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Abstract: This present study aims to identify the key bioactive components in acorus tatarinowii
rhizoma (ATR), a traditional Chinese medicine (TCM) with various bioactivities. Partial least squares
regression (PLSR) was employed to describe the relationship between the radical scavenging activity
and the volatile components. The PLSR model was improved by outlier elimination and variable
selection and was evaluated by 10-fold cross-validation and external validation in this study. Based
on the PLSR model, eleven chemical components were identified as the key bioactive components by
variable importance in projection. The final PLS regression model with these components has good
predictive ability. The Q2 was 0.8284, and the root mean square error for prediction was 2.9641. The
results indicated that the eleven components could be a pattern to predict the radical scavenging
activity of ATR. In addition, we did not find any specific relationship between the radical scavenging
ability and the habitat of the ATRs. This study proposed an efficient strategy to predict bioactive
components using the combination of quantitative chromatography fingerprints and PLS regression,
and has potential perspective for screening bioactive components in complex analytical systems, such
as TCM.

Keywords: acori tatarinowii rhizoma; radical scavenging activity; gas chromatography–mass
spectrometry; partial least squares regression

1. Introduction

Acori tatarinowii rhizoma (ATR) is a traditional Chinese medicine (TCM) used for thousands of
years because of its low toxicity and various bioactivities. Many studies reported the significant clinical
effect of ATR for the treatment of diseases, such as epilepsy [1,2] nervous disorders [3–6], depression [4],
cancers [7], skin diseases [8], and Alzheimer’s disease [9]. The research on ATR mainly focuses on its
antioxidant activity. Some reports suggested that antioxidants can scavenge free radicals and reduce
lipid peroxidation, protein peroxidation, and DNA damage of free radicals [10,11]. The studies on
the antioxidants in food, plant materials, and TCMs recently attracted increasing attention [12,13].
However, most studies only evaluated the antioxidant activity of plant extracts or certain chemical
components; whether these components are the key antioxidants in the extracts remains poorly
understood. Many reports have proven the antioxidant activities of volatile oils in ATR [14]. However,
the specific components responsible for these bioactivities remain unknown.

Volatile oils have complex chemical compounds [13], consisting of phenylpropanoid, sesquiterpene,
oxygenated-sesquiterpene, monoterpene, and oxygenated-monoterpene [15]. Chromatographic
fingerprint is used to characterize the complex chemical composition of TCMs [16,17]. This method
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was introduced by the World Health Organization to control the quality of TCMs and overcome the
limitations when using few marker components [18,19]. Techniques, such as gas chromatography–mass
spectrometry (GC-MS) [20], high performance liquid chromatography–diode array detector/mass
spectrometry (HPLC-DAD/MS) [21,22], and high performance capillary electrophoresis–mass
spectrometry (CE-MS) [23], are commonly used to measure the chromatographic fingerprints of
TCMs. In this study, GC-MS fingerprinting was used to measure the complexity of volatile components
in ATR.

Evaluating the bioactivities of each component of ATR volatiles is difficult due to its complexity.
Chemometrics became popular because it can deal with groups of variables or discover sets of related
predictors. Partial least squares regression (PLSR) [24,25], network-induced supervised learning [26],
support vector machine [27], and some penalized methods were proposed for data analysis of complex
analytical systems [28]. Multivariate calibration techniques are used to extract information from high
throughput analytical data. For example, Liu et al. revealed the antioxidant components in Turpiniae
Folium (TF) through PLSR using the information of multi-wavelength fingerprints generated by HPLC
and the antioxidant capacity of TFs [18]. These techniques can help reveal the chemical features of
TCMs with minimum sample preparation, together with reasonable accuracy and precision without
expensive and time-consuming preliminary separation steps, which are usually required for complex
systems [29–31].

This study aims to identify the key bioactive components in ATR for radical scavenging activity.
The volatile components in the deliberately collected 49 ATR samples were analyzed by GC-MS. The
bioactivity of the volatile oils in ATR was evaluated by 2,2-diohenyl-1-picryl-hydrazyl (DPPH) radical
scavenging assay. Furthermore, a PLS regression model between the radical scavenging activity and
the contents of volatile components was established and evaluated by using 10-fold cross-validation
and external validation.

2. Results and Discussion

2.1. GC-MS Fingerprinting and DPPH Radical Scavenging Assay

The chromatographic fingerprints of 49 ATR samples were obtained by GC-MS analysis and
were used to reflect the complexity of volatile chemical components. The representative total ion
chromatogram (TIC) of ATR is shown in Figure 1. Eighty components were detected. All GC-MS
data, including retention characteristics, peak intensities, and integrated mass spectra, of each
sample were used for the qualitative and quantitative analyses. First, the automated mass-spectral
deconvolution and identification system (Automatic Mass Spectral Deconvolution and Identification
software (AMDIS) software, National Institute of Standards and Technology, Gaithersburg, MD, USA)
was used for peak finding and deconvolution. Component identification was based on the comparison
of the mass spectrum of putative component with those of the NIST 2005 Mass Spectral Library and
NIST 2011. In addition, the chemical components were further identified by temperature-programmed
retention indices. The detailed qualitative process was shown in our previous study [15]. Seventy-four
volatiles were identified; nine of which, namely, methyleugenol, transmethylisoeugenol, linaool,
α-pinene, (–)-terpinen-4-ol, α-terpieol, bornylacetate, α-asarone, and β-asarone, were identified by
commercial standard substances. The relative concentration of an individual component was expressed
by the ratio of peak area of one component to the internal standard (undecane) on the same TIC. The
qualitative and quantitative results are shown in Table S1.
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Figure 1. Representative gas chromatography–mass spectrometry (GC-MS) fingerprint of acorus 
tatarinowii rhizoma (ATR): (A) total ion chromatogram (TIC) of ATR at 3–13 min; (B)TIC of ATR at 13–
24 min; (C) TIC of ATR at 24–35 min. Eighty volatile components were detected by GC-MS. 

The bioactivities of ATR essential oils were determined by the DPPH radical scavenging assay. 
The radical scavenging activity was expressed by the equivalent concentration of quercetin. The 
radical scavenging activities had a maximum value of 41.99 µg/mL, minimum value of 11.60 µg/mL, 
and mean value of 25.61 µg/mL. The radical scavenging activities of the 49 ATR samples were 
significantly different. Furthermore, the strongest and the weakest samples are both cultivated in 
Sichuan province. The result indicated that there is no specific relationship available between the 
radical scavenging ability and the habitat of the ATR.  

2.2. PLSR Model between the Radical Scavenging Activity and the Contents of Volatile Components 

Partial least squares regression models were established for the contents of volatile components 
(matrix X) and the results of DPPH radical scavenging assay (matrix Y) to describe the relationship 
between the radical scavenging activities and the chemical components. First, the dataset of 49 
samples (49 × 80, samples × variables) were used to build the PLS regression model. Thirty-nine 
samples were selected as the calibration set by using the Kennard–Stone algorithm, and the 
remaining 10 samples were used as the validation set. For the calibration set, the maximum, 
minimum, and mean values of the radical scavenging activity were 41.99, 11.60, and 25.97 µg/mL, 
respectively. For the validation set, the maximum, minimum, and mean values of the radical 
scavenging activity were 41.27, 14.96, and 24.21 µg/mL, respectively. The distribution of the radical 
scavenging activity values was similar for the calibration and validation sets. The two datasets were 

Figure 1. Representative gas chromatography–mass spectrometry (GC-MS) fingerprint of acorus
tatarinowii rhizoma (ATR): (A) total ion chromatogram (TIC) of ATR at 3–13 min; (B)TIC of ATR at
13–24 min; (C) TIC of ATR at 24–35 min. Eighty volatile components were detected by GC-MS.

The bioactivities of ATR essential oils were determined by the DPPH radical scavenging assay.
The radical scavenging activity was expressed by the equivalent concentration of quercetin. The radical
scavenging activities had a maximum value of 41.99 µg/mL, minimum value of 11.60 µg/mL, and
mean value of 25.61 µg/mL. The radical scavenging activities of the 49 ATR samples were significantly
different. Furthermore, the strongest and the weakest samples are both cultivated in Sichuan province.
The result indicated that there is no specific relationship available between the radical scavenging
ability and the habitat of the ATR.

2.2. PLSR Model between the Radical Scavenging Activity and the Contents of Volatile Components

Partial least squares regression models were established for the contents of volatile components
(matrix X) and the results of DPPH radical scavenging assay (matrix Y) to describe the relationship
between the radical scavenging activities and the chemical components. First, the dataset of 49 samples
(49 × 80, samples × variables) were used to build the PLS regression model. Thirty-nine samples were
selected as the calibration set by using the Kennard–Stone algorithm, and the remaining 10 samples
were used as the validation set. For the calibration set, the maximum, minimum, and mean values of
the radical scavenging activity were 41.99, 11.60, and 25.97 µg/mL, respectively. For the validation set,
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the maximum, minimum, and mean values of the radical scavenging activity were 41.27, 14.96, and
24.21 µg/mL, respectively. The distribution of the radical scavenging activity values was similar for
the calibration and validation sets. The two datasets were reasonably partitioned. The first eight latent
variables were used to establish the PLS regression model as determined by the 10-fold cross-validation.
The R2 and Q2 values of the model were 0.8284 and 0.7824, respectively, as shown in Table 1. MCCV
method was introduced to identify the outliers of the dataset and improve the predictive ability of the
regression model. Monte-Carlo sampling was conducted to select 40 ATR data from the original data
(49 × 80) to build the PLS regression model. The rest of the data were used as the validation set to
evaluate the model. The distribution of the predicted values of DPPH radical scavenging assay for
each sample was obtained after sampling 2000 times. The standard deviation and mean predicted
values were calculated for each sample as shown in Figure 2. Samples 31, 32, 37, 38, 48, and 49 were
identified as outliers in the X-axis and Y-axis directions.

Table 1. Comparison of partial least squares regression models before and after variable selection.

Matrix nLV R2 Q2 RMSEC RMSEP RMSECV

49 × 80 a 8 0.8284 0.7824 3.2597 3.2210 5.0261
43 × 80 b 6 0.9090 0.8124 2.3084 3.0996 3.4109
43 × 15 c 5 0.9069 0.7969 2.3440 3.1713 2.9716
43 × 11 d 6 0.8955 0.8284 2.4745 2.9641 3.3196
43 × 10 e 5 0.9050 0.7940 2.3679 3.1932 2.9927

a: the PLS regression model established by dataset of all samples; b: the PLS regression model established by
dataset of samples after outlier elimination; c: the variables were selected by regression coefficients (RC); d: the
variable were selected by variable importance in projection (VIP); e: the common variables selected by RC and
VIP. nLV: number of latent variables; R2: determination coefficient for calibration set; Q2: determination coefficient
for validation set; RMSEC: root mean square error of calibration; RMSEP: root mean square error of prediction
(validation set); RMSECV: root mean square error of cross validation.
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Figure 2. Distribution of the predicted mean and standard deviation values of 2,2-diohenyl-1-
picryl-hydrazyl (DPPH) radical scavenging assay for 49 ATR samples by Monte-Carlo cross-validation
(MCCV) method. A 2000-time Monte-Carlo sampling was conducted for the dataset of all samples
(49 × 80).
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The new dataset (43 × 80) was generated after outlier elimination. Thirty-four samples were
selected as the calibration set by the Kennard–Stone algorithm, and the remaining nine samples were
used as the validation set. The distribution of radical scavenging activity values was similar before and
after the outlier elimination. The new calibration set and validation set were reasonably partitioned.
The new PLS regression model is shown in Figure 4B and was established by using the first six latent
variables selected by 10-fold cross validation, as shown in Figure 3A. The R2 and Q2 values of the
model were improved to 0.9090 and 0.8124, respectively, as shown in Table 1. RMSECV decreased
from 5.0261 to 3.4109, and RMSEP decreased from 3.2210 to 3.0996. Other parameters for the PLS
regression model were compared in Table 1. The results indicated that the efficiency of the model was
significantly improved after the outlier elimination. Before the PLS model was selected, both cross
validation and external validation was used. The results indicated that the models are not overfitted.
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Figure 3. The partial least squares regression model between the radical scavenging activity and the
volatile components: (A) Selection of the optimal latent variables by 10-fold cross validation. The first
six latent variables were selected; (B) actual measured DPPH values versus their predicted values
obtained by partial least squares regression model. The size of data set is 43 × 80. (N) calibration set;
( ) validation set.

2.3. Key Bioactive Components in ATR for Radical Scavenging Activity

The present study aims to identify the key components in volatile oils that correspond to the
radical scavenging activity of ATR. Thus, the regression coefficient (RC) and variable importance
in projection (VIP) methods were employed. A higher absolute value of RC or VIP indicates the
bigger contribution of this specific component. These values are scaled and centered, so they are
comparable. The RC and VIP values of the 80 components were plotted from the PLSR model (43 × 80)
as shown in Figure 4B,C. In addition, combination effect of variables was taken into account in this
study [32]. Predictive ability of different variable combinations was compared in order to select the best
components’ pattern and help us to define the threshold of variable selection, as shown in Figure 5A.
For VIP method, when the number of variables is eleven, Q2 of the PLSR model obtained the best
results, as shown in Figure 5A and Table 1. The results of VIP are better than RC. Thus, the first
eleven components were identified as responsible for the radical scavenging activity of ATR volatile
oil in this study. They are estragole, methyleugenol, cis-methylisoeugenol, isoshyobunone, δ-cadinene,
calacorene, γ-asarone, β-asarone, α-asarone, calamusenone, isocalamendiol. Previous studies on ATR
volatile oil mainly focused on the two components, α-asarone and β-asarone. These components
account for approximately 95% of ATR volatile oils [33]. Thus far, several publications have reported
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the antioxidant ability of β-asarone, α-asarone [34], and the isoshyobunone, isocalamendiol, and
calacorene are the constituents of essential oils with antioxidant activity [35]. The other components
are not reported for antioxidant bioactivity, but having other bioactivities. For example, γ-asarone
exhibited its fungitoxicity against Aspergillus flavus [36]. The isocalamendiol in Zibu Piyin recipe
exhibited ameliorating effects on scopolamine-induced memory dysfunction [37]. Calamusenone have
insecticidal and repellant activities [38,39]. δ-Cadinene in Psidium cattleianum Sabine has antimicrobial
and antioxidant activities [40]. The present study firstly reveals the eleven volatiles as a pattern for
predict the radical scavenging activity of ATR. Our findings provide a new focus for the research of
bioactivities of ATR.
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Figure 4. Screening of the key bioactive components: (A) The Q2 of the partial least squares regression
models of different combinations of variables. The first one was the variable with the highest variable
importance in projection (VIP) or regression coefficient (RC) value. The second combination was the first
one plus the second one, then the first three, and so on. In this study, the number of variables changed
from one to twenty; (B) RCs of the PLS regression model (43 × 80) for the 80 components; (C) VIP
value of each component. Fifteen and eleven components were selected by RC and VIP, respectively.
There are ten common components selected by the two methods. Components 1–16: 1, Estragole;
2, Methyleugenol; 3, cis-Methylisoeugenol; 4, Shyobunone; 5, Ledene; 6, Isoshyobunone; 7, δ-Cadinene;
8, Calacorene; 9, γ-Asarone; 10, β-Asarone; 11, cis-Calamenene; 12, Dehydroxy-isocalamendiol;
13, α-Cadinol; 14, α-Asarone; 15, Calamusenone; 16, Isocalamendiol.
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3. Materials and Methods

3.1. Materials

Methyleugenol (purity: 98%), trans-methylisoeugenol (purity: 98%), (−)-terpinen-4-ol (purity:
97%), α-terpieol (purity: 97%), bornylacetate (purity: 98%), α-pinene (purity: 98%), undecane (purity:
99%), and linalool (purity: 99%) were obtained from J&K Technology (Beijing, China). β-asarone
(purity: 98%), α-asarone (70%), and DPPH were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The alkane standard solution of C8–C20 was obtained from Fluka Chemika (Buchs, Switzerland).
Quercetin (purity: 99%) was purchased from the National Institute for Food and Drug Control (Beijing,
China). Methanol, hexane, and anhydrous sodium sulfate were of analytical grade. Forty-nine batches
of ATR samples were deliberately collected from Sichuan, Anhui, Shanxi, Hunan, Hebei, Jiangxi, and
Henan Provinces in China. These samples were authenticated by Shao Liu (Xiangya Hospital, Central
South University). The specimens are currently preserved in the institute mentioned above.

3.2. Extraction of Volatile Oil

All samples were dried at 40 ◦C for 2 h, followed by pulverization. Volatile oil was extracted
according to the procedure described in the Chinese Pharmacopoeia [41]. Briefly, 800 mL of distilled
water and 80 g of the sample were added to the standard extractor. The sample was extracted for
4 h with 4 D/min reflux rate. Moderate anhydrous sodium sulfate was added to remove the trace
amounts of water. All volatile oils were stored in brown syringes at 4 ◦C, followed by GC-MS analysis.
Undecane was selected as the internal standard in this study.

3.3. DPPH Radical Scavenging Assay

The bioactivities of the 49 ATR samples were determined using the DPPH radical scavenging
assay. The DPPH radical has a maximum absorbance at 517 nm, which disappeared upon reduction
in the presence of antioxidant components in each sample. This phenomenon resulted in a negative
correlation between the remaining absorbance at 517 nm and the radical scavenging activity of
the sample.

The DPPH assay was conducted as described by Pérez-Meseguer et al. [42] with some
modifications. First, the extract was filtered through a 0.45 µm membrane and subsequently diluted
10 times with methanol. The assay mixture comprised ATR extract (0.2 mL) and DPPH solution
(41 µg/mL in anhydrous ethanol, 3.8 mL). The quercetin standard solution was used as the positive
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control, which was diluted with methanol to obtain serial dilutions (5–50 µg/mL). The assay mixture
was kept in the dark at room temperature. After 30 min, the absorbance was measured at 517 nm
using a UV-Vis spectrophotometer. The radical scavenging activity was calculated by standard curve.
DPPH assay and GC-MS analysis were simultaneously conducted to avoid possible variations caused
by the degradation of the samples during storage. Each measurement was performed in triplicates.
The antioxidant capacity was expressed by the equivalent concentration of quercetin.

3.4. GC-MS Analysis

GC-MS analyses were conducted with a Shimadzu GC-2010 gas chromatograph (Kyoto, Japan)
coupled with a Shimadzu QP2010 mass spectrometer. The column initial temperature was maintained
at 60 ◦C for 1 min. The column temperature was programmed from 60 to 140 ◦C at the rate of 5 ◦C/min,
held for 20 min at 140 ◦C, ramped at a rate of 10 ◦C/min to 220 ◦C, and then held for 5 min at 220 ◦C.
The sample (1.0 µL) was injected into a fused-silica capillary column OV-1 (30 m × 0.25 mm with i.d.
film thickness of 0.25 µm) with a split ratio of 1:10. The flow rate of the high-purity helium carrier gas
was 0.8 mL/min. The injector temperature was 250 ◦C, and the septum purge flow rate was 3 mL/min.
The mass conditions were as follows: interface temperature, 250 ◦C; ion source temperature, 200 ◦C;
ionization voltage, 70 eV; detector voltage, 0.9 kV; solvent delay, 3 min; and full scan mode in the
35–800 m/z mass ranges with 0.2/s scan velocities.

Quality control sample was used in this study. For the 49 ATR samples, 10 uL volatile oil of each
sample was pooled, then vigorously vortexed for 1 min, to be the quality control sample. The sample
injection order is random, one quality control sample after four ATR samples.

3.5. Statistical Analysis

3.5.1. Partial Least Squares Regression (PLSR)

PLS can help us to obtain the latent variables, then, build a multivariate linear model between
two data matrices, X and Y [43]. This method is very efficient, especially for high dimensional datasets.
The PLSR model could be improved by optimizing the number of latent variables. In addition, variable
selection is very important to optimize a PLSR model.

In this study, a regression model between the radical scavenging activities and the contents
of volatile components was constructed by PLS. Data was centered before the PLS model was
developed. Data were partitioned into calibration (80%) and validation (20%) sets using Kennard–Stone
algorithm [44]. The number of latent variables were optimized by 10-fold cross validation for the
calibration set. The overfitting possibilities of the PLSR model were evaluated by 10-fold cross
validation and external validation. The established PLSR models were evaluated using the root
mean square error of cross-validation (RMSECV), root mean square error of calibration (RMSEC),
root mean square error of prediction (RMSEP), determination coefficient for calibration set (R2), and
determination coefficient for validation set (Q2) [18,43].

3.5.2. Outlier Identification

Outliers are the data that fall outside the population and were caused by measurement error,
sudden changes in experiment conditions, and sample properties [45]. Outliers greatly influence
the regression solution, and the existence of such data points might lead to considerable deviations
from normality [46]. In this study, the outliers were identified based on Monte-Carlo cross-validation
(MCCV) [47]. First, the original data was sampled 2000 times. A fixed percentage (80%) of the samples
was randomly selected to build the PLS regression model, and the rest of the data was used to validate
the model. The prediction error distribution for each sample was obtained after 2000 times sampling.
The distribution of mean value and standard deviation were calculated for each sample. A four-zone
scatter plot was established by using the mean value as the coordinate in the X-axis and the standard
deviation as the coordinate in the Y-axis, as shown in Figure 5. In this study, 2.5 times of average
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value (mean value or standard deviation) were selected on the X- and Y-axes to divide the graph into a
four-zone scatter plot, according to the suggestion of Reference [38]. PLSR and MCCV were performed
using Matlab 7.10.0 software (R2010a, The Math Works Inc., Natick, MA,USA).

4. Conclusions

This study proposed an efficient strategy to reveal the key chemical components responsible
for the bioactivity of ATR. Chemical components in ATR volatile oils were profiled by GC-MS. A
PLSR model between the radical scavenging activity and the contents of volatile components was
established. After the outliers were eliminated by MCCV, and informative variables were selected
by VIP and RC, the PLSR model was improved significantly and was proven highly reliable. Eleven
components, namely, estragole, methyleugenol, cis-methylisoeugenol, isoshyobunone, δ-cadinene,
calacorene, γ-asarone, β-asarone, α-asarone, calamusenone, isocalamendiol, were identified using
the VIP method. These components formed a pattern and are probably responsible for the radical
scavenging activity of ATR and are worthy of further study.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/7/1342/s1.
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