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Forensic interpretation of molecular
variation on networks of disease
transmission and genetic inheritance

This paper describes the inference-on-networks (ION) framework for forensic interpretat
ION of molecular typing data in cases involving allegations of infectious microbial trans-
mission, association of disease outbreaks with alleged sources, and identifying familial
relationships using mitochondrial or Y chromosomal DNA. The framework is applica-
ble to molecular typing data obtained using any technique, including those based on
electrophoretic separations. A key insight is that the networks associated with disease
transmission or DNA inheritance can be used to define specific testable relationships
and avoid the ambiguity and subjectivity associated with the criteria used for inferring
genetic relatedness now in use. We discuss specific applications of the framework to
the 2003 severe acute respiratory syndrome (SARS) outbreak in Singapore and the 2001
foot-and-mouth disease virus (FMDV) outbreak in Great Britain.
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1 Introduction

Molecular typing data are often used as evidence in investi-
gations of deliberate or negligent transmission of an infec-
tious microbe. A recent example is the 2010 cholera outbreak
in Haiti, where DNA sequence data have been cited as evi-
dence supporting the hypothesis that United Nations troops
introduced the disease [1]. In such cases a high degree of
similarity between the molecular characteristics of microbial
isolates sampled from victims and those from the putative
source is usually assumed to support the source hypothesis.
Similarly, in human immunodeficiency virus or Hepatitis C
Virus transmission cases the degree of similarity of the se-
quences from victim and (putative) source relative to a set
of “background” isolates is proffered as evidence favoring or
excluding the transmission hypothesis [2, 3].

However, several authors have pointed out that the in-
terpretation of phylogenetic findings as evidence to support
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a hypothesis about a disease transmission event is subject to
many caveats [4, 5]. For example, phylogenetic construction
alone cannot assess the probability that two isolates come
from a common unidentified source of infection, or are sep-
arated by one or more unknown intermediate infected hosts.
Obviously, if unknown or unsampled source candidates exist,
phylogenetics cannot exclude them. In many investigations it
is not possible to identify all potential sources with certainty,
or the relevant isolates and their genetic sequences may not
be available. This limitation has led to highly precautionary
guidelines about the use of microbial phylogenetic evidence
in criminal prosecutions and to restrictions on the language of
admissible testimony [6]. Thus, how to quantify and express
the degree of support that molecular comparisons provide
for a source-transmission hypothesis remains a central, yet
unresolved question [7].

A closely related application of molecular typing in infec-
tious disease epidemiology is deciding whether an isolate can
be associated with a cluster of related cases, i.e. if an observed
case of infection “belongs” to a given outbreak. Tenover intro-
duced a set of heuristic criteria in the context of RFLP typing,
based on the number of mutational differences among ques-
tioned and reference isolates [8]. Epidemiologists using other
molecular typing methods typically use some variant of these
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“Tenover criteria” to judge whether an infection can be as-
signed to an ongoing outbreak, or is a sporadic case [9].

However, the arbitrary nature of this approach is unsat-
isfying: Tenover himself recognized that the interpretation
of strain typing results within this framework is a subjec-
tive process, based on experience and intuition. In the nearly
20 years since Tenover’s seminal paper, the technologies for
typing bacteria have evolved substantially, permitting much
higher resolution, with the concomitant ability to elucidate
more detailed questions about the evolutionary relationships
between isolates in an outbreak. But progress toward acquir-
ing a more rigorous answer to Tenover’s question has not
advanced significantly.

In this paper we outline a framework for performing ge-
netic inference that is based on explicit hypothesis testing
of relationships defined on networks of disease transmission
and genetic inheritance. The framework provides an analogue
to a forensic “match probability”—a quantitative probability
estimate for the hypothesis that two microbial sequences are
linked by a direct disease transmission event. The frame-
work also addresses in a transparent way whether an isolate
“belongs” to a given outbreak, replacing arbitrary qualitative
judgments with an explicit probability expression. Such esti-
mates can only be made if the statistical properties of disease
transmission networks are taken into account. While approx-
imate, this framework provides an objective way to assess the
inferential power of molecular typing results, and increases
the rigor and transparency of forensic testimony offered in
either a legal or a national security forum.

2 Materials and methods

2.1 The ION framework

The fundamental concept that underlies the inference-on-
networks (ION) approach is that genetic lineages are con-
strained to run along the vertices of a transmission network,
and genetic material that is the object of forensic analysis is
sampled from nodes in that network. For infectious diseases,
the nodes are infected individuals (and the genetic material
is that of the infecting organism), while for mitochondrial
DNA and Y-chromosomes, the nodes are individuals (viewed
as colonies of somatic cells). Figure 1 shows a portion of such
a transmission network.

Note that each pair of nodes in a transmission tree like
Fig. 1 is connected by an M-step transmission relationship.
For example, the two nodes marked with asterisks in Fig. 1 are
separated by M = 7 steps. We do not distinguish direction of
transmission when calculating node-to-node distances. The
timing of infections and other contextual information usually
indicates the direction of transmission without ambiguity.
Under these conditions the assertion that one node is the
source of the genetic material found in a second node is
equivalent to asserting that the two nodes are separated by
M = 1 transmission steps.

Regardless of whether we are discussing disease trans-
mission or the inheritance of mtDNA or Y-chromosomes,

Figure 1. A notional transmission tree. Each node (dot) repre-
sents an individual, and S1 and S2 are genetic sequences ob-
tained from isolates that come from two nodes of interest (e.g.
two infected persons), marked in blue and red, respectively. H0,
H1, and Hj represent different hypotheses about the source of the
genetic material found in the red node. Asterisks mark two nodes
separated by seven transmission steps on this tree.

a transmission event that generates each new node in this
network represents a case where a relatively small amount
of genetic material is sampled at random from the source
node, then transferred to the receiving node, where it creates
a new and larger population of sequences. For any pair of
isolates sampled from two different nodes in the network, we
can define some metric � that characterizes their degree of
similarity. The ION method assumes that we can infer M0,
the number of steps that separate these two nodes, from the
observed value of � by utilizing two empirically derived sta-
tistical distributions. The first is P(�|M), the probability that
the sequences of two isolates taken from nodes M steps apart
will differ by �. The second is P(M), the prior probability that
two nodes chosen at random from the network will be sep-
arated by M transmission steps. Given these distributions it
is a straightforward application of Bayes’s theorem to show
that

P(M ≤ M0|�) =
[

1 +
∑

M�M0
P(�|M)P(M)∑

M≤M0
P(�|M)P(M)

]−1

. (1)

When M0 = 1, Eq. (1) provides the probability of a direct
transmission relationship as a function of the genetic distance
between two isolates. Inferences about other transmission
hypotheses (e.g. M = M0 rather than M � M0) are easily
derived as well. In Section 3 we will apply Eq. (1) to infectious
disease outbreaks. The application of the ION framework to
inferences involving mtDNA or Y chromosomes is provided
in the Supporting Information File SM1. All calculations were
performed on a laptop computer using Excel.

The ION approach can be used with a variety of methods
for characterizing genetic sequences, as long as the same
method is used consistently. In general, we assume that
the chosen characterization method can be used to generate
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phylogenetic comparisons among isolates, and that � can be
assigned to a pair of isolates by summing branch lengths to
their common ancestor. Less rigorous genetic distance met-
rics like simple numbers of mutational differences can also
be used when appropriate. However, we assume that hori-
zontal gene transfer has a negligible effect on the population
of genotypes over the network size (or duration of the out-
break) of interest. Hence there are obvious limitations to the
accuracy of such a simplified approach when attempting to
infer genetic relationships on very large “historical” transmis-
sion trees.

It is not necessary to know the actual transmission tree
or have an extensive set of reference samples drawn from
many nodes in the tree to apply the ION framework. In most
cases of disease transmission the actual tree that connects
nodes associated with an outbreak is not known with cer-
tainty, although portions of it may have been inferred from
epidemiological studies. In the next sections we will outline
some simple empirical methods for estimating the required
distributions.

2.2 Estimating P(�|M)

The most direct way to determine P(�|M) is by comparing
the sequences of isolates drawn from pairs of nodes whose
transmission relationship is known. For infectious disease
outbreaks the selection of such a reference set requires that
transmission relationships have been determined with high
confidence by epidemiological investigation. Recently several
papers have developed methods for integrating genomic se-
quence data with contact tracing and timing information to
infer more accurate transmission trees than can be deter-
mined by contact tracing alone [10, 11]. Exhaustive genetic
sampling of a large proportion of infected hosts in an out-
break is generally impractical, but these papers show that a
small segment of the complete outbreak tree can be stud-
ied this way. In any case, techniques borrowed from these
somewhat complex and data-demanding tree reconstruction
methods can be used to strengthen the selection of a reference
set of isolates.

Generally, we expect ION to be most accurate when the
P(�|M) estimated from a carefully studied portion of an out-
break is used to estimate the genetic relatedness between
isolates from another, less well characterized portion of the
same outbreak where forensic questions are of interest. How-
ever, the reference set for ION does not have to encompass
an entire connected transmission tree. In fact, only a set of
M = 1 related pairs is needed. This convenient simplifica-
tion is implied by the standard theories of genetic change
used to construct phylogenetic relationships [12]. If � is a
random variable distributed as P(�|M = 1) for a single trans-
mission step, and each transmission event represents an
independent sampling of the genomic distribution in the
transmitting host, then � after M transmission steps is dis-
tributed as the sum of M independent random variables
each distributed as P(�|M = 1) [13]. Distributions consis-

tent with this constraint have a functional form such that if
P(�|M = 1) = f(� ), where � is proportional to the average
number of mutations observed between isolates when M = 1,
then P(�|M) = f(M� ). Distributions for discrete random vari-
ables such as the Poisson, generalized Poisson, and negative
binomial have this property, and can be used to infer P(k|M)
from P(k|M = 1) when phylogenetic branch lengths can be ap-
proximated by the observed number of mutational changes.

While the Poisson model for P(k|M) is attractively simple,
especially when there are only a few reference pairs available,
distributions with “fatter tails” might be more accurate repre-
sentations in some cases. Generally, � is a stochastic variable
governed by a probability distribution

P(�|M; t1, t2,N ),

where M is the number of transmission steps separating the
two nodes, the parameters t1 and t2 represent the time in-
tervals between infection of each node and the time when
isolates are obtained from each of them, typically unknown
stochastic variables in an actual outbreak. N represents the
number of generations of replication that has taken place
between infection of node 1 and the transmission event to
node 2. Clearly M andN are roughly proportional on average,
although N itself is a stochastic variable. The ION approach
simply assumes that our inferences can be based on empir-
ical approximations to P(�|M) in which t1, t2, and N have
effectively been “averaged out” as nuisance variables [14].
The effect of this averaging is to favor overdispersed models
like the negative binomial or generalized Poisson. These dis-
tributions have one more parameter than the Poisson, and
thus require larger datasets to drive down the relative un-
certainty in their parameter values. Therefore, in the face of
small datasets we have adopted the practice of using a Pois-
son model if this hypothesis cannot be rejected by a standard
chi-squared test.

A less direct method of estimating P(�|M = 1) is to use
results from animal passage experiments. Of course, this pre-
supposes that the disease in question has a well-understood
laboratory animal model, and that the experiments replicate
the important features of the actual host–host transmission
process found in nature. It also may be possible to use muta-
tion rates determined by in vitro serial transfer experiments.
This approach has been used as the basis for phylogenetic
inferences about pathogens in the past [15].

2.3 Estimating P(M)

Like the branch length metric �, the transmission tree as-
sociated with an outbreak is also generated by a random
process. Disease transmission depends on particular mech-
anisms (e.g. airborne transfer by droplets, or the oral-fecal
route) that are mediated by various kinds of social contacts
and environmental factors. Each transmission tree generated
in an actual outbreak can be thought of as a random sam-
ple from an ensemble of all possible outbreak trees that are
consistent with the underlying mechanisms of transmission
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for that pathogen, and the underlying contact network for
disease transmission. The probability P(M) that any two
nodes drawn randomly from the tree will be related by M
steps is defined on this ensemble of possible trees.

Imagine a set of outbreaks in which the same number
of people (or animals) were infected, but which otherwise
evolved independently according to the characteristics of the
disease in question. Each outbreak would generate a differ-
ent transmission tree. An estimate for P(M) can be calculated
from each tree by any algorithm that counts the number of
steps between each unique pair of nodes on a finite network,
then normalizes the resulting histogram by the total number
of nodal pairs. For example, the number of paths of length M
among the set of nodes can be determined by using a result
from graph theory that relates this quantity to the number
of unit matrix elements found in successive powers of the
adjacency matrix [16]. The observed variations in P(M) from
tree to tree can be considered sampling errors about some
most likely distribution that characterizes trees for outbreaks
of that particular disease and that number of nodes. Extensive
computer simulations of transmission trees have shown that
the variance in P(M) become small for trees larger than about
20 nodes, so that Eq. (1) is rather insensitive to the actual tree.
Moreover, for large trees Eq. (1) also becomes independent of
the number of nodes. Some ION problems are more conve-
niently solved by using an ensemble of trees that span a given
number of generations, rather than a given number of nodes.

The shape of P(M) does depend on the transmission
network connectivity. For example, outbreaks with a large
number of “superspreading” events where one infected node
generates a large number of secondary infections will dif-
fer from those where such events are rare, and this effect
can change the calculated posterior probability P(M�M0|�),
although we have found this effect to be modest in practice.

One result of the insensitivity to actual tree size and
branching is that Eq. (1) will give reasonable estimates if we
use P(M) distributions derived from actual empirical trans-
mission networks that have been deduced from epidemio-
logical contact tracing. We will show examples of this in Sec-
tion 3. It is somewhat remarkable that transmission networks
observed in independent sections of the same large outbreak
give very similar values of P(M � M0|�). We have also found
that similar results are obtained if we use an analytical func-
tional form for P(M) whose parameters have been fit to data
from prior outbreaks of the same disease [17].

P(M) could also be derived from simulations of out-
breaks on a social contact network that has been developed
for epidemiological prediction purposes (for a particu-
lar disease). Elaborate models for disease transmission
networks have been constructed to investigate outbreak
dynamics and the effect of control measures for both human
disease transmission and zoonotics in networks of animal
hosts [18,19]. Social contact networks are relatively stable but
flexible descriptors of the modes and mechanisms of disease
transmission and can easily be stored as reference data. For
outbreaks involving animals this may be the only practical
method of estimating P(M).

2.4 Assigning an isolate to an outbreak

In the IONs framework, known outbreaks of infectious dis-
ease are simply regarded as “local” portions of a larger
“global” transmission tree that includes (largely unknown)
reservoirs and other outbreaks and is extended in geography
and time. Thus, deciding if an isolate is part of a given out-
break is equivalent to deciding if it was likely to have been
sampled from a node in the local tree. This probability is
easily calculated from Eq. (1).

In tree-like networks there is only one path connecting
any two nodes [16]. The diameter of a transmission network
is defined to be the length (in number of steps) of the longest
path found among the set of nodal pairs belonging to that
network. It is easy to see that the maximum possible length
is 2G, where G is the number of generations spanned by
the tree. Thus, in the ensemble of trees defined by a certain
number of generations, P(M) = 0 for M � 2G. Note that in
Eq. (1) we find that P(M � 2G|k) = 1, independent of k, for
this reason.

Suppose we have sampled one or more reference iso-
lates from nodes known to be part of a “local” outbreak tree
that encompasses Gloc generations. Consider a questioned
isolate that differs by k mutations from the genetically closest
reference isolate (relative to the chosen sequencing or typing
scheme). P(M � 2Gloc|k) is the probability that the questioned
isolate was sampled from a node in the outbreak, when we use
P(M) for the larger “global” transmission network of which
our “local” outbreak was a part.

Typically we do not know the global transmission tree, so
it is necessary to use simulations or modeling to infer P(M),
assuming some value Gglo for the number of generations
in the global tree. Fortunately, as long as Gglo � Gloc, the
precise number of generations used to determine P(M) is
not critical. This is illustrated in Fig. 2, which shows how
P(M� 5|k) stabilizes after Gglo � 10. In addition, simulated
trees with a fixed number of generations provide reasonable
estimates as shown in Supporting Information Fig. S1.

Many infectious disease transmission networks exhibit
both small world behavior and superspreader clusters [20].
In a finite-sized transmission network, increasing the prob-
ability of finding nodes that infect large numbers of recipi-
ents reduces the probability of observing pairs of nodes con-
nected by a large number of steps and shrinks the right tail
of P(M). This increases the likelihood that two randomly se-
lected nodes are related by a smaller number of transmission
steps than intuition might suggest.

3 Results and discussion

3.1 The SARS outbreak of 2003

The severe acute respiratory syndrome (SARS) outbreak of
2003 can be used to illustrate the use of our framework in
the context of respiratory infection epidemiology. Several pa-
pers have discussed the epidemiological linkage among a
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Figure 2. Calculations of P(M � 5|k) for networks with succes-
sively larger numbers of generations G. This shows that as long
as G > 2M, the precise number of generations used to determine
P(M) is not critical.

set of SARS patients associated with the outbreak in Singa-
pore [21–23]. Whole genome sequences of SARS coronavirus
isolates were obtained from these patients, and combinations
of phylogenetic analysis and contact tracing have been used
to generate conflicting putative transmission relationships.
This provides a useful, if imperfect dataset for illustrating the
methods described in Section 2.

Only a few, if any, linked transmission pairs among SARS
patients have been identified with high confidence. However,
we can assume a reference set based on four direct transmis-
sion pairs identified by contact tracing [20,21]. The sequence
accession numbers, patient (isolate) identifiers, and the cited
transmission partners are provided in Supporting Informa-
tion Table ST1. As indicated in Section 2.3, when there are
only a few reference data points, we assume a Poisson dis-
tribution unless a simple chi-squared test allows us to reject
it. With only four reference pairs, a Poisson distribution is
assumed for P(�|M) with � = k, the number of substitutional
differences between sequences:

P(k|M) = (� M)k

k!
e−� M. (2)

The average number of substitutions observed for the
four reference isolate pairs provide the estimate � = 3.0 ± 0.9.

Figure 3. Estimated posterior probability that a pair of SARS iso-
lates arose from direct transmission given that their sequences
differ by k substitutions. Solid lines—using the indicated empir-
ical or model P(M) distribution and the Poisson distribution for
P(k|M) with � = 3; Broken lines—calculated with � = 1 and � = 5,
respectively, with the P(M) for outbreak TSSH1.

To estimate P(M) we turn to the empirical transmission
networks that several studies have produced from epidemi-
ological contact tracing. Four of these networks (which are
subnetworks of the global SARS transmission network) are
listed in Table 1, along with some parameters that describe
them [24–26]. Each tree has a different number of nodes
(infected patients) and spans a different number of genera-
tions. Besides these two characteristics, the detailed form of
P(M) for each outbreak also depends on the number of “su-
perspreaders” (defined as patients who infect more than five
other patients), and the size of the superspreading clusters.

The calculated direct-transmission probability P
(M = 1|k) for the various P(M) exemplars is shown in
Fig. 3, which demonstrates an important feature of the
ION approach to microbial genetic inference that differs
from phylogenetic source inference methods. The posterior
probability P(M = 1|k) is the apparent empirical probability
that isolates from two nodes on the network differing by
k substitutions are separated by only one transmission
step. Note that an exact match (k = 0) does not imply with
certainty that two isolates are related by direct transmission
(i.e. P(M = 1|k = 0) � 1 in general). In fact, Fig. 3 implies that

Table 1. Properties of some reported subtrees of the complete SARS transmission tree

Outbreak Number of
nodes

Number of
generations

Number of
“superspreaders”

Largest superspreadng
cluster size

Diameter

TTSH1 [24] (Singapore) 41 4 1 22 7
TTSH2 [24] (Singapore) 36 3 1 21 6
Toronto [25] 72 5 3 16 6
Beijing [26] 69 3 4 33 5
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there is a reasonable chance that more than one transmission
step separates two isolates even if the sequences are identical
(k = 0). (However, it is not true that two isolates separated by
a single transmission step are likely to exhibit no mutational
differences: P(k = 1|M = 1) � 0.05). Conversely, as illustrated
by the curve for � = 5, if the mutation rate is high enough a
large mismatch between the two sequences (k � 0) may still
imply a high probability that the isolates are related by direct
transmission.

The results in Fig. 3 also demonstrate the basic insensi-
tivity to variation in P(M). The curves for TSSH1, TSSH2, and
Toronto closely overlap. The Beijing network, with its larger
number of superspreaders and concomitant lower ratio of
generations to nodes deviates noticeably from the others, but
is not qualitatively different. Also shown is a calculation using
a theoretical P(M) distribution (“Fronczak,” [17]) for a SARS-
like transmission network with 1000 nodes, suggesting the
relative insensitivity of Eq. (1) to network size.

Jombart et al. have applied a Bayesian approach to trans-
mission network reconstruction to the Singapore SARS data
[11]. Supporting Information Table ST1 lists a set of puta-
tive transmission pairs predicted from their calculations. (It
should be noted that their calculation does not agree with
contact tracing findings for one of our reference pairs [11].)
The posterior probabilities calculated using our method and
shown in Supporting Information Table ST1 are much lower
than those quoted in [11] for many of the pairs implying that
for those pairs it is much more likely than not that transmis-
sion was through at least one intermediate person.

3.2 The UK FMDV outbreak of 2001

Networks of disease transmission often extend over large spa-
tial regions and have long durations. In such situations, sub-
networks of infected individuals within cities, herds, flocks,
and other social groupings are sometimes considered the in-
fected “nodes” of a more coarsely scaled network. Each node
defined this way is itself a transmission network connecting
individuals, but this intranode structure is ignored.

Cottam et al. performed an analysis on data from the
2001 foot-and-mouth disease virus (FMDV) outbreak in Great
Britain based on such a “rescaled” transmission network con-
sisting of a set of 20 farms [27]. Cottam used a combina-
tion of phylogenetic and event-timing data to infer a most
likely transmission network then calculated the number of
variant nucleotides between pairs of sequences representing
farm–farm transmission events based on the inferred net-
work. Within the ION framework this is less ideal than having
transmission pairs identified by contact tracing alone because
genetic data is thus “counted twice” when we infer P(k|M).
However this dataset suffices to illustrate certain points of
interest.

Cottam obtained consensus viral sequences from sin-
gle isolates from each farm. Simple statistical tests indicate
that the Poisson hypothesis for the number of nucleotide
differences between pairs of sequences cannot be rejected.

Figure 4. Predicted posterior distribution P(M = 1|k) based on
data from [25]. Gray curves are based on 20 randomly generated
transmission trees; Black points are based on the tree published
in [25].

Therefore we assumed Eq. (2) was valid, and used Cottam’s
value of � = 4.3 for the average number of substitutions per
farm-farm transfer.

Rather than using Cottam’s transmission tree as an ex-
emplar for estimating P(M), we generated a random set of
transmission networks that had the same degree distribution
as the network inferred by Cottam. This also avoided some
of the circularity that might arise because genetic and epi-
demiological evidence was already combined in constructing
Cottam’s tree. Our sample trees ranged in size from 12 to
169 nodes, representing up to six generations of transmis-
sion. It should be noted that over 2000 farms were involved
in the actual outbreak, but our largest tree size was limited by
the computational power of Excel running on a laptop. Each
P(M) was used to calculate a separate posterior distribution
P(M = 1|k), and the results are shown in Fig. 4, along with
the result when Cottam’s tree is used as an exemplar of the
outbreak. The close similarity of all of the curves shows the
basic insensitivity of the posterior distribution to the size of
transmission networks when they are generated by similar
degree distributions.

Cottam assigned a likelihood to each putative transmis-
sion link based on data for the onset and duration of the
infection at each node. In Table 2 we compare Cottam’s like-
lihoods with our posterior probability estimates. Although
these quantities have different interpretations, it is conve-
nient for discussion to define the cases when both quantities
are simultaneously greater or less than 0.5 as “agreement”
and cases where one calculation assesses the probability to
be less than 0.5 while the other assesses it to be greater
as “disagreement.” Cases where there is disagreement indi-
cate that timing overlap between outbreaks at the two farms
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Table 2. Comparison of probabilities for FMDV farm–farm
transmission linkages from the 2001 UK outbreak

Pair PCottam P(M = 1|k) Pair PCottam P(M = 1|k)

1-2 0.82 0.92 K-F 0.00 0.57
2-3 0.32 0.57 L-E 0.24 0.38

a)

3-4 0.21 0.85 F-G 0.00 0.02
b)

4-5 0.16 0.85 G-I 0.10 0.92
3-A 0.00 0.00

b)
I-J 0.99 0.92

A-N 0.11 0.05
a)

M-D 0.29 0.92
4-K 0.00 0.11

a)
O-C 0.25 0.00

b)

K-B 0.33 0.11
a)

O-M 0.00 0.00
b)

K-L 0.38 0.11
a)

O-P 0.13 0.00
b)

K-O 0.14 0.01
b)

– – –

Orange indicates “agreement” while Green indicates
“disagreement.”
a) Support is highest for one intermediate link.
b) Support is highest for two intermediate links.

reduces the likelihood of direct transmission, but the genetic
sequences are very similar.

Our results provide a high degree of support for the
first four links (farms 1–5) in Cottam’s network, which also
evidently have very high support from contact tracing [27].
However, there are a significant number of instances where
Cottam assessed the opportunity for a transmission event to
be low, while P(M = 1|k) supports the hypothesis of trans-
mission. The clearest case of discrepancy involves the direct
transmission link between nodes K and F, which receives
moderate support from our analysis while the timing dis-
crepancy between outbreaks at the two farms would appar-
ently preclude direct transmission. A possible explanation is
that infection of K was caused by contaminated fomites from
farm F whose transport to K was delayed, but not stopped
by isolation measures. Because FMDV can survive in the
environment for long times and remain infective [28], such
delayed transmission is not implausible. Note that there is
no significance to cases where Cottam’s likelihood is greater
than P(M = 1|k) since timing overlap does not necessarily im-
ply transmission. On the other hand, the fact that there are
no cases where Cottam finds the likelihood of transmission
to be � 0.5 while we find P(M = 1|k) � 0.5 does not have an
obvious explanation other than chance.

Table 2 also indicates where the calculated posterior prob-
ability was highest for M = 2 or M = 3, implying one or two
intermediate nodes between those farms, respectively. Both
Cottam and a more recent analysis of the same data in [10]
concluded that unknown intermediate nodes were likely to
be needed to produce a tree consistent with the combined
genetic and epidemiological findings. Both [10] and [27] also
point out that when isolates from a single animal are used,
there is no guarantee that the sequence is a valid representa-
tion of the consensus sequence for an entire herd. Therefore,
some of the “intermediate nodes” implied by larger genetic
differences might actually be artifacts caused by significant
genetic drift within a larger herd that is not taken into account.

Finally, we note that both Cottam and Morelli’s analyses
demonstrate that the weight assigned to timing evidence can
critically change the most likely tree inferred from tree recon-
struction methods. For example, Morelli used only part of the
network used by Cottam, which leads to a larger estimate for
� . In addition, his inferred network contains shorter chains
than Cottam’s, suggesting a very different degree distribu-
tion. This suggests caution in using such trees to generate
reference data for ION. Before tree reconstruction methods
mature, selecting defensible reference sets will necessarily re-
main dependent on high quality epidemiological judgments
about transmission relationships, or carefully controlled lab-
oratory studies.

4 Concluding remarks

The ION framework allows us to formulate genetic inference
problems on transmission networks, where we can be ex-
plicit and unambiguous about the hypotheses we are testing.
Statistically minded readers will recognize that the P(M) dis-
tribution provides the prior probabilities needed to formulate
composite hypotheses such as “not related by direct transmis-
sion” or “belongs to an outbreak.” This formulation makes
it clear that separation of two isolates by a small number of
mutations means little unless we know the average rate of
change per transmission step, and the topology of the under-
lying transmission network. The potential utility of this ap-
proach for assessing the evidential weight of genetic evidence
in cases like the 2010 Haiti cholera outbreak, or in human
immunodeficiency virus or Hepatitis C Virus transmission
cases should be clear.

Practical implementation of ION does require that accu-
rate reference sets of transmission-linked isolates be avail-
able, and this is primarily what limits wider application of the
framework at present. However, collecting such reference
data has close parallels to the collection of population data for
mtDNA and Y-STRs and is simply a matter of motivation and
resources. Transmission tree data is widely available from
the epidemiological literature, and methods for transmission
network simulation are widely available. The relative insen-
sitivity to the details of empirical transmission trees suggests
that trees from one part of an outbreak can be used to infer
relationships in other parts, and that simulated trees based
on contact network characteristics can be used as well.
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[3] González-Candelas, F., Bracho, M. A., Wróbel, B., Moya,
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