
Glaucoma is a neurodegenerative disease involving 
apoptosis of retinal ganglion cells and irreversible vision loss 
[1]. Glaucoma is the second leading cause of blindness in the 
world [2]. Multicenter studies have verified that ocular hyper-
tension is the most important risk factor for retinal ganglion 
cell apoptosis in glaucoma. However, treatment aimed at 
reducing high intraocular pressure (IOP) failed to reverse the 
loss of retina ganglion cells. For this reason, understanding 
the pathological mechanisms underlying high IOP and how 
they can be therapeutically modulated are of key importance.

Increasing clinical and experimental evidence supports 
that primary open-angle glaucoma (POAG) is more than an 
ocular disease as it also affects the structures and function 
of the central nervous system (CNS), including visual areas 
and non-visual areas in the brain [3,4]. Carlo et al. indicated 
that anterograde transynaptic central damage of the visual 

pathway might be triggered by ganglion cell death [5]. 
However, the exact mechanism remains unknown, and the 
relation between IOP and the CNS seems to be complicated. 
As we all know, IOP is not a constant value but follows a 24-h 
circadian rhythm [6]. The suprachiasmatic nucleus (SCN), 
which plays various roles in regulating circadian activities 
and receives direct projections from retinal ganglion cells, 
appears to participate in regulation of fluctuations in IOP 
[7]. Guzman-Ruiz et al. observed that neuronal activity of 
the hypothalamic arcuate nucleus (ARC) could be stimulated 
by the SCN [8]. Moreover, unilateral electrical stimulation 
of the ARC caused a decrease in IOP probably in an opioid 
peptides–mediated way [9]. Thus, we speculate that in addi-
tion to the SCN, the ARC of the hypothalamus is associated 
with IOP.

The ARC contains not only neuroendocrine neurons 
but also projecting neurons for mediating different regions 
within and outside the hypothalamus. The projecting neurons 
are mainly composed of two groups: POMC/CART neurons 
and neuropeptide Y (NPY)/AgRP neurons, both of which 
contain GABA, an important inhibitory neurotransmitter 
in the central nervous system [10-13]. There are two types 
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of GABA receptors. GABA-A receptors are ligand-gated 
chloride channels that include an active binding site and 
allosteric binding sites that make it possible for different 
drugs to modulate the activity of the receptors [14]. GABA-B 
receptors, composed of GABA-B 1 and GABA-B 2 subunits, 
belong to the G protein-coupled family [15]. GABA receptors 
within the ARC are implicated in many critical homeostatic 
mechanisms, such as thermoregulation, foraging, as well as 
blood pressure regulation which is under circadian rhythms 
similar to IOP [16-19]. Samuels reported that microinjection 
of bicuculline methiodide, a GABA-A receptors antagonist, 
into the dorsomedial/perifornical hypothalamic leads to a 
significant increase in IOP [20]. Interestingly, the expression 
of GABA-A receptors in the primary visual cortex (V1) was 
found to be downregulated in the chronic high IOP primate 
model [21]. Nevertheless, no study has analyzed the relation-
ship between IOP and GABA receptors within the ARC. The 
aim of the present study was to investigate whether GABA 
receptors within the ARC are related to IOP.

METHODS

Animals: We obtained 10-month-old male DBA/2J mice 
(J000671) from Nanjing Biomedical Research Institute 
of Nanjing University (Nanjing, China). Additionally, 
6- to 8-week-old male Sprague Dawley (SD) rats weighing 
200±20.0 g, and 10-month-old male C57BL/6J mice were 
obtained from the Experiment Animal Center of the Tongji 
Medical College, Huazhong University of Science and 
Technology (HUST; Wuhan, China). All animal procedures 
were approved by the Institutional Animal Care and Use 
Committee of the Huazhong University of Science and 
Technology according to the ARVO Statement for the Use 
of Animals in Ophthalmic and Vision Research and the U.S. 
National Institutes of Health.

Animal grouping:

Chronic high IOP rats versus normal SD rats—The 
chronic high IOP rats were randomly divided into three 
groups, and the two chronic high IOP groups were euthanized 
at 2 weeks and 4 weeks separately, while the normal group 
was euthanized at 4 weeks (n=6 in each group). Non-treated 
SD rats served as control.

IBO-microinjected rats versus PBS-microinjected 
chronic high IOP rats—The chronic high IOP rats were 
randomly divided into two groups, and the IOP of each group 
was measured at the 0, 1, 2, 3, and 4 week time points (n=6 in 
each group). Ibotenic acid (IBO; I2765, a neurotoxin) micro-
injection was performed 30 min before the episcleral veins 
were cauterized. The chronic high IOP rats injected with PBS 

(1X; 136 mM NaCl, 2.6 mM KCL, 8 mM Na2HPO4, 2 mM 
KH2PO4, pH7.4) served as control.

Antagonist-microinjected rats versus DMSO-micro-
injected chronic high IOP rats—The chronic high IOP 
rats were randomly divided into four groups with different 
reagents, and all of the rats were euthanized at 4 weeks post-
injection. The four groups were gabazine + chronic high IOP 
rats, CGP55845 + chronic high IOP rats, dimethyl sulfoxide 
(DMSO) + chronic high IOP rats, and chronic high IOP rats 
(n=6 in each group). The chronic high IOP rats with the 
DMSO microinjection served as the control.

Ten-month-old DBA/2J mice versus 10-month-old 
C57BL/6J mice—The DBA/2J mice group served as a spon-
taneous model of glaucoma [22]. The non-treated 10-month-
old C57BL/6J mice group served as the control (n=6 in each 
group).

Animal models:

Chronic high IOP rat model—The rats were anes-
thetized with an intraperitoneal injection of 10% chloral 
hydrate. Three episcleral veins of bilateral eyes were exposed 
by making an incision through the conjunctiva and Tenon’s 
capsule at the limbal periphery of the eye. Selected veins were 
precisely cauterized. The eyes were treated topically with 
tobramycin during recovery (0.3% tobramycin, 1–2 drops per 
time, 3 times per day) [23].

Microinjection in the ARC—The microinjector was 
introduced into the target areas for stereotaxic injection 
(Appendix 1). All microinjections into the ARC were unilat-
eral (right side). The volume of each injection was 1 μl, and 
the injection rate was 0.1 μl/min. The needle was retained in 
place for 2 min after the completed injection.

Measurement of IOP—IOP was measured in the eyes 
of conscious rats (anesthetized with 0.5% proparacaine 
hydrochloride eye drops) using the Tono-Pen (Tono-Pen 
XL; Medtronic Inc., Jacksonville, FL). Measurements were 
taken before the surgery and once a week after surgery until 
the rats were euthanized. All data were collected during the 
light period of the day. Each measurement was repeated three 
times and then averaged.

Animals euthanasia—Animals were placed in a trans-
parent euthanasia chamber (40*30*25cm). CO2 (>99.999%) 
was provided with flow rate at 8 l/min untill animals death 
(CO2 gas was maintanend for another 2 minutes after no 
obvious sigh of breath was observed).

Reagents and antibodies: Chloral hydrate was purchased 
from Sinopharm Chemical Reagent Co (Shanghai, China). 
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IBO (dissolved in PBS, 5 μg/μl). Gabazine (S106, GABA-A 
receptor antagonist, diluted in DMSO, 1 M), and CGP55845 
(SML0594, GABA-B receptor antagonist, diluted in DMSO, 
1 M) were purchased from Sigma-Aldrich Co (St. Louis, 
MO). Anti-GABA-A receptor alpha 1 (ab94585, mouse-
origin monoclonal antibody, 1:200), anti-GABA-B receptor 
1 (ab55051, mouse-origin monoclonal antibody, 1:200), and 
anti-Brn3a antibody (ab81213, rabbit-origin monoclonal anti-
body, 1:200) were obtained from Abcam (Cambridge, MA).

Tissue preparation: For tissue collection, transcardial perfu-
sion was performed under deep chloral hydrate anesthesia 
with 100 ml normal saline followed by 400 ml ice-cold 4% 
(w/v) formaldehyde for 15 min as previously described [24]. 
The brains were removed and fixed in 4% paraformaldehyde 
overnight. According to the stereotaxic coordinates of the 
rodent, paraffin-embedded brains were precisely sectioned to 
5-μm thickness at the location of the ARC [25,26]. Then, the 
eyes were fixed in 1.2% picric acid. Paraffin-embedded eyes 
were sliced to 5 μm thickness, and all sections containing all 
layers of the retina were used for further analysis.

Immunofluorescence and immunohistochemical staining: 
The brain sections were gently washed twice with PBS, 
preheated to 37 °C. Then, the sections were blocked for 1 h 
at room temperature in PBS containing 10% normal donkey 
serum and 0.1% Triton X-100. The sections were incubated 
with the corresponding primary antibodies (mouse mono-
clonal anti-GABA-A receptor alpha 1 antibody and mouse 
monoclonal anti-GABA-B receptor 1 antibody, 1:200, diluted 
in blocking buffer) separately, at 4 °C overnight in a humidity 
chamber. Following three 10-min gentle washes with PBS, 
the sections were incubated with fluorescein-isothiocyanate 
(FITC) anti-mouse antibody (1:200; Sigma-Aldrich) for 2 h at 
room temperature in a humidity chamber. Then, the sections 
were observed under a fluorescence microscope (Zeiss 510 
Meta, Zeiss, Jena, Germany) with an omnichrome air-cooled 
helium/neon laser set to produce emissions at 488 nm.

For immunohistochemical staining, the sections were 
incubated with biotinylated secondary antibody. 3′, 3′-Diami-
nobenzidine (DakoCytomation, Carpinteria, CA) was used as 
a peroxidase substrate to develop the color brown, and subse-
quently, hematoxylin (Merck Ltd., Taipei, Taiwan, ROC) was 
used as a counterstain.

BRN3A and TUNEL staining: The retinal cross sections were 
washed twice with PBS and blocked for 1 h at room tempera-
ture in blocking buffer. Then the sections were incubated with 
the corresponding primary antibody anti-BRN3A antibody 
(ab81213, rabbit-origin monoclonal antibody, 1: 200, diluted 
in blocking buffer) at 4 °C overnight in a humidity chamber. 
After washing with PBS, the sections were incubated with the 

secondary antibody for 2 h at room temperature in a humidity 
chamber. Terminal deoxynucleotidyl transferase dUTP nick-
end labeling (TUNE) staining was performed according to 
the manufacturer’s protocol (Sangon Biotech, Shanghai, Co., 
Ltd.).

Quantitative image analysis: The ARC lies around the third 
ventricle and contains five parts. In different levels, the size 
and shape of the ARC are slightly different except the medial 
part. There are almost no changes in the size, form, and even 
the location in the middle. For the analysis, an identical oval 
representing the medial part was used in all figures to make 
the data more accurate and convincing. The transverse diam-
eter and the vertical diameter of the oval were 184 μm and 
127 μm while the angle between the oval major axis and the 
horizontal axis was 26.4°.

The expression of the GABA-A/B receptors was visual-
ized with immunohistochemical staining (IHC) or immuno-
fluorescence (IF) staining in brain sections from six mice and 
rats in each group. Using the same microscope and camera 
settings, at least four digital images per section were taken 
to reflect the overall staining in the pons region of the brain. 
For the ARC, images at 20X were used for analysis using 
Image Pro Plus 4.0 (Media Cybernetics, Silver Spring, MD). 
Cells with a green or brown ring shown in the oval circle 
were identified as positive cells. The total immunoreactivity 
of the selected immunopositive area was divided by the area 
size, and the values relative to that of the control group are 
presented in the histograms. The proposed method allowed 
numerical analysis of the immunoreactivity. The sum immu-
noreactivity of the ARC was analyzed. For BRN3A and 
TUNEL staining, four sections were acquired per eye, and 
images from six random fields (40X) were taken for positive 
cells counting in the ganglion cell layer (GCL).

Statistical analysis: The data were analyzed using SPSS 
version 20.0 software (IBM Corporation, Armonk, NY). 
The differences between two groups were assessed using 
the Mann–Whitney U test. A p value of less than 0.05 was 
considered statistically significant in all cases. All data for 
cell counting was reported with mean ± standard error of the 
mean (SEM).

RESULTS

Effect of elevated IOP on retina ganglion cells in the chronic 
high IOP rat model: To evaluate the effectiveness of the 
chronic high IOP rat model used in this study, the initial 
IOP of the control group and that of the two chronic high 
IOP groups were measured at 2 weeks and 4 weeks. IOP 
was statistically significantly elevated 2 weeks and 4 weeks 
after the episcleral vein cauterization surgery compared to 
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the control (*p=0.037; **p=0.004; Figure 1A). BRN3A and 
TUNEL staining was performed to observe the morphologic 
changes in the retina (Figure 1B). Statistical analysis of the 
BRN3A or TUNEL staining positive cell numbers showed a 
statistically significant reduction induced by the persistent 
high IOP compared with the control (*p<0.01; Figure 1C,D). 
These data indicate that the animal models were successfully 
established.

Effect of IBO injection into the ARC on IOP of the ipsilateral 
eye in the chronic high IOP rat model: IBO is an excitatory 
neurotoxin that is widely used to cause neurochemical lesions 
to the central nerve system [27,28]. Here, IBO injection 
induced impairment of the ARC in the chronic high IOP rat 
model. Hematoxylin and eosin staining (H&E staining) was 
performed at 4 weeks after the microinjection indicating 
degeneration of cells around the injection site as shown in 
Appendix 1. Compared with the vehicle group, statistically 
significant downregulation of ipsilateral IOP was noted due 
to impairment of the ARC at the 2, 3, and 4 week time points 
(**p<0.01; Figure 2). No statistically significant difference 
was observed between the PBS-injected chronic group and 
the chronic group. The IOP of the contralateral eyes was 
statistically significantly decreased at 3 weeks and 4 weeks 
(p<0.05) post IBO injection, but to a slighter degree than the 
ipsilateral eye (Appendix 2).

The expression of GABA receptors in the chronic high IOP rat 
model: To validate the potential relationship between GABA 
receptors in the ARC and IOP, we performed IF and IHC 
(Figure 3A,D). In the chronic high IOP groups (at 2 weeks and 
4 weeks), the number of positive cells in the selected oval area 
was statistically significantly increased (Figure 3B,C,E,F) 
compared with the control (p<0.01 for all). The expression of 
the GABA receptors in the ARC was upregulated in response 
to the persistent high IOP.

Effect of GABA-A/B receptors antagonist injection into the 
ARC on the IOP of the ipsilateral eye and retinal ganglion 
cells in the chronic high IOP rat model: To further inves-
tigate the function of GABA receptors in modulating IOP, 
GABA-A and GABA-B receptor antagonists were injected 
into the ARC separately (30 min before the chronic high 
IOP rat model was generated). Gabazine serves as an allo-
steric inhibitor of GABA-A receptors resulting in channel 
opening and inhibition of chloride influx [29]. CGP55845 
selectively blocks GABA-B receptors resulting in modulation 
of inwardly rectifying K+ channels (GIRKs) and the release 
of neurotransmitters [30]. The IF and IHC staining (Figure 
4A,D) of the brain slices revealed that gabazine decreased the 
expression of GABA-A receptors in the ARC compared to the 
4 week and 4 week + DMSO groups. The same decrease in 

the expression of the GABA-B receptors occurred in the rats 
injected with CGP55845 (**p<0.01; Figure 4B,C,E,F). As for 
IOP of the ipsilateral eye, a statistically significant decrease 
(p<0.01) was observed in the groups treated with gabazine 
or CGP55845 at the 2, 3, and 4 week time points compared 
to the control (Figure 5A). In addition, GABA antagonists 
were injected 2 weeks after high IOP was induced. As shown 
in Appendix 3, gabazine and CGP55845 statistically signifi-
cantly decreased the IOP of the ipsilateral eyes compared to 
the 2 week + DMSO group at the 3 and 4 week time points 
(p<0.05; Appendix 3). The retinal cross sections stained with 
BRN3A and TUNEL (Figure 5B,C) showed increased cell 
numbers and less apoptosis of retinal ganglion cells in the two 
antagonist groups than in the control group (p<0.01; Figure 
5D,E).

The expression of GABA receptors in DBA/2J mice: Following 
the induced high IOP animal model, attention was paid to the 
DBA/2J mice that developed progressive eye abnormalities 
spontaneously that closely mimic human hereditary glau-
coma. The DBA/2J mice showed increased IOP from 6 to 16 
months caused by blocking of the aqueous outflow pathway 
[31-33]. The IOP of the DBA/2J mice used in the present study 
was statistically significantly higher than that of the age-
matched C57BL/6J mice (p<0.01; Appendix 4). In the normal 
control, the GABA receptors were expressed at low levels in 
the ARC. Compared to the control group, the expression of 
the GABA receptors was statistically significantly increased 
in the DBA/2J mice (p<0.01; Figure 6A–F). The effect of 
the GABA antagonists on the IOP of the ipsilateral eye was 
also tested. The IOP of the ipsilateral eye was statistically 
significantly decreased at 2, 3, and 4 weeks after treatment 
with gabazine or CGP55845 compared to that in the DMSO 
group (p<0.01; Appendix 5).

DISCUSSION

The exact role of the CNS in the development of glaucoma 
has been the focus of research, but the role is still obscure. 
Functional magnetic resonance imaging (fMRI) provides 
a non-invasive method for assessing changes in the CNS 
induced by glaucoma [3]. However, MRI studies have failed 
to provide more detailed evidence for pathological alterations 
in the CNS. The present study first presented the increase in 
the expression of GABA receptors in the ARC in chronic high 
IOP models. We observed that the unilaterally impaired ARC 
(induced with ibotenic acid) reduced IOP in rats with chronic 
high IOP. Additionally, administration of GABA receptor 
antagonists in the ARC led to a decrease in IOP, along with 
less retinal ganglion cell apoptosis. Three different rodent 
strains (SD rats, C57BL/6J mice, and DBA /2J mice) and two 
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Figure 1. Effect of elevated IOP on 
retinal ganglion cells in the chronic 
high IOP rat model. A: The bar 
graph illustrates the intraocular 
pressure (IOP) of two chronic high 
IOP rat groups and the control group 
(ctl versus 2 weeks, *p=0.037; ctl 
versus 4 weeks, **p=0.004). B and 
C: The retinal cross sections were 
stained with BRN3A or terminal 
deoxynucleotidyl transferase dUTP 
nick-end labeling (TUNEL). D 
and E: The bar graph presents the 
number of BRN3A- or TUNEL-
positive cells in the ganglion cell 
layer (GCL; ctl versus 2 weeks, 
*p<0.01; ctl versus 4 weeks, 
*p<0.01). The data are expressed as 
mean ± standard error of the mean 
(SEM), n=6 per group. ctl: normal 
untreated group, 2w: chronic high 
IOP rats group euthanized 2 weeks 
after the surgery, 4w: chronic high 
IOP rat group euthanized 4 weeks 
after the surgery.
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pathologically high IOP models (the induced chronic high IOP 
model and the spontaneous high IOP model) were included. 
Although diversity existed in both strains and models, all the 
experimental animals exposed to persistent high IOP showed 
a statistically significant increase in expression of GABA 
receptors in the ARC. In sum, the ARC contributes to regu-
lation of IOP in which GABA receptors might be involved, 
and the increase in the expression of GABA receptors in the 
ARC is found to be one of the alterations in the CNS evoked 
by pathologically elevated IOP.

IOP is determined by the balance between secretion 
and elimination of the aqueous humor (AH). In physiologic 
conditions, aqueous humor is secreted by the ciliary body 
and then outflows mainly through the conventional route (via 
the iridocorneal angle, the trabecular meshwork, Schlemm’s 
canal, and the episcleral venous) and the uveoscleral route 
(via the iris root, suprachoroidal spaces, and the sclera). 
Previous studies have revealed that AH dynamic relevant 
tissues, responsible for the fluctuations in IOP, are innervated 
by parasympathetic and sympathetic fibers [34]. A portion of 
the parasympathetic fibers arises from the Edinger-Westphal 
nucleus (EW) and then project to the ciliary ganglion before 
joining the ciliary nerves [35]. The ciliary muscles and 
sphincter pupillae are under the control of these cholinergic 
fibers. When the parasympathetic fibers are stimulated, 
acetylcholine is released which results in contraction of the 

ciliary muscle followed by an increase in AH outflow [36]. 
Regarding sympathetic innervation, fibers originating from 
the intermediolateral cell column (IML) of the spinal cord 
project to the superior cervical ganglion (SCG) accompa-
nied by the sympathetic trunk, and terminate at the dilator 
pupillae, ciliary body blood vessels, the ciliary epithelium, 
and the trabecular meshwork [32].

However, little is known about the mechanisms for 
central control of IOP. The ARC is located in the middle of 
the hypothalamus and is generally accepted as the center of 
many physiologic homeostases. The ARC contains not only 
neuroendocrine neurons but also projecting neurons mainly 
for mediating different regions of the hypothalamus or other 
regions outside the hypothalamus. The projecting neurons 
contain different neuroactive peptides, such as oc-melano-
cyte-stimulating hormone or neuropeptide Y (NPY), as well 
as GABA [10,37,38]. GABA receptors within the ARC are 
involved in the regulation of body homeostasis, including 
thermoregulation, foraging, and blood pressure regulation 
[16-19]. Projections from the ARC to the EW and the IML 
have been observed via the retrograde trace method [39,40]. 
Building on this, we speculate that two pathways might make 
it possible for the ARC to contact with the eye (ARC-EW-
ciliary ganglion-eye and ARC-IML-SCG-eye). Antagonism 
of GABA receptors in the ARC probably elicits alterations 
in sympathetic and parasympathetic activity, and further 
changes the level of neurotransmitters in the eye tissues to 
negatively modulate IOP. Although the reduction effect of 
GABA inhibitors on pathologically elevated IOP was notable, 
the IOP in the chronic glaucoma model was still beyond the 
normal range. That may be attributed to the aqueous humor 
outflow resistance which existed throughout the study. In 
addition, the potential regulation of the ARC on IOP is only 
a fraction of the CNS influences. Other nuclei, such as the 
SCN and the dorsomedial/perifornical hypothalamus (DMH/
Pef), were previously shown to be related to IOP. Whether the 
ARC acts directly on IOP or through the SCN and the DMH/
Pef requires further research.

Jin et al. reported that unilateral electrical stimulation 
and administration of an opioid peptide receptor agonist in 
the ARC caused a reduction in IOP in rabbits under physi-
ologic conditions [9]. In the present study, we focused on 
the GABA receptors within the ARC, and two pathological 
animal models were performed. Although the ARC was 
treated with IBO, statistically significant alterations in IOP 
were observed, which appeared to be additional evidence that 
the ARC plays a role in regulating IOP. According to Jin et 
al.’s study, decrease in IOP evoked by electrical stimulation 
of the ARC could be eliminated through subconjunctival 

Figure 2. Effect of IBO injection into the ARC on IOP in chronic 
high IOP rat model. The intraocular pressure (IOP) of the ipsilateral 
eye in the ibotenic acid (IBO)-treated group and the control group 
at the 0, 1, 2, 3, and 4 week time points (chronic model group + PBS 
versus chronic model + IBO group, **p<0.01). The red line: chronic 
model + IBO group; the black line: chronic model group; the blue 
line: chronic model group + PBS group. The data are expressed as 
mean ± standard error of the mean (SEM), n=6 per group.
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Figure 3. The expression of GABA 
receptors in the ARC in the chronic 
high IOP rat model. A: Immuno-
histochemical (IHC) staining of 
GABA-A receptors and GABA-B 
receptors in brain sections at the 
location of the arcuate nucleus 
(ARC). B and C: Counting of posi-
tive cells in IHC-stained sections 
with Image J (ctl versus 2 weeks, 
**p<0.01; ctl versus 4 weeks, 
**p<0.01). D: Immunofluorescence 
(IF) staining of GABA-A receptors 
and GABA-B receptors in brain 
sections at the location of the ARC. 
E and F: Counting of positive cells 
in IF-stained sections with Image J 
(ctl versus 2 weeks, **p<0.01; ctl 
versus 4 weeks, **p<0.01). The data 
are expressed as mean ± standard 
error of the mean (SEM), n=6 per 
group. Bar=50 μm. ctl: normal 
untreated rat, 2w: chronic high IOP 
rat group euthanized 2 weeks after 
the surgery, 4w: chronic high IOP 
rats group euthanized 4 weeks after 
the surgery.
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Figure 4. Effect of antagonists on 
the expression of GABA receptors 
in the ARC in the chronic high IOP 
rat model. A: Immunofluorescence 
(IF) staining of GABA-A recep-
tors and GABA-B receptors in 
brain slices at the location of the 
arcuate nucleus (ARC). B and C: 
Counting of positive cells in immu-
nohistochemical (IHC)-stained 
sections with Image J (4 weeks + 
dimethyl sulfoxide (DMSO) versus 
4 weeks + gabazine, *p<0.01; 4 
weeks + DMSO versus 4 weeks 
+ CGP55845, *p<0.01). D: IF 
staining of GABA-A receptors 
and GABA-B receptors in brain 
sections at the location of the ARC. 
E and F: Counting of positive cells 
in IF-stained sections with Image J 
(4 weeks + DMSO versus 4 weeks + 
gabazine, *p<0.01; 4 week + DMSO 
versus 4 weeks + CGP55845, 
*p<0.01). The data are expressed as 
mean ± standard error of the mean 
(SEM), n=6 per group. Bar=50 
μm. 4w: chronic high intraocular 
pressure (IOP) rats without injec-
tion, 4w + DMSO: chronic high 
IOP rats with DMSO injection; 4 
weeks + inhibitor: chronic high IOP 
rats with gabazine or CGP55845 
injection.
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Figure 5. Effect of GABA receptor 
antagonists on the IOP and retinal 
ganglion cells of the ipsilateral eye 
in the chronic high IOP rat model. 
A: Intraocular pressure (IOP) was 
measured once a week after surgery 
(4 weeks + dimethyl sulfoxide 
(DMSO) versus 4 weeks + gaba-
zine, *p<0.01; 4 weeks + DMSO 
versus 4 weeks + CGP55845, 
*p<0.01). B and C: The retinal cross 
sections were stained with BRN3A 
or terminal deoxynucleotidyl 
transferase dUTP nick-end labeling 
(TUNEL). D and E: The number of 
BRN3A- and TUNEL-positive cells 
(4 weeks + DMSO versus 4 weeks + 
gabazine, *p<0.01; 4 weeks versus 
4 weeks + CGP55845, *p<0.01). 
The data are expressed as mean ± 
standard error of the mean (SEM), 
n=6 per group. 4w + gabazine 
group: with gabazine injection into 
the ARC, 4w + CGP55845 group: 
chronic high IOP rats with gabazine 
injection, 4w + DMSO: chronic 
high IOP rats with DMSO injec-
tion, 4w group: chronic high IOP 
rats without injection.

http://www.molvis.org/molvis/v24/574


Molecular Vision 2018; 24:574-586 <http://www.molvis.org/molvis/v24/574> © 2018 Molecular Vision 

583

injection of naloxone (the antagonist of opioid peptide recep-
tors), whereas the decrease caused by the injection of an ARC 
opioid peptide receptors agonist could not. These observations 
suggest that chemical and electrical stimulation of the ARC 
affect IOP in different mechanisms. As we did not interfere 
with the function of GABA in eye tissues, it remained diffi-
cult to distinguish exactly which peripheral neurotransmitter 
reacts to the injection of the GABA receptors antagonist 
in the ARC. In combination with the present study, either 
GABA or opioid peptide receptors in the ARC are involved 
in this regulatory function, which implies the participation of 
complicated multiple neurotransmitter mechanisms.

Similar to IOP, blood pressure shows circadian varia-
tions. Fluctuations in blood pressure have been attributed to 
the changes in sympathetic nerve activity (SNA) and circu-
lating catecholamine levels [41]. Previous studies revealed 
that ARC neurons containing beta-endorphin, GABA, and 
NPY project to the ipsilateral paraventricular nucleus (PVN), 
and all three neurotransmitters elicit inhibitory effects on 

neurons. The ARC might regulate SNA and blood pressure 
via a paraventricular nucleus–mediated pathway [42]. As for 
IOP, it was found that the GABA antagonist (bicuculline) 
injection into the DMH/Pef produces increases in IOP and 
translaminar pressure (the pressure difference between IOP 
and intracranial pressure) in normal rats [20]. In contrast, 
the GABA antagonists injected into the ARC reduced IOP in 
the chronic high IOP rats in the present study. As the ARC is 
capable of inhibiting the SNA through NPY fibers projecting 
to the DMH [43], which contains parasympathetic neurons, 
there could be a new hypothesis different from the two direct 
pathways. The DMH/Pef may serve as a connection between 
the ARC and sympathetic innervations of the eye.

The limitation of this study is that the results were based 
on biochemical experiments. To investigate the exact role of 
GABA receptors within the ARC with respect to regulation 
of IOP, additional elaboration research approaches, such as 
radionuclide scanning [44,45] or the neural loop tracing tech-
nique [46,47], are needed. However, the nerve fiber networks 

Figure 6. The expression of GABA 
receptors in the ARC in DBA/2J 
mice. A: Immunohistochemical 
(IHC) staining of GABA-A recep-
tors and GABA-B receptors in 
brain sections at the location of the 
arcuate nucleus (ARC). B: Immu-
nof luorescence (IF) staining of 
GABA-A receptors and GABA-B 
receptors in brain sections at 
the location of the ARC. C and 
D: Counting of positive cells in 
IHC-stained sections with Image 
J (control versus DBA/2J mice: 
**p<0.01). E and F: Counting 
of positive cells in IHC-stained 
sections with Image J (control 
versus DBA/2J mice: **p<0.01). 
The data are expressed as mean ± 
standard error of the mean (SEM), 
n=6 per group. Bar=50 μm.
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in the brain are so complex that we might not be able to deter-
mine whether an even more intricate downstream pathway 
associated with other nuclei, such as the suprachiasmatic 
nucleus and the dorsomedial/perifornical hypothalamus, 
exists. In conclusion, this study showed that elevated IOP 
induces the expression of GABA receptors in the ARC, and in 
turn, blocking the GABA receptors within the ARC decreases 
IOP and prevents retinal ganglion cell apoptosis.

APPENDIX 1. THE ANATOMY OF ARC IN MICE 
AND RATS.

The anatomical schematic diagram in A and B separately 
showed the location of ARC in rats and mice. The elliptical 
red area indicated the scope of counting. A hematoxylin and 
eosin (H&E) staining of brain slice showed the injection site 
(pointed by the red arrow in C) in the ARC. Vε indicated the 
third ventricle of mice. To access the data, click or select the 
words “Appendix 1.”

APPENDIX 2. EFFECT OF IBO INJECTION INTO 
THE ARC ON IOP OF CONTRALATERAL EYE IN 
CHRONIC HIGH IOP RATS MODEL.

The IOP of the contralateral eye in the IBO-treated group, 
PBS-treated group and non-microinjection group at time 
points of 0, 1 , 2, 3 and 4w (chronic model group + PBS 
vs chronic model + IBO group, P < 0.05 *). The red line: 
chronic model + IBO group; the blue line: chronic model + 
PBS group; the black line: chronic model group. The data 
were expressed as mean±SEM, n=6 per group. To access the 
data, click or select the words “Appendix 2.”

APPENDIX 3. EFFECT OF GABA RECEPTOR 
ANTAGONISTS ON IOP IN RATS 2 WEEKS POST 
HIGH IOP INDUCTION.

IOP of ipsilateral eye was recorded (gabazine vs DMSO, 
CGP55845 vs DMSO, P < 0.05 *) and expressed as 
mean±SEM, n=6 per group (P<0.05 *). To access the data, 
click or select the words “Appendix 3.”

APPENDIX 4. IOP OF DBA/2J MICE.

DBA/2J mice vs C57 mice, P < 0.01 *. The data were 
expressed as mean±SEM, n=6 per group. To access the data, 
click or select the words “Appendix 4.”

APPENDIX 5. EFFECT OF GABA RECEPTOR 
ANTAGONISTS ON IOP OF THE IPSILATERAL 
EYE IN DBA/2J MICE.

IOP was measured once a week after surgery (gabazine vs 
DMSO, CGP55845 vs DMSO, P < 0.01 *). The data were 
expressed as mean±SEM, n=6 per group. To access the data, 
click or select the words “Appendix 5.”
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