) outside the scope of its intended use
largely mitigates this limitation at present. Nevertheless, future studies
building upon this work will aim to improve the generalizability of the
model presented here. Specifically, the incorporation of symptomatic
subjects, and more extensive model validation (e.g., k-fold
cross-validation, model architecture) procedures may help improve the
external validity of the current technique. Moreover, because IVD
composition is believed to play an integral role in regulating IVD
function [13–15] and development of LBP [1–3,14,16], extending the
capabilities of this model to process and analyze quantitative MR im-
aging data (e.g., T1rho and T2map relaxation imaging) is of great
interest.

In conclusion, the present study represents a first step towards the
development of segmentation models for the evaluation of in vivo IVD
function. Encouragingly, we demonstrated that IVD function can be
precisely and reliably assessed using a relatively simple deep learning
framework. Moreover, this fully automated model substantially de-
creases the time required to analyze in vivo IVD deformations in response
4

to exercise, without sacrificing measurement reliability. Thus, this ma-
chine learning algorithm has the potential to greatly increase research
throughput for investigating IVD function.
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