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Abstract

Background: Placental efficiency (PE) describes the relationship between placental and fetal weights (fetal wt/placental
wt). Within litters, PE can vary drastically, resulting in similarly sized pigs associated with differently sized placentas, up to a
25% weight difference. However, the mechanisms enabling the smaller placenta to grow a comparable littermate are
unknown. To elucidate potential mechanisms, morphological measurements and gene expression profiles in placental
and associated endometrial tissues of high PE and low PE feto-placental units were compared. Tissue samples were
obtained from eight maternal line gilts during gestational day 95 ovario-hysterectomies. RNA was extracted from tissues
of feto-placental units with the highest and lowest PE in each litter and sequenced.

Results: Morphological measurements, except placental weight, were not different (P > 0.05) between high and low PE.
No DEG were identified in the endometrium and 214 DEG were identified in the placenta (FDR < 0.1), of which 48% were
upregulated and 52% were downregulated. Gene ontology (GO) analysis revealed that a large percentage of DEG were
involved in catalytic activity, binding, transporter activity, metabolism, biological regulation, and localization. Four GO
terms were enriched in the upregulated genes and no terms were enriched in the downregulated genes (FDR < 0.05).
Eight statistically significant correlations (P < 0.05) were identified between the morphological measurements and DEG.

Conclusion: Morphological measures between high and low PE verified comparisons were of similarly sized pigs grown
on different sized placentas, and indicated that any negative effects of a reduced placental size on fetal growth were not
evident by day 95. The identification of DEG in the placenta, but absence of DEG in the endometrium confirmed that the
placenta responds to the fetus. The GO analyses provided evidence that extremes of PE are differentially regulated,
affecting components of placental transport capacity like nutrient transport and blood flow. However, alternative GO
terms were identified, indicating the complexity of the relationship between placental and fetal weights. These findings
support the use of PE as a marker of placental function and provide novel insight into the genetic control of PE, but
further research is required to make PE production applicable.
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Background

Placental efficiency (PE), quantified by the ratio of fetal
or birth weight to placental weight, is commonly used as
a marker of placental function in humans and animals.
The ratio reflects grams of fetus produced per gram of
placenta [1]. In general, it is assumed that high PE values
associated with averaged sized fetuses represent placen-
tas with a greater nutrient transport capacity, while low
PE values associated with growth restricted fetuses
represent placentas with a reduced nutrient transport
capacity or a failure to adapt.

In humans, PE (birth wt/placental wt) is reduced dur-
ing pregnancy complications like fetal growth restriction,
small for gestational age, gestational diabetes mellitus,
and pre-eclampsia [2]. Therefore, the ratio is often used
to predict abnormal fetal growth, and consequently
health later in life. However, whether alterations in PE
truly reflect adaptations in human placental nutrient
transport capacity remains unclear. The most compelling
evidence for an association between the two is in mice,
with conflicting reports in humans [2]. Coan and others
[3] evaluated placental nutrient transport capacity in
mice with natural variations in placental size to deter-
mine if the smallest placenta in a litter of appropriately
grown fetuses was the most efficient. The authors re-
ported near term fetuses with lighter placentas were of
comparable weight to fetuses with heavier placentas, and
thus, PE was greater in the lightest placentas. Addition-
ally, expression of Slc2al, a glucose transporter gene,
and Slc38a42, an amino acid transporter gene, were up-
regulated in the lightest placentas, providing evidence
that high PE placentas adapt to meet the nutrient de-
mands of the growing fetus.

Natural variations in PE are also apparent in pigs, a
litter bearing species. These variations are not only be-
tween, but also within, breeds and even within litters
[4]. Within a litter, PE can vary drastically, resulting in
similarly sized pigs grown on very different placentas,
with up to a 25% weight difference [5]. High PE pla-
centa are smaller in size than low PE placenta, thus,
high PE placentas occupy less space in the uterus and
still grow an averaged sized littermate. While the use of
PE as a selection tool to increase litter size has been de-
bated [6], PE may provide an opportunity to optimize
reproductive performance. The average litter size of
U.S. production breeds has continued to increase over
time and is currently 10.6 [7], but ovulation rates [8]
and teat numbers [9] indicate the maximum has not
been reached. At the same time, increases in litter size
have resulted in lower birth weights, less uniform lit-
ters, and greater preweaning mortalities, minimizing
the benefits of producing more pigs per litter. Increas-
ing PE in these larger litters may normalize birth
weights and, as a result, increase preweaning survival.
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In fact, Vernunft and others [10] reported on the rela-
tionship between placental size and measures of repro-
ductive performance in modern Landrace sows. The
authors concluded sows with larger litters and shorter
placentas can rescue placental function. However, the
compensatory mechanisms driving the growth of an
adequately sized fetus on a smaller placenta are still
being investigated.

In comparisons of breeds differing in PE, the increased
efficiency of high PE placentas was attributed to greater
vascularity [11]. Yet, variations in PE within production
breed litters on day 90 of gestation could not be attrib-
uted to differences in vascular density (VD) despite in-
creased expression of vascular endothelial growth factor
and associated receptors in high PE placentas [12]. Re-
cently, Krombeen and others [5] reported placental VD
was positively related to PE on day 110 of gestation in
maternal line gilts. The results of Vonnahme and Ford
[12] in conjunction with Krombeen and others [5] sug-
gest morphological adaptations, like increases in VD,
may occur later in gestation (day 90 to term) to maintain
fetal growth when placental size is reduced.

Krombeen and others [5] also investigated the rela-
tionship between PE and seven genes encoding glu-
cose, amino acid, or fatty acid transporters in the
placenta and adjacent endometrium of maternal line
gilts on day 70, 90, and 110 of gestation. Based on
conditional effects plots, variations in PE on day 70
of gestation were related to alterations in amino acid
transporter expression (SLC7A7, SLC7A1, SLC3AI) in
the placenta and endometrium. On day 90 of gesta-
tion, PE was positively related to placental expression
of a glucose transporter (SLC2A3) and negatively re-
lated to endometrial expression of two cationic amino
acid transporters (SLC7AI1 and SLC7A2) and a very
long chain fatty acid transporter (SLC27AI). Near
term (day 110), PE was negatively related to two
amino acid transporters (SLC7A7 and SLC7AI) and a
glucose transporter (SLC2A3). The results of Kromb-
een and others [5] agree with those of Coan and
others [3] and supports the use of PE as a marker of
placental function.

Although the study by Krombeen and others [5]
provides evidence for an association between PE and
placental nutrient transport capacity, only seven genes
encoding nutrient transporters were investigated.
Zhou and others [13] detected 226 and 577 differen-
tially expressed genes on gestational days 75 and 90,
respectively, between two breeds with differing PE.
Similarly, Kwon and others [14] identified 588 differ-
entially expressed genes in placentas from larger litter
sizes compared to smaller litter sizes. Therefore, it is
likely the compensatory mechanisms enabling com-
parable fetal growth despite reductions in placental
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size (high PE) are controlled by many genes and the
interactions of those genes, as seen in Zhou and
others [13] and Kwon and others [14].

However, the global expression of genes in the placenta
of the high and low PE feto-placental units within a litter
has not been investigated. The hypothesis of this work
was that extremes of PE would be associated with differ-
entially expressed genes (DEQG) that affect fetal growth via
gene products that promote growth, vascularity, and/or
nutrient transport. The main objective was to determine
and understand the role of gene expression profiles in pla-
cental and associated endometrial tissues of high PE and
low PE feto-placental units. A secondary objective was to
compare fetal and utero-placental measurements of high
PE and low PE units.

Results

Fetal and utero-placental measurements

Mean litter size was 10.75 and ranged from 5 to 15. There
was no association between litter size and PE (r= - 0.04, P
=0.72). Table 1 contains least square means + SE of fetal
and placental measurements. Mean placental weight was
lower in the high PE group compared to the low PE group
(P=0.0002, Fig. 1), but mean fetal weight was not different
between high and low PE (P = 0.5914, Fig. 1). While the ef-
fect of sex was not significant for placental weight or
fetal weight, there was a significant interaction between
PE and sex for placental weight (P =0.0479, Table 1).
Males had lower weight placentas than females in the
high PE group, but the opposite was true in the low PE
group (Fig. 2).

Mean implantation site length (ISL), crown-rump
length (CRL), girth, heart weight, liver weight, brain
weight, and semitendinosus (ST) weight were not signifi-
cantly different between the high PE group and the low
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PE group (P=0.8208, 0.4338, 0.7310, 0.2071, 0.1925,
0.8254, and 0.6886, respectively). There were also no
significant differences in mean placental or endomet-
rial vascular density (VD) between high PE and low
PE (P=0.2689, 0.5463, respectively). For these vari-
ables, there was no significant effect of sex and there
were no significant interactions between PE and sex.

Differential gene expression and gene ontology

The number of genes expressed in the placenta and
endometrium was 20,280. In total, 214 DEG (FDR <
0.1) were identified in the placenta (Fig. 3a) and 0
DEG (FDR <0.1) were identified in the endometrium
(Fig. 3b). Of the DEG in the placenta, 103 genes were
upregulated (33 log fold change (log,FC)>1; 70 0<
log,FC <1.0) and 111 genes were downregulated (49
log,FC<-1.0; 62 -1.0<log,FC<0). Table 2 lists a
subset of the candidate genes in high PE compared to
low PE placentas.

The results of the functional classification analysis are
presented in Fig. 4, which illustrates percentages of up-
regulated compared to downregulated genes designated
by MF (Fig. 4a) or BP (Fig. 4b) gene ontology (GO)
terms for high PE compared to low PE. The MF of cata-
lytic activity, binding, and transporter activity had the
greatest representation. More catalytic activity genes
(39% vs 25.5%) and transporter activity genes (14% vs
10%) were upregulated than downregulated, while the
opposite was true for binding activity genes (29% vs
37%). Additionally, a greater percentage of downregu-
lated genes compared to upregulated genes were
molecular function regulators or had transcription regu-
lator activity (both 2% vs 10%). The BP terms with the
greatest representation were metabolic process, bio-
logical regulation, and localization. Upregulated genes

Table 1 Least square means + SE of fetal and utero-placental measurements of high PE and low PE units

Measurement® Placental efficiency P-value®

Low High PE Sex PE X Sex
Placental wt, g 32221 + 2414 17237 £ 2539 0.0002* 0.7257 0.0479*
Fetal wt, g 831.28 £ 99.36 782,04 + 106.59 0.5914 0.3647 04386
ISL, cm 21.08 + 3.05 22.19 + 3.60 0.8208 0.6657 0.9710
CRL, cm 2588 +1.35 2502 + 142 04338 0.2303 0.7022
Girth, cm 1758 + 1.34 1827 £ 2.02 0.7310 0.9900 04043
Heart wt, g 763 £ 1.06 592 +£1.19 0.2071 0.7930 0.3736
Liver wt, g 2197 £ 3.14 17.86 + 3.38 0.1925 04927 0.5075
Brain wt, g 1995 + 0.72 19.73 £ 083 0.8254 0.5937 0.7535
STwt, g 160 + 022 1.50 £ 0.23 0.6886 0.6552 0.8463
Placental VD, % 819 £ 1.35 574 £ 1.56 0.2689 0.3511 04941
Endometrial VD, % 6.15+ 1.73 748 £ 1.96 0.5463 0.8872 04179

2Effect of placental efficiency (PE), effect of sex (Sex), effect of placental efficiency by sex interaction (PE x Sex). ®ISL Implantation site length, CRL crown-rump length, ST

semitendinosus, VD vascular density. (¥) asterisk indicates P < 0.05
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Fig. 1 Mean placental and fetal weight. Mean placental weight and fetal
weight of low PE and high PE feto-placental units on day 95 of gestation
in pigs. Data presented as means + SD. Asterisk (¥) indicates P < 0.05

were involved in metabolic processes (27% vs 17%) and
localization (15% vs 11%) more often than downregu-
lated genes, while downregulated genes were involved in
biological regulation more often than upregulated genes
(21% vs 27%). Also, the terms developmental process
(0% vs 13%) and biological adhesion (3 vs 9%) were asso-
ciated with more downregulated than upregulated genes.

Table 3 contains the results of the GO enrichment analysis
performed on the DEG in high PE compared low PE placen-
tas. Four terms were significantly (FDR < 0.05) enriched in
the upregulated genes and no terms were significantly
enriched in the downregulated genes. The MF terms so-
dium-dependent multivitamin transmembrane transporter
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Fig. 3 Gene Expression. a Volcano plot of DEG in high PE compared to
low PE placental tissue on day 95 of gestation in pigs. Black dots indicate
FDR > 0.10 or [logoFC| < 1. Non-black dots indicate DEG (FDR < 0.10,
[log,FC| = 1). Dot colors indicate log,FC range. b Volcano plot of DEG in
high PE compared to low PE endometrial tissues on day 95 of gestation
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Fig. 2 Mean placental weight by sex. Mean placental weight in low PE
and high PE male and female feto-placental units on day 95 of
gestation. Data presented as means + SD

in pigs. Black dots indicate FDR > 0.10 or [log,FC| < 1

activity and nucleobase transmembrane transporter activity,
the BP term nucleobase transport, and the cellular compo-
nent term extracellular exosome were enriched.

Fetal/utero-placental measurements and differentially
expressed genes

Eight significant correlations (P <0.05) were identified
between fetal and utero-placental measurements, and
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Table 2 Candidate genes in high PE compared to low PE placentas
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Gene Symbol Gene Name log,FC? FDR P-value’ Gene Ontology (MF; BP)®
SAA2 Serum Amyloid A2 4.89 0.00002 binding, molecular
transducer activity;
locomotion
SPHKAP Sphingosine Kinase Type 1 2388 0.00388 binding
DKK1 Dickkopf-1 2.80 0.00876 binding, molecular
transducer activity,
molecular function
regulator; biological
regulation
CYP4F22 Cytochrome P450 Family 4 244 0.05077 catalytic activity;
Subfamily F Member 22 metabolic process
FBP2 Fructose-1, 6-Bisphosphatase 242 0.08290 catalytic activity;
Isoenzyme 2 metabolic process
PCDHBI1 Protocadherin Beta-1 242 0.00302 ;biological adhesion
Isoform X2
SLC45A3 Solute Carrier Family 45 1.89 007267 transporter activity,
Member 3 metabolic process
ASIC1 Acid Sensing lon Channel 1 1.81 005118 transporter activity;
Isoform X2 biological regulation,
localization, multicellular
organismal process
CELAT Chymotrypsin-like Elastase 1.55 0.04841 catalytic activity
Family Member 1
LEP Leptin 1.01 0.05194 growth factor activity,
hormone activity®
ATP13A3 Probable Cation-Transporting 0.82 0.06425 ; biological regulation
ATPase 13A3
SLC4A7 Solute Carrier Family 4 0.77 0.04207 transporter activity
Member 7
CTSH Pro-cathepsin H 0.71 0.07854 ; positive regulation
of angiogenesis®
SLC52A3 Solute Carrier Family 52 068 001438 molecular transducer activity;
Member 3 biological regulation
SLC23A2 Solute Carrier Family 23 0.59 0.06802 transporter activity; localization
Member 2
AGR2 Anterior Gradient Protein -2.99 0.00045 ; biological regulation,
2 Homolog cellular process
EMB Embigin -2.06 0.01288 binding; biological
adhesion, cellular process
STEAP1 Six-Transmembrane Epithelial —-1.98 0.05194 catalytic activity; localization
Antigen of Prostate 1
SARDH Sarcosine Dehydrogenase -1.89 0.02504 catalytic activity; metabolic
process
STEAP2 Six Transmembrane Epithelial -1.72 0.07267 catalytic activity; localization
Antigen of the Prostate 2
MRP4 Multidrug Resistance-Associated —-161 0.07267 transporter activity
Protein 4-like
KCNJ2 Potassium Channel, Inwardly —-1.31 0.00875 transporter activity
Rectifying Subfamily J, Member 2
ANGPT1 Angiopoietin-1 —-0.75 0.07031 binding; biological regulation,

biological adhesion

2log,FC log, fold change. 2FDR P-value False discovery rate adjusted P-value, level of significance P < 0.10. PMF Molecular function, BP biological process. Genes
above dotted line were among ten most upregulated or downregulated. “No hits for Panther GO slim terms, specific GO terms used instead
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the 214 DEG in high PE compared to low PE placentas
(Table 4), of which 5 were placental weight and 3 were
PE correlations. Placental weight was positively correlated
with GRINL1A complex locus 1 (GCOM1, r=0.82, P=
0.0214), genel9656 (LOC100739517, r=0.78, P =0.0257),
TOX high mobility group box family member 3 (TOX3, r =
0.77, P=0.0257), and ATP-binding cassette sub-family G
member 2 (ABCG2, r=0.76, P=0.0257), but negatively
correlated with ras-related protein rab-6B (RAB6B, r=-
0.76, P = 0.0257). Placental efficiency was positively correlated
with genel2188 (LOC100156118, r = 0.81, P = 0.0214), trans-
membrane protein 199 (TMEM199, r=0.81, P=0.0214),
and proto-cadherin beta 1 (PCDHB]I, r = 0.76, P = 0.0428).

Discussion
Fetal and utero-placental measurements
Placental weight was lower in the high PE group com-
pared to the low PE group, but fetal weight was not dif-
ferent between high and low PE. These results agree
with Krombeen and others [5] and confirm high PE pla-
centas are smaller than low PE placentas, yet each grow
a littermate of comparable size. There was a significant
interaction between PE and sex for placental weight,
which to the authors’ knowledge has not previously been
reported in PE studies.

The lack of a difference in ISL between high PE and low
PE was unexpected as the basis for high PE is a smaller
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Table 3 Gene Ontology Enrichment Analysis

Page 7 of 15

Ontology? Category GO Term No. DEG in Category No. in Category FDR P-value Gene Symbol®

MF GO:0008523 Sodium-dependent 2 3 0.0486 SLC23A2, LOC102159690
multivitamin transmembrane
transporter activity

MF GO:0015205 Nucleobase transmembrane 2 3 0.0486 SLC23A2, LOC102159690
transporter activity

BP GO:0015851 Nucleobase transport 2 3 0.0486 SLC23A2, LOC102159690

CcC GO:0070062 Extracellular exosome 20 2283 0.0486 TXN, TXNDC8, MGST3,

CADMA4, Pl16, CTSH,
ABCBI, FBP2, RPL15,
ITIH3, PDHB, PEBP1,
PPAT, GCA, HSPET,
SPHKAP, EFHD1,
ENTPD6, AK2, GLA

Significantly enriched GO terms of upregulated genes in high PE compared to low PE placentas on day 95 of gestation in pigs. Level of significance P < 0.05. MF Molecular
function, BP Biological process, CC Cellular component, GO Gene ontology, DEG Differentially expressed genes, FDR P-value False discovery rate adjusted P-value, ®SLC23A2
Solute carrier family 23 member 2, LOC102159690 solute carrier family 23 member 2-like, TXN Thioredoxin, TXNDC8 Thioredoxin domain-containing protein 8, MGST3
Microsomal glutathione S-transferase 3, CADM4 Cell adhesion molecule 4, PI16 Peptidase inhibitor 16 precursor, CTSH Pro-cathepsin H, ABCBT ATP-binding cassette subfamily
B member 1 isoform X2, FBP2 Fructose-1, 6-biphosphatase isoenzyme 2, RPL15 Ribosomal protein L15, ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3, PDHB Pyruvate
dehydrogenase E1 component subunit beta, PEBPT Phosphatidylethanolamine-binding protein 1, PPAT Inorganic pyrophosphatase, GCA Grancalcin, HSPET 10 KDa heat
shock protein, mitochondrial, SPHKAP A-kinase anchoring protein, EFHD1 EF-hand domain-containing protein D1 isoform X2, ENTPD6 Ectonucleoside triphosphate

diphosphohydrolase 6, AK2 Adenylate kinase 2, GLA Alpha-galactosidase A

but more efficient placenta that occupies less room within
the uterus [4, 11]. Furthermore, a previous study reported
high PE ISL were shorter than low PE ISL [12]. The con-
flicting results suggest ISL differs when PE is used as a se-
lection tool as opposed to observing natural variations in
PE. Alternatively, the folded placental trophoblast-endo-
metrial epithelial bilayer width may be greater in
feto-placental units with reduced placental size and com-
parable fetal growth (high PE). Vallet and Freking [15],

reported greater fold widths were associated with the
smallest pig fetuses in a litter and may increase PE via a
larger surface area for exchange between the maternal and
fetal circulations.

In addition to ISL, CRL, girth, heart weight, liver
weight, brain weight, and ST weight were not signifi-
cantly different between the high PE group and the low
PE group. Crown-rump length and girth are highly cor-
related to fetal age [16] and weight [17, 18], and can be

Table 4 Significant correlations between fetal/utero-placental measurements and DEG in high PE compared to low PE placentas

Correlation Data® DEG Data®
Measurement* Gene Correlation FDR P-value Gene Symbol  Protein Molecular Function log FC  FDR P-value
PW¥*gene1223 0.82 0.0214 GCOM1 Myocardial Zonula N/A -043 00769
Adherens Protein
PE*gene12188 0.81 0.0214 LOC100156118 N/A N/A 0.63 0.0484
PE*gene24847 0.81 00214 TMEM199 Transmembrane N/A 0.29 0.0421
Protein 199
PW*gene19656 0.78 0.0257 LOC100739517  ATP-Binding Cassette N/A -061 00144
Sub-Family G Member 2
PW*gene13353 0.77 0.0257 TOX3 TOX High Mobility Chromatin binding, -141 00183
Group Box Family Phosphoprotein binding,
Member 3 Protein homodimerization
activity, Estrogen response
element binding
PW*gene19659 0.76 0.0257 ABCG2 ATP-Binding Cassette ATP binding, ATPase activity —-0.77  0.0039
Sub-Family G Member 2 coupled to transmembrane
movement of substance,
Cholesterol transporter activity
PE*gene6367 0.76 0.0428 PCDHBI1 Protocadherin Beta-1 Calcium ion binding 242 00030
Isoform X2
PW*gene26368 —-0.76 0.0257 RAB6B Ras-Related Protein Rab-6B  GTP binding, GTPase activity, ~ 0.86 0.0084

Myosin V binding

2P Placental weight, PE placental efficiency, FDR P-value false discovery rate adjusted P-value, level of significance P < 0.05. ®DEG Differentially expressed genes,
N/A not available, log,FC log, fold change, FDR P-value false discovery rate adjusted P-value, level of significance P <0.10
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used to predict neonatal survival [19] and post-natal
growth performance [20]. Considering these fetal mea-
surements did not differ based on PE, the survival and
postnatal growth performance of pigs grown on high PE
placentas should not be negatively affected. Moreover,
the absence of significant differences in fetal organ and
tissue weights supports data from Krombeen and others
[5], indicating any negative effects of a reduced placental
size on fetal growth are not evident by term.

Placental VD and endometrial VD were also not sig-
nificantly different between high PE and low PE. High
PE in more prolific breeds has been attributed to in-
creased placental VD during late gestation [11]; however,
the role VD plays in extremes of PE within production
breeds is less clear. Vonnahme and Ford [12] reported
there was no additional increase in placental or endo-
metrial VD to account for the increased efficiency of
high PE placentas on day 90 of gestation in Yorkshires,
despite increased expression of a vascular growth factor
and its associated receptors. Conversely, Krombeen and
others [5] identified a positive relationship between pla-
cental VD and PE on day 110 of gestation in maternal
line gilts. It is conceivable that increased vascular perme-
ability or reduced placental-endometrial intercapillary
distance contribute to high PE, as suggested by Von-
nahme and Ford [12], and/or changes in VD occur after
day 90, as suggested by Krombeen and others [5].

Differential gene expression and gene ontology

A total of 214 DEG were identified in the placenta
and 0 DEG were identified in the endometrium. Since
the placenta is conceptus derived, it is not surprising
that a greater number of genes would be differentially
expressed in the placenta than in the endometrium,
which is maternal tissue. Of the genes expressed in
the placenta, only 214 were differentially expressed or
1.06% of the transcriptome. The small percentage of
DEG identified in this study could be attributed to
the comparison of two naturally occurring states as
opposed to two treatment groups, the gestational day
evaluated, and/or the expression level measured.

Nonetheless, the functional classification analysis per-
formed on the DEG in high PE compared to low PE pla-
centas identified molecular functions (MF) and biological
processes (BP) associated with the phenotype. The MF of
catalytic activity, binding, and transporter activity had the
greatest representation. Catalytic activity was a MF of
more upregulated than downregulated genes.

Upregulated candidate genes with catalytic activity in-
cluded cytochrome P450 family 4 subfamily F member
22 (CYP4F22), fructose-1, 6-bisphosphatase isoenzyme 2
(FBP2), and chymotrypsin-like elastase family member 1
(CELAI). The catalytic activity of the products of
CYP4F22, recently identified as an ultra-long chain fatty

Page 8 of 15

acid omega hydroxylase [21], and FBP2, encoding the
gluconeogenic enzyme fructose-1,-6,biphosphatase-2
[22], suggests the metabolic state of high PE and low PE
placentas differs. The gene CELAI encodes for an en-
zyme that degrades the protein elastin, a component of
the vascular matrix. Data in mice indicate there is a
positive association between CELAI and angiogenesis
[23, 24]. While the catalytic activity of CELA1 may have
a role in vascularity, no differences in VD were detected
between high PE and low PE placentas.

Catalytic activity was also a function of downregulated
genes; six transmembrane epithelial antigen of prostate 1
(STEAPI), six transmembrane epithelial antigen prostate
2 (STEAP2), and sarcosine dehydrogenase (SARDH)
were candidate genes with catalytic activity. The STEAP
family of proteins function as metal reductases, enabling
the transport of iron and copper across the plasma
membrane, and superoxide synthases, generating super-
oxide [25, 26]. The gene SARDH encodes for a mitochon-
drial enzyme that catalyzes the conversion of sarcosine to
glycine, a major amino acid involved in an array of BP
[27]. The downregulation of these genes in high PE com-
pared to low PE suggests metabolism differs by PE.

The MF GO term with the second greatest representa-
tion in the DEG was binding, with fewer upregulated
than downregulated genes involved in binding. Serum
amyloid A2 (SAA2), sphingosine kinase type 1 interact-
ing protein (SPHKAP), and dickkopf-1 (DKK1), were the
three most upregulated genes in high PE compared to
low PE placentas and shared the MF of binding. These
genes encode a major acute phase protein involved in
the innate immune response [28], an A-kinase anchoring
protein involved in second messenger intracellular sig-
naling [29], and a glycoprotein that is an inhibitor of the
Wnt signaling pathway [30], respectively. In general, it
appears the binding activity of these gene products is
relevant to cell signaling pathways. While the role of
these genes products within the placenta requires further
investigation, SAA2 and DKK1 have been implemented
in lipid metabolism [31, 32] and angiogenesis [33—35].

Embigin (EMB) and angiopoietin 1 (ANGPTI) were
downregulated candidate genes with the MF binding.
The gene product of EMB is a transmembrane glycopro-
tein required for the localization and function of MCT2,
a plasma membrane transporter of pyruvate, lactate, and
ketone bodies [36]. The downregulation of EMB in high
PE placentas suggests a lack of transport of these sub-
strates, but given that pyruvate and lactate are gluconeo-
genic precursors and FBP2, encoding a gluconeogenic
enzyme, was upregulated, it is plausible that these sub-
strates may be metabolized to produce glucose in high
PE placentas. On the other hand, ANGPT1 belongs to a
family of endothelial growth factors and is a glycoprotein
that inhibits endothelial permeability [37]. Thus, the
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downregulation of ANGPT1I in high PE compared to low
PE placentas indicates vascular permeability may be in-
creased in high PE placentas.

Transporter activity was another MF of the DEG, with
a greater percentage of upregulated than downregulated
genes involved in transporter activity. The following are
candidate genes for PE with transporter activity: solute
carrier family 45 member 3 (SLC45A3), acid sensing ion
channel subunit 1 (ASICI), solute carrier family 4 mem-
ber 7 (SLC4A7), and solute carrier family 23 member 2
(SLC23A2). The gene SLC45A3 encodes for a novel H+
sucrose symporter, suggested to also transport fructose
and glucose [38, 39]. Verification of this function in the
pig placenta is required, but it appears sugar transport is
increased in high PE placentas. Acid sensing ion channel
1 isoform X2 (ASICI) encodes for a proton-gated so-
dium ion channel that localizes to the plasma membrane
and golgi apparatus. Expression is most common in neu-
rons [40] and to the authors’ knowledge has not been re-
ported in the pig placenta. Assuming a similar MEF,
upregulation of ASICI in high PE placentas indicates so-
dium ion transmembrane transport differs based on PE.
The gene SLC4A7 encodes for a sodium bicarbonate
(Na*: HCOj3") cotransporter [41] and the gene SLC23A2
encodes for a sodium dependent ascorbate (vitamin C)
co-transporter (2Na': ascorbate) [42]. In rodent models,
both transporters have been implemented in the control
of vasodilation [41, 43]. Thus, the upregulation of these
transporters in high PE placentas may alter placental
vascular tone, but further research is required to eluci-
date the role of these transporters in the pig placenta.

Transporter activity was also a function of downregu-
lated genes, like multidrug resistance associated protein 4
(MRP4) and potassium channel inwardly rectifying sub-
family ] member 2 (KCNJ2). The gene MRP4 encodes for
an active transporter protein with a broad substrate speci-
ficity [44]. Interpretation of the significance of MRP4
downregulation in high PE placentas requires further re-
search into the substrates of MRP4 in the pig placenta.
The gene KCNJ2 encodes the inwardly rectifying potas-
sium channel Kiz2.1. Expression of Kjz2.1 has been re-
ported in the human placenta, but the tissue specific
function is unknown [45, 46]. Disruption of the potassium
channel in mice indicated Kjz2.1 mediates vasodilation
[47]. The downregulation of KCNJ2 in high PE placentas
suggest potassium transport and potentially vasodilation
may be altered by PE.

Interestingly, two MF terms, molecular function
regulator and transcription regulator activity, were
functions of mostly downregulated genes. Molecular
function regulators modulate a gene products activity
and are often enzyme regulators or channel regulators
[48]. Downregulated genes associated with this term
were mostly enzyme regulators modulating intracellular
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activity. Transcription regulator activity describes the
function of controlling gene expression at the level of
transcription [48]. Accordingly, downregulated genes
with this function encoded for transcription factors.
Thus, downregulated genes were involved in the con-
trol of gene expression and the activity of gene prod-
ucts, which is not surprising given that this study
compares high PE to low PE placentas.

Functional classification of the DEG also identified BP
associated with the phenotype. Metabolic process, bio-
logical regulation, and localization had the greatest rep-
resentation among the DEG. The gene products of more
upregulated than downregulated genes were involved in
metabolic processes. This is as expected given the MF
catalytic activity and transporter activity had the greatest
representation among the upregulated genes, and these
functions are often involved in metabolism. For instance,
CYP4F22 encodes for an ultra-long chain fatty acid
omega hydroxylase, an enzyme of fatty acid metabolism
[21]. Similarly, the genes FBP2 and SLC45A3 encode for
a gluconeogenic enzyme [22] and sucrose transporter
[38, 39], respectively, both of which are involved in
carbohydrate metabolism. Furthermore, the identifica-
tion of metabolic processes as the BP with the greatest
representation in the DEG indicates extremes of PE are
related to metabolism.

Biological regulation was also a BP term of a large per-
centage of the DEG and is a broad term encompassing
genes products that modulate part of a BP [48]. More
downregulated than upregulated genes were involved in
biological regulation. Biological regulation was a term of
anterior gradient protein 2 (AGR2), the most downregu-
lated gene in high PE compared to low PE placentas.
The gene AGR2 encodes for a member of the protein di-
sulfide isomerase family of endoplasmic reticulum pro-
teins, which are essential to post-translational folding
[49]. The protein has been implemented in epithelial
barrier function and cell proliferation. Moreover, it has
been suggested that AGR2 downregulation in sheep pla-
centomes may serve as an adaptive placental mechanism
to support fetal growth during stress by reducing the
proliferative actions of AGR2 [50]. Whether AGR2 regu-
lates a similar BP in the pig placenta remains to be de-
termined. Other downregulated genes involved in
biological regulation included ANGPTI, a regulator of
vascular permeability [37], and several other genes en-
coding transcription factors.

While there were more downregulated genes involved
in biological regulation, a significant percentage of up-
regulated genes were also biological regulators. Among
these were probable cation-transporting ATPase 13A3
(ATP13A3) and solute carrier family 52 member 3
(SLC52A3). The gene ATP13A3 encodes a protein in-
volved in calcium ion transmembrane transport, with
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evidence of polyamine transport in worms [51] and
humans [52]. Polyamines perform numerous essential
functions in mammalian physiology and are known reg-
ulators of placental growth and angiogenesis [53]. Thus,
ATP13A3 may be a candidate gene for high PE, but add-
itional research into the substrate specificity of ATP13A3
in the pig placenta is required. The gene SLC52A3 also
encodes for a transporter, but with riboflavin (vitamin
B2) specificity. Riboflavin is a regulator of metabolism
via the active forms flavin mononucleotide and flavin ad-
enine dinucleotide. Knockout of Slc52a3 in mice caused
reduced riboflavin concentrations in pups resulting in
death, with signs of hyperlipidemia and hypoglycemia
[54]. Thus, the upregulation of SLC52A3 in high PE pla-
centas likely regulates metabolism. Overall, the large
percentage of DEG involved in biological regulation sug-
gests extremes of PE may originate from differential
regulation of several BP.

Localization was also a BP term of a large percentage
of the DEG, with greater representation in upregulated
than downregulated genes. The term describes the
transportation or maintenance of a substance to a loca-
tion [48]. The percentage of DEG involved in
localization is reflective of the MF with greatest repre-
sentation among the DEG (catalytic activity, binding,
and transporter activity). For example, ASICI and
SLC23A2 were upregulated and encode for a sodium
ion transmembrane transporter [40] and an ascorbate
transmembrane co-transporter [42], respectively. Simi-
larly, the downregulated genes STEAPI and STEAP2
encode for transmembrane proteins with metal reduc-
tase and superoxide synthase activity [25, 26]. Further-
more, the DEG involved in localization indicate
micronutrient transport differs in extremes of PE.

The terms developmental process and biological adhe-
sion were BP of mainly downregulated genes. The term
developmental process describes BP involved in the pro-
gression of a living unit [48]. Downregulated genes with
this BP mostly encoded transcription factors, suggesting
extremes of PE are driven by differences in the control
of development. Conversely, biological adhesion was a
term of downregulated genes involved in cell adhesion.
Among these were EMB and ANGPTI, encoding a
transmembrane protein that localizes monocarboxylate
transporters to the cell membrane [36] and an endothe-
lial growth factor known to inhibit endothelial perme-
ability [37], respectively. Thus, downregulated genes
involved in biological adhesion may affect the nutrient
transport capacity of high PE placentas.

A GO enrichment analysis was also performed on the
DEG in high PE compared to low PE placentas. Only 4
enriched terms were identified, which was probably due to
the limited number of DEG in the input list. The MF
terms sodium-dependent multivitamin transmembrane
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transporter activity and nucleobase transmembrane trans-
porter activity, and the BP term nucleobase transport were
enriched, indicating vitamin transport and/or the trans-
port of nitrogenous bases from one side of the membrane
to the other are imperative to high PE. The enrichment of
these terms also identified SLC23A2, mentioned previ-
ously, as a candidate gene for high PE. The fourth
enriched term was the cellular component term extracel-
lular exosome, which describes gene products that localize
to vesicles that are released from cells into the extracellu-
lar region via exocytosis [48]. Exosomes are involved in
cell to cell communication and modulate intercellular
communication at the maternal-fetal interface in pigs [55].
Therefore, the enrichment of this term suggests exosomes
play a role in the cell to cell communication required for
the increased efficiency of high PE placentas. Additionally,
extracellular exosome was a term of 20 upregulated genes
in high PE compared to low PE placentas, validating the
association with high PE.

Fetal/utero-placental measurements and differentially
expressed genes
The correlation analysis performed between fetal/utero--
placental measures and the DEG identified significant cor-
relations between 8 of the DEG and placental weight or
PE. GRINL1A complex locus 1 (GCOMI), gene 19,656
(LOC100739517), ATP-binding cassette sub-family G
member 2 (ABCG2), and TOX high mobility group box
family member 3 (TOX3) were positively correlated with
placental weight and downregulated in high PE compared
to low PE placentas. The MF of GCOML1 in pigs is un-
known. The gene ABCG2 encodes for an active trans-
porter that is expressed in the human placenta and
transports xenobiotic compounds [56, 57]. Cholesterol ac-
tivity was also a GO term of ABCG2. The protein product
of TOX3 may be involved in chromatin remodeling, and
the bending and unwinding of DNA [57]. Molecular func-
tion GO terms included chromatin binding, phosphopro-
tein binding, protein homodimerization activity, and
estrogen response element binding. Conversely, ras-related
protein rab-6B (RAB6B) was negatively correlated with pla-
cental weight and was upregulated in high PE compared to
low PE placentas. Molecular function GO terms of RAB6B
included GTP binding, GTPase activity, and myosin v bind-
ing. The protein encoded by RAB6B localizes to the
golgi apparatus and may function in retrograde mem-
brane traffic [58]. Although the function(s) of these
genes within the pig placenta are largely unknown, the
identification of strong correlations with placental
weight, in combination with gene expression, indicates
GCOM1, ABCG2, TOX3, and RAB6B may regulate the
reduced placental size of high PE placentas.

Gene 12188 (LOC100156118), transmembrane protein
199 (TMEM199), and proto-cadherin beta 1 (PCDHBI)



Krombeen et al. BMC Genomics (2019) 20:254

were positively correlated with PE and upregulated in
high PE compared to low PE placentas. Gene 12188 en-
codes an uncharacterized protein in swine. The MF of
TMEM199 in pigs in unknown, but the protein encoded
by this gene in humans may be involved in golgi homeo-
stasis [57]. The gene PCDHBI was among the 10 most
upregulated genes. The specific function of PCDHBI is
unknown, but PCDHB1 may be a calcium dependent
cell to cell adhesion protein [57]. Given the strong posi-
tive correlations of gene 12188, TMEMI199, and
PCDHBI with PE, further research is warranted to de-
termine the specific functions these genes may have
within the pig placenta.

Conclusion

Placental efficiency, quantified by the ratio of fetal
weight to placental weight, was determined within ma-
ternal line gilt litters to compare expression profiles of
high PE feto-placental units to low PE feto-placental
units. Mean fetal weight was not significantly different
between the high PE group and low PE group, but pla-
cental weight was significantly reduced in in the high PE
group, verifying comparisons were of similarly sized pigs
grown on different sized placentas. Likewise, the absence
of significant differences in fetal measures indicated any
negative effects of a reduced placental size on fetal
growth were not evident by day 95 of gestation. The
comparison of gene expression profiles in the placenta
and adjacent endometrium of high PE and low PE
feto-placental units identified 214 DEG in the placenta
and no DEG in the endometrium, confirming that the
placenta responds to the fetus.

Gene ontology functional classification analysis of the
103 upregulated and 111 downregulated genes identified
common MF and BP. The MF with the greatest repre-
sentation among the DEG were catalytic activity, bind-
ing, and transporter activity. The BP with the greatest
representation among the DEG were metabolism, bio-
logical regulation, and localization. Further investigation
into the candidate genes associated with these terms
partially supported the hypothesis and suggested ex-
tremes of PE are differentially regulated, affecting com-
ponents of placental transport capacity like nutrient
transport and blood flow. Conversely, DEG with growth
factor activity were minimal and alternative functions
were identified, indicating the complexity of the relation-
ship between placental and fetal weights.

Overall, the results of this study support the use of PE
as a marker of placental function and provide new insights
into compensatory mechanisms that enable comparable
fetal growth despite a reduced placental size. In swine, PE
may provide an opportunity to optimize reproductive per-
formance by normalizing the reduced birth weights of lar-
ger litters and in turn increasing pre-weaning survival;
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however, further research is required to effectively incorp-
orate PE into selection schemes. Identifying associations
between the phenotype and genome may be useful. Add-
itionally, a limitation of this study was the method used to
define high and low PE. Using the highest and lowest PE
value within a litter is both advantageous and restrictive as
it ensures comparisons are only between the very most and
least efficient units, but excludes feto-placental units with
efficiencies that are closer to the average. Therefore, it is
suggested that future research determine the most appro-
priate method of defining high and low PE. Lastly, the role
extracellular exosomes play in PE and the impact of envir-
onmental effects on PE is also of interest.

Methods

Animal management

All procedures were approved by the West Virginia Uni-
versity Animal Care and Use Committee (WVU-ACUC;
ACUC # 10-0505). Eight Camborough 23 gilts (experi-
mental unit; N = 8), owned by the WVU Animal Science
Farm (Morgantown, WV), were group housed in a hoop
structure equipped with tunnel ventilation and inspected
annually by WVU-ACUC. Gilts were monitored for es-
trous behavior beginning at 5 months of age. The first
estrus was observed and recorded. Gilts were bred by
artificial insemination 12 and 24 h after the onset of a
second estrus (6—7 months of age) using Pig Improve-
ment Company (PIC) 1025 pooled maternal line semen
(Birchwood Genetics, West Manchester, OH). Assign-
ments for gestational day 95 ovario-hysterectomies
(113-114 average day of farrowing) were randomly
assigned at the time of breeding. Following breeding,
gilts remained in this structure and were group housed
throughout gestation.

Surgical procedure

At least 2 days before surgery, gilts were moved to the Food
Animal Research Facility at the WVU Animal Science
Farm. Gilts were taken off of feed 12 h before surgery. On
the morning of the day of surgery, gilts (205.63 + 37.6 kg)
were anesthetized via jugular venipuncture using ketamine
(3 mg/kg) and xylazine (2 mg/kg). Atropine sulfate (0.05
mg/kg) was administered to reduce salivation and isoflur-
ane was used to maintain anesthesia.

Gilts were placed in dorsal recumbency and a mid-
ventral incision was made to expose the gravid uterus.
An antimesometrial incision was then made to open
the uterus and expose the feto-placental units. Two
tags were attached to the umbilical cord of each
feto-placental unit, identifying which uterine horn the
fetus (observational unit) originated from and the lo-
cation within that uterine horn. The umbilical cord
was cut between the two tags to ensure a tag
remained with the placenta and the fetus. All fetuses
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were removed, and then the uterus was removed from
the dam and set aside for processing. Sodium pento-
barbital (400 mg/mL, Sigma Aldrich, St. Louis, MO)
was used to euthanize the gilt.

Fetal and utero-placental measurements

Fetal weight, CRL, and girth were recorded as fetuses
were removed from the uterus. Fetal necropsies were
performed to obtain heart weight, liver weight, brain
weight, and left hindquarter ST weight. The uterus was
opened along the antimesometrial side and laid flat.
Boundaries of each placenta were identified and a sam-
ple (~6.5cm?) of all tissue layers (placenta, endomet-
rium, and myometrium) was collected from an area void
of calcium deposits and representative of the entire pla-
centa. Samples were placed in tissue cassettes and fixed
in neutral buffered formalin for histological processing.
Then each placenta was peeled away from the endomet-
rium and weighed. At this time representative samples,
as described by Krombeen and others [5], were taken
from both the placenta and the adjacent endometrium,
placed in 2.0 mL cryovials (filled to 1.8 mL), and snap
frozen in liquid nitrogen for RNA extraction. Implant-
ation site length for each placenta was measured in the
empty uterus using avascular bands as boundaries. Pla-
cental efficiency was determined for each feto-placental
unit by dividing fetal weight by placental weight.

Similar to Krombeen and others [5], tissue cross sec-
tions containing placenta, endometrium, and myometrium
were fixed in formalin, dehydrated with graded ethanol
and xylenes, perfused with molten paraffin, and embedded
in paraffin molds. Five micrometer sections were fixed to
glass slides. Two sections for each fetus were stained using
periodic acid and Schiff’s reagent (Sigma Aldrich, St.
Louis, MO). Along the placental-endometrial interface,
two fields per section were visualized (Nikon Eclipse
TE2000-5, Nikon Instruments Inc., Melville, NY) and
captured (Retiga 2000R, Q Imaging, Surrey, BC, Canada;
Q Capture, Quantitative Imaging Corporation, v2.90.1,
Surrey, BC, Canada) for a total of four fields visualized.
Northern eclipse v6.0 software (Empix Inc., North Tona-
wanda, NY) was used to analyze images. Placental and
endometrial tissues were outlined separately, and then
total number of vessels, total area of vessels, and total area
selected were measured. Vascular density was determined
by dividing the area of the vessels by the total area se-
lected. Replicates were averaged.

To compare fetal and utero-placental measurements
of high PE and low PE units, the feto-placental unit with
the highest PE and the feto-placental unit with the low-
est PE in each litter (n=8) were selected, creating the
high PE group (n =8, PE range 3.96 to 7.84) and the low
PE group (n =8, PE range 1.92 to 3.19) used for analysis.
Statistical analyses were conducted using JMP Pro

Page 12 of 15

version 12.2.0 (SAS Institute Inc., Cary, NC 1989-2007).
A linear mixed effects model was used to analyze each
dependent variable (placental wt, fetal wt, ISL, CRL,
girth, heart wt, liver wt, brain wt, ST wt, placental VD,
and endometrial VD), with PE, sex, and PE*sex as fixed
effects, and a random effect to account for pigs nested
within dam. A significance level of 0.05 was used for all
statistical tests.

Differential gene expression and gene ontology
Endometrial and placental samples from the most effi-
cient (2 female, 6 male) and least efficient (3 female, 5
male) feto-placental unit in each litter (n = 8) were proc-
essed at the Clemson University Genomics & Computa-
tional Laboratory (CU-GCL). Total RNA was extracted
from the endometrial (n=16) and placental (n=16)
samples in duplicate using a RNeasy Plus Universal Mini
Kit (Qiagen, Valencia, CA) and all extractions were per-
formed according to the manufacturer’s instructions. An
aliquot of each sample was qualitatively assayed for pur-
ity using UV spectroscopy via the Nanodrop8000 (Ther-
moFisher Scientific, Waltham, MA) to determine the
260/280 and 260/230 ratios, respectively. RNA integrity
was measured using an Agilent 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, CA, USA). All RNA pur-
ity ratios, were>1.8 and all RNA integrity numbers
(RIN) were approximately 6. Total RNA was quantitated
with the Broad Range Assay in the Qubit (ThermoFisher
Scientific, Waltham, MA).

Each sample was normalized to a standard input con-
centration of 2pug for sequencing library preparation.
Stranded mRNA sequencing libraries were prepared
manually at the CU-GCL with the TruSeq Stranded
mRNA kit (Illumina, San Diego, CA) following the manu-
facturer’s recommended procedures. Sequencing data was
collected on the HiSeq2500 (Illumina, San Diego, CA)
using v4.0 chemistry and 2x125bp paired-end reads. Post
sequencing, raw sequence reads were transferred to Clem-
son University’s Palmetto Cluster for analysis.

Sequence reads were quality validated with the FastQC
software [59], followed by read preprocessing to remove
adapter and primer sequences with the Trimmomatic
software [60]. Processed sequence reads were aligned to
the v10.2 Sus Scrofus reference genome assembly [61]
with the GSNAP read alignment tool [62]. Sorted and
indexed. BAM files were prepared from the. SAM out-
put of GSNAP using Samtools [63]. Uniquely mapped
read abundance per gene was determined with the fea-
tureCounts software in reversely stranded mode [64],
and the count data per sample was output and trans-
formed to tabular format.

Relative pairwise changes in gene level expression were
determined with the edgeR software package [65]. Tran-
scriptome comparisons were made using a generalized
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linear model and pairwise comparisons were made to
compare low efficiency versus high efficiency conditions
in a tissue specific manner. Differentially expressed
genes were determined and filtered for significance using
the FDR of 0.10 [66, 67]. Gene level fold-change values
were output in tabular format and genes abounding
thresholds were listed as candidate genes.

Candidate gene lists containing upregulated and down-
regulated genes in the placenta were functionally classified
using the Panther database version 14.0 [68, 69] and
AmiGO 2 version 2.5.12 was utilized to search GO term
definitions [48, 70, 71]. Hierarchical functional classifica-
tion was used to categorize genes according to the activity
of the gene product (molecular function) and the pathway
or processes the gene product functions in (biological
process) [70, 71]. Gene ontology slim terms were utilized
to classify gene lists according to defined terms. Percent-
ages equal the number of genes within the input list with
that MF or BP divided by the total number of MF or BP
in the input list (gene hits against total number of function
hits or gene hits against total number of process hits).
Candidate gene lists containing upregulated and downreg-
ulated genes in the placenta were also independently
tested for statistical enrichment (FDR < 0.05) with the
GOSeq software tool [72].

The subset of candidate genes listed in Table 2 were
associated with the MF and BP with the greatest repre-
sentation in the DEG and were selected based on log,FC
(10 most upregulated or downregulated genes) and/or
GO terms related to nutrient transport, angiogenic activ-
ity, or growth factor activity.

Fetal/utero-placental measurements and differentially
expressed genes

To identify relationships between the following measure-
ments: fetal weight, placental weight, PE, CRL, brain weight,
ST weight, ISL, placental VD, and endometrial VD, and the
214 DEG in high PE compared to low PE placentas, Pear-
son’s correlation coefficient (r) was estimated using the cor
function in R [73]. A FDR adjustment was applied to correct
for multiple comparisons using the p.adjust function in R. A
significance level of 0.05 was used to identify significant
correlations.
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