
Bioscience Reports (2019) 39 BSR20182266
https://doi.org/10.1042/BSR20182266

Received: 05 December 2018
Revised: 16 March 2019
Accepted: 21 March 2019

Accepted Manuscript Online:
22 March 2019
Version of Record published:
12 April 2019

Research Article

cIAP1 promotes proliferation and migration and
prevents apoptosis in gallbladder cancer in vitro

Wei Su1,2, Xiaojie Jiang1,2, Mingyuan Chen1,2, Maotuan Huang1,2, Nanhong Tang1, Xiaoqian Wang1, Xiujin Li1,
Feifei She2 and Yanlin Chen1,2

1Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, China; 2Key
Laboratory of Ministry of Education for Gastrointestinal Cancer and Key Laboratory of Tumor Microbiology, The School of Basic Medical Sciences, Fujian Medical University,
Fuzhou, China

Correspondence: Yanlin Chen (Dr cyl@163.com) or Feifei She (shefeifei@yeah.net)

Gallbladder cancer (GBC) is a demanding fatal disease with no ideal treatment for inop-
erable patients. Recent reports have determined TNF-α associated lymphatic metastasis
in GBC, while its resistance to TNF-α-killing remains largely unexplored. In this assay, we
first found cellular inhibitor of apoptosis (cIAP1) overexpressed in GBC tissues and the roles
in promoting the proliferation and migration of GBC in vitro as its homology cIAP2 does.
Then how GBC cell survives TNF-α toxicity and TNF-α-induced apoptosis first prevail as
follows. The reduction in cIAP1 does not give rise to apoptosis even with the stimulation of
TNF-α. Importantly, the loss of cIAP1 enhanced TNF-α/cycloheximide-induced apoptosis
in higher activation statuses of Caspase-8, Caspase-3 without the induction of Complex .
In response to TNF-α, the reduction in cIAP1 caused the suppression in nuclear factor-κB
(NF-κB) pathway and inhibition of transcription of cell death regulator cellular FLICE-like In-
hibitory Protein (c-FLIP) instead. To conclude, cIAP1 is an oncological protein abundant in
GBC tissues, which enhances proliferation and immigration and blocks TNF-α from apop-
tosis through NF-κB pathway in vitro.

Introduction
Gallbladder cancer (GBC) ranks the sixth highest incidence in digestion system cancer worldwide, char-
acterized as one of the most demanding cancers [1]. Radical surgery is highly recommended for localized
GBC and accepted as the only cure for GBC patients. For the rest, who are often diagnosed at advanced
stage, even extended resection becomes inappropriate and marries a morality of 10% less with 5-year
survival rate [2]. In stark contrast, candidate treatments such as chemotherapy keep the mainstay for
those sufferers but turn out to be too pale in medical effect [3]. However, insights into certain oncological
molecules, which is heated in both basic research and translational medicine, may fuel targeted therapies
that overcome GBC in the future.

It is well acknowledged that oncological behaviors of a tumor are attributed to the overexpressed
molecules and its interaction with its embedded microenvironment. One of the most well-investigated cy-
tokines flooded in the tumor microenvironment is TNF-α, which is capable of embarking on two distinct
pathways in deciding life and death of cell [4,5]. In some case, TNF-α binds to TNFR in the membrane
to form Complex by recruiting cellular inhibitor of apoptosis 1/2 (cIAP1/2) to enhance the translocation
of NF-κB subunits into the nucleus and promote the transcription of various cytokines and proteins that
mediate the progression of cancer or in another aspect, rescue cells from the fatal threats. In the other
case, TNF-α sets off apoptosis via inducing the formation of cytoplasmic Complex where Caspase-8 is
cleaved into biologically functional ones, followed by activation of the Caspase cascade and proteolysis of
the whole cell in the end.
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IAP family, which were originally named and indicated as inhibitor of apoptosis proteins, have been claiming in-
creasing roles in various cell activities recently [6,7]. cIAP1, an important member of IAPs, functions as the ubiquiti-
nation ligase, with the abilities to regulate apoptosis, necroptosis, proliferation, migration, autophagy, and immunity
[8]. Till now, piles of researches reported that cIAP1 were ectopically expressed or had gene amplification in cancers
such as cervical cancer and bladder cancer, which conferred either resistance to therapies or implication for inferior
prognoses [9–12]. Among those, some researchers owed the induction of apoptosis by some certain reagents to the
elimination of cIAP1 without giving supporting mechanism, let alone the dispute over the controversial roles of cIAP1
in apoptosis [13–16]. Thus, our curiosity is whether its elimination of cIAP1 would be potent to limit the progression
or overcome the resistance to apoptosis in GBC.

Here, we speculated that cIAP1 overexpressed in GBC tissues and identified both the malignant and anti-apoptotic
roles of cIAP1 in GBC cells. In unstimulated condition, knockdown of cIAP1 limited the proliferation and migration
of GBC but failed to make apoptosis happen. But elimination of cIAP1 sensitizes GBC cells to TNF-α-induced death
when translations are generally inhibited in GBC cells, which may result from the impairment of activation of the
NF-κB pathway and transcription of anti-apoptotic protein cellular FLICE-like Inhibitory Protein (c-FLIP). In brief,
we urged that cIAP1 could enhance the proliferation and migration of GBC and boost apoptosis in particular cir-
cumstances.

Methods
Tissue samples and cell lines
A total of 64 tissues confirmed as GBC or not by Clinicopathology Department were included in our study. Resections
were collected from patients who signed an informed consent in advance. Two GBC cell lines, including NOZ and
SGC-996, were cultured in DMEM with FBS (Gibco, Grand Island, NY, U.S.A.) at 15 and 12% proportions separately.
NOZ was purchased from the Health Science Research Resources Bank in Japan) and SGC-996 from the Tumor
Cytology Research Unit, Medical College of Tongji University in China.

Immunohistochemistry
Immunohistochemistry was performed as previously described [17]. Primary antibodies against cIAP1 (1:400, CST)
were incubated with the sections overnight at 4◦C. Five random fields per section were captured under a light micro-
scope by identical Exposure Value (Olympus, Tokyo, Japan). Mean Optical Density was employed for the evaluation
of each section. Each section was scored by two pathologists independently.

Quantitative real-time polymerase chain reaction
Cells were extracted for total RNA with Tranzol UP reagent (Transgene), which were reversed tran-
scribed with the Revert Aid First Strand cDNA Synthesis Kit (Transgene). The forward primer
for BIRC2 gene was 5′-AGCACGATCTTGTCAGATTGG-3′ and corresponding reverse one was
5′-GGCGGGGAAAGTTGAATATGTA-3′. The primers for GAPDH were 5′-AGGGCTGCTTTTAACTCTGGT-3′

(forward) and 5′-TCTCGCTCCTGGAAGATGGTG-3′ (reverse). The primers of CFLAR were
5′-TCAAGGAGCAGGGACAAGTTA-3′ (forward) and 5′-GACAATGGGCATAGGGTGTTATC-3′ (reverse).
PCR was performed with Fast Start Universal SYBR Green Master Mix (Roche, Basel, Switzerland), and the intensity
of fluorescence was measured with the ABI 7500 Real-Time System (Applied Biosystems, Life Technologies). Each
reaction was performed in triplicate in the condition as described previously [18]. GAPDH served as an internal
control and the data were analyzed by the 2−��C

t method.

Small interference RNA, short hairpin RNA, and transfection
Three siRNA strings targeting human cIAP1 sequence (GenBank accession number: NM-001165) were bought from
GenePharma (Shanghai, China). Transfection of siRNA was performed in OptiMEM medium (Life Technologies) us-
ing Lipofectamine 2000 (Life Technologies). The pair: CCUGUGAACUUCUACAGAAUTT and the converse base
pair AUUCUGUAGAGUUCACAGGTT were chosen for its knockdown efficiency. Then, synthesized short hair-
pin RNA oligonucleotides targeting cIAP1 (LV-shcIAP1) and negative control short hairpin RNA oligonucleotides
(LV-NC) were annealed and ligated into the pGLVH1/RFP/Puro plasmid. The lentiviral vectors were used to infect
GBC cells with treatment of puromycin for 2 weeks to established stably infected cells.
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Cell proliferation assay and cell death assay
Both the proliferation rate and viability of certain cells was reflected by the Cell Counting Kit-8 (CCK-8) assay with
the manufacturer’s instructions (Dojindo Laboratories, Kumamoto, Japan). Briefly, a total of 5 × 103/well were placed
into 96-well plates and each well was added with 10 μl CCK-8 solution reagent for 1.5 h by the end. The results were
determined by a plate reader at 450 and 600 nm for the interval of time of 24, 36, 48, 60, and 72 h (Bio-Rad, Hercules,
CA, U.S.A.).

In cell death assay, approximately 2 × 104/well were seeded into each well and treated with cycloheximide (5
mg/ml), TNF-α (40 ng/ml)/DMSO, TNF-α (40 ng/ml)/cycloheximide (5 mg/ml) and TNF-α/cycloheximide/z-VAD
(20 nM) for 6 h. The process was performed as previously described. TNF-α was purchased from PeproTech, U.S.A.,
DMSO from Solarbio, China, cycloheximide from Shanghai Bio Industry, pan-Caspase inhibitor z-VAD from Bey-
otime Biotechnology. All conditions were performed in triplicate.

Cell migration assay
The cell migration ability was tested with Transwell chamber (24-well format) with 8-μm polycarbonate membranes
(Millipore, Washington, DC, U.S.A.). Cells were seeded at 5 × 105/well in upper chambers with serum-free DMEM
and the lower chamber was filled with 15% fetal bovine serum. Incubated for 72 h, cells that passed through the
membranes were fixed with paraformaldehyde and stained with Crystal Violet. The number of cells on the lower side
of the membrane was counted in five random fields (400×). Each condition was repeated in triplicate.

Western blotting and immunoprecipitation
Western blotting was run as previously described with certain modifications adjusted to the molecular weight of
certain protein. Anti-human cIAP1, anti-human Caspase-8, cleaved anti-human Caspase-8, cleaved anti-human
Caspase-3, cleaved anti-human PARP, anti-human c-FLIP, and anti-human NF-κB (p65) were all purchased from
Cell Signaling Technology (Cambridge, U.K.). β-actin was used as loading control in the early stage while GAPDH
was a better candidate whenever apoptosis may happen. Histone-3 was used as loading control for nuclear fractions.
Mild lysate NP-40 (Beyotime, China) other than RIPA was applied to avoid unexpected apoptosis [19].

The cells were pre-treated with z-VAD to prevent further reaction and incubated with stimulation of TNF-α (40
ng/ml)/cycloheximide (5 mg/ml) for 6 h [20]. An amount of 1:50 anti-human Caspase-8 or the same amount of
IgG antibody together with Protein A/G Plus-Agarose (Santa Cruz Biotechnology) were added within the reaction
system to incubate the complexes overnight. The mixtures were washed for three times with NP-40 by centrifuging,
resuspended with 1× loading buffer, and subscribed to SDS/PAGE blotting for interested proteins. Each experiment
was repeated in triplicate.

Cell apoptosis assay
The percentage of apoptotic cells was determined by flow cytometry. The cells were placed in a six-well plate with
good viability and treated with cycloheximide, TNF-α/DMSO, TNF-α/cycloheximide at concentrations mentioned
above for 6 h. Then cells were dissociated, washed, and bound to Annexin-V and PI according to the manufacturer’s
instructions. The intensity of fluorescence was collected by C6 machine (B&D system). Each condition was repeated
in triplicate.

Statistical analysis
The data were shown as means +− S.D. GraphPad Prism V7.0 was used to produce column graphs and FlowJo v10
to analyze the percentages of apoptotic cells and produce dot plots. Data process were processed by SPSS software
(version 22.0) (applying Fisher’s exact test for quantitative data, a t test for comparing means between two groups,
and one-way analysis of variance for comparing means among multiple groups). P<0.05 was considered statistically
significant.

Results
The expression of cIAP1 is up-regulated in GBC tissues
Without surprise, there were expressions ranging from moderate to strong in most GBC tissues (represented by Figure
1A,C) but non-tumor ones (represented by Figure 1B,D) presented weak or absent as compared. As shown by Table
1, GBC tissues were well stained with an averaged MOD of 0.2337, while the non-tumor ones were poorly stained
with a mean MOD of 0.1205 as compared (P<0.001). Significantly, GBC tissues were characterized with elevated
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Figure 1. cIAP1 expression in GBC tissues is much stronger than non-tumor tissues

(A) Representative glance of expression of cIAP1 in GBC tissues at 200×. (B) Representative glance of expression of cIAP1 in

non-tumor tissues at 200×. (C) Magnified picture of hotspot from corresponding area in GBC tissue at 400×. (D) Magnified picture

of hotspot from corresponding area in non-tumor tissues GBC tissue at 400×.

Table 1 The expression of cIAP1 measured by MOD in GBC tissues and matched non-tumor tissues

n
cIAP1 expression MOD
(mean +− S.D.) t value P

GBC tissues 32 0.2337 +− 0.4785 9.214 <0.001

Non-tumor tissues 32 0.1205 +− 0.0504

expression of cIAP1 in the cytoplasm and rarely located in the nucleus. As previously described, GBC is immersed in
bile abundant with harmful TNF-α but simultaneously inherent with the abilities to migrate and invade. We wondered
if the phenomenon had anything to do with overexpression of cIAP1.

Knockdown of cIAP1 limits the proliferation and immigration of GBC cells
We chose the most reliable siRNA strings out of three targeting cIAP1 by Western blotting (Figure 2A). Two stably
transfected GBC cell lines, including NOZ and SGC-996, were established as LV-shcIAP1 carrying vectors expressing
synthesized short hairpin RNA oligonucleotides or LV-NC with negative control ones. The transfected efficiencies
were confirmed by comparing fluorescence scope with light one (Figure 2D) and knockdown efficiencies were as-
sured both at mRNA and protein levels (Figure 2B,C). In Transwell migration assay, the number of GBC cells passing
through the membrane in LV-shcIAP1 group counts twice as much than that of LV-NC at the end of 72 h (Figure
2E, P=0.003 in SGC-996 and P=0.0009 in NOZ), confirming cIAP1’s function in promoting migration of GBC in
vitro. Compared with control group, LV-shcIAP1 became more lethargic and obtained a decreased growth rate in 3
days (Figure 2F) and in conformity, GBC cells in this group had inferior ability to form clones in 14 days (Figure 2G,
P=0.004 in SGC-996 and P=0.002 in NOZ), indicating the loss of cIAP1 not only influenced short-term viability and
proliferation but long-term proliferation in GBC.
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Figure 2. cIAP1 promotes the proliferation and migration of GBC in vitro

(A) The knocking-down efficiency of three siRNA oligo strings were testified by Western blot. (B) The knockdown efficiencies were

confirmed by quantitated PCR at mRNA level. (C) The knockdown efficiencies were confirmed by Western blotting at protein level.

(D) Designate stably lentivirus-transfected cells including NOZ and SGC-996 were established as LV-shcIAP1 with controls of

LV-NC. (E) Twice as much GBC migrated to the lower chamber in LV-NC than the LV-shcIAP1 (**P< 0.01 ). (F) A periodical test

by CCK-8 reveal LV-shcIAP1 cell lines exhibited less viability and proliferation rate in 72 h. (G) Fewer clones were presented in

LV-shcIAP1 group in clone formation assay (**P< 0.01,***P< 0. 001). All experiments were confirmed for at least three times.

cIAP1 enhances TNF-α/cycloheximide-induced apoptosis in GBC cells
Although LV-shcIAP1 presented weakened viability as our previous studies showed, neither morphological change
happened nor any differences on Caspase-3 blotting appeared, even with the presence of TNF-α in our preliminary
experiment, indicating cIAP1 did not affect apoptosis directly. Then the GBCs, treated with the indicated doses of
different combinations of stimulation, were observed for morphological change(s) with time using microscope (fig-
ures not shown) and the viabilities were determined in 6 h. The viability of GBC cells treated with cycloheximide, a
pan-inhibitor of protein synthesis, showed no differences with that of the untreated group (Figure 3A,C). In compar-
ison, the co-stimulation of TNF-α and cycloheximide reduced the viability of GBCs and the reduction was further
set by knockdown of cIAP1. The effect could be retrieved by pan-Caspase inhibitor z-VAD compared with the group
treated by cycloheximide, revealing it was a process that Caspases mediate. Additionally, knockdown of cIAP1 in each
subgroups had decreased viability of GBC cells (P<0.001 in both cell lines). Then cells assigned with similar groups
in six-well plates were stained with Annexin V/Propidium iodide and subscribed to flow cytometry to analyze apop-
totic cells (Figure 3B,D). In accordance with previous results, no differences in apoptotic ratio were found between
the LV-shcIAP1 and LV-NC in the presence/absence of TNF-α. The ratio of apoptotic cells was obviously increased in
TNF-α and cycloheximide stimulated LV-NC cells, which doubled in the LV-shcIAP1 with identical stimulation. To
summarize, knockdown of cIAP1 caused decreased viability and enhanced TNF-α/cycloheximide-induced apoptosis
of GBC in vitro.

cIAP1 sensitizes GBC cells to Caspase-8-associated apoptosis
It is reported that TNF-α could induce exogenous apoptosis by initially activating Caspase-8. Based on that,
we figured out the effect of cIAP1 on cell death was associated with Caspase-8 in GBC cells stimulated with
TNF-α/cycloheximide. It is suggested by Western blots that LV-shcIAP1 group presented a higher status of Caspase-8
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Figure 3. cIAP1 enhances TNF-α/cycloheximide-induced apoptosis in GBC

(A,C) CCK-8 test at indicated time revealed co-administration of TNF-α (40 ng/ml) and cycloheximide (8 μg/ml) blunt cell viability

instead of administration of TNF-α alone and the effect could be retrieved by 1 h pre-treatment by pan-Caspase inhibitor zVAD (20

mM). In each subgroup, the LV-shcIAP1 presented a lower viability and those with treatment of TNF-α and cycloheximide present

the least (**P< 0.01, ***P< 0.001). (B,D) Similar groups were subscribed to flow cytometry for analysis of apoptosis. Apoptosis were

observed obviously in TNF-α/cycloheximide group and even more ratio of apoptotic cells was observed in LV-shcIAP1 group. All

the experiments were performed three times with similar results in both cell lines.

activation than LV-NC did in a time-dependent way, which reached the peak at 4–6 h in SGC-996 and still increased
after 6 h in NOZ (Figure 4A,B). Interested proteins including cleaved Caspase-8, cleaved Caspase-3, and cleaved PARP
were analyzed for apoptosis in GBC cells. Despite the groups with cycloheximide or TNF-α/DMSO stimulation saw
no distinct bands of those, concerning ones were well developed in the groups stimulated with TNF-α/cycloheximide.
Consist with studies of CCK-8 and flow cytometry above, the quantitations of interested proteins in LV-shcIAP1
groups were generally twice as much than those of LV-NC groups, reassured our assumption that knockdown of
cIAP1 made GBCs more sensitive to TNF-α/CHX-induced apoptosis via Caspase-8 activation. Interestingly, we found
cIAP1 dramatically crushed down to a low level in response to TNF-α/cycloheximide while it was plain in SGC-996
and even elevated in NOZ in response to TNF-α (Figure 4C,D).

cIAP1 inhibits apoptosis by NF-κB activation in GBC cells
Apoptosis dominance by Caspase-8 was closely associated with the formation of Complex or degradation of
Caspase-8-specific antagonist c-FLIP [21]. By immunoprecipitating with total Caspase-8, we found it bound to RIP1
but it is disappointing that this interaction was not altered by the loss of cIAP1 with reference to value of RIP1/Input
(Figure 5A,B). However, with GBC cells exposed TNF-α for 6 h, a relatively less translocation of NF-κB subunit
P65 from the cytoplasm to the nucleus, which is regarded as a golden standard of NF-κB activation was observed in
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Figure 4. cIAP1 sensitizes GBC cells to Caspase-8-associated apoptosis

(A,B) LV-shcIAP1 group have Caspase-8 cleaved and activated more readily and severely than LV-NC in periodical Western blot in 6

h. (C,D) Another arrangement of group of various combinations of stimulation were treated with two GBC cells with indicated dose

and time. The group treating TNF-α/cycloheximide showed obvious decrease in cIAP1 and increase in cleaved PARP, cleaved

Caspase-3, and cleaved Caspase-8. Proteins with proximate molecular weight were performed by separated gels in the same

electrophoresis with loading control of GAPDH in triplicate.

Figure 5. cIAP1 inhibits apoptosis by NF-κB activation in GBC

(A,B) The immunoprecipitation analysis prior co-treatment of TNF-α and cycloheximide showed Caspase-8 with RIP1 but knock-

down of cIAP1 failed to enhance such interaction with reference to Input ones. (C,D) There was less translocation of NF-κB subunit

P65 from plasma to nuclear in LV-shcIAP1 group under the stimulation of TNF-α for 6 h in both cell lines. (E–G) The expressions

of c-FLIP in both transcriptional and translational levels were reduced in LV-shcIAP1 group in the stimulation of TNF-α (*P< 0.05,

**P< 0.01). Similar results were assured at least triplicated.
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LV-shcIAP1 cells (Figure 5C,D). Meanwhile, c-FLIP, of which the promoter located at NF-κB-binding sites, is reduced
at the transcriptional level in LV-shcIAP1 cells (Figure 5E). As suggested by the bands, the protein increased when
TNF-α is applied in LV-shcIAP1 cells but remained as much as both LV-NC and LV-shcIAP1 groups without stim-
ulation (Figure 5F,G). In this part, we demonstrated that knockdown of cIAP1 influenced apoptosis by deactivating
NF-κB pathway and down-regulated c-FLIP instead of enhancement of formation of Complex .

Discussion
The relationship of GBC and its inflammatory microenvironment caused by gallstone has been long established and
widely accepted [22]. TNF-α, which was flooded in the tumor environment, has been adapted into a pro-survival
inflammatory factor promoting lymphangiogenesis regulated by RIP1 in GBC [23,24]. Of note, as a regulatory protein
affiliated to RIP1, cIAP1 was thought to be the convertor to retrieve the trains of life from cliffs of death [25,26].
Here, we first observed the elevated cIAP1 expression in GBC tissues. Then, by stably infecting GBC cells with cIAP1
knocked down, we found cIAP1 was an important protein that claims the change in the proliferation and migration in
GBC. Finally, we demonstrated cIAP1 protected GBC cells from TNF-α-induced killing by inducing the transcription
of c-FLIP instead of an increasing assembly of RIP1-Caspase-8.

As previously demonstrated, cIAPs, including cIAP1 and cIAP2, are important components that claim pro-survival
roles by ubiquitination on RIP1 in Complex I and anti-apoptotic one in preventing the formation of Complex [8].
As their functions seem quite overlapping, they each acquire different or unique biological roles. Consistent with
our findings in cIAP1, cIAP2 promotes progression in GBC but their function in regulating apoptosis was hardly
investigated [17]. There are unsettled controversies over the influence of cIAP1 alone or cIAPs upon apoptosis. Some
researchers gave the assumption that cIAP1 was the essential protein affecting apoptosis independent of cIAP2, pos-
sibly for its outmatched proportion and function of degrading cIAP2. Physiologically, intestinal epithelium cells were
sensitized to TNF-α-induced apoptosis by degradation of cIAP1 other than cIAP2 [27]. Oncologically, ovarian cancer
cells were more readily responsive to the anticancer agent by knockdown of cIAP1 [28]. Pharmacologically, LCL16
knocked down both cIAP1 and cIAP2 to sensitize tumor to paclitaxel-induced cell death in colon cancer and specific
antagonist inhibiting cIAP1 were potent to cause TNF-α-induced apoptosis in an autocrine way [29,30]. While the
other scientists, which account for a majority, pointed out only by depletion of both cIAP1 and cIAP2 would apoptosis
take place in the presence of TNF-α [21,31].

Our data were in conformity with the latter in which loss of cIAP1 did not directly induce apoptosis even with
TNF-α stimulation in GBC cells, probably due to the protection of cIAP2 and constitutive activation of NF-κB in the
cell itself [25,32]. Latter, we did unravel the loss of cIAP1 endowed GBC cells with a notably decreased viability and
enhanced TNF-α/cycloheximide-induced apoptosis with a control administration of cycloheximide alone, which was
supported by a more readily activated status of Caspase-8 and relevant proteins. Simultaneously, the changes in the
level of cIAP1 and apoptosis coincided with the up-regulation of death regulatory proteins c-FLIP in both mRNA and
protein levels, which were capable of suppressing the formation of RIP1/Caspase-8 mediated cell death [33]. There-
fore, a step forward was taken to testify the indicated connection of cIAP1 and c-FLIP with the presence of TNF-α
[34]. It turned out that knockdown of cIAP1 influences translocation of NF-κB p65 into the nucleus, followed by
impairment on NF-κB activation, which was strongly supported by the conclusion that NF-κB inhibition induced
apoptosis independent of cIAP2 [35]. Together, we hypothesized cIAP1, protects GBC cells from apoptosis by induc-
ing transcription of c-FLIP mediated by NF-κB pathway. In addition, the impairment of NF-κB caused by the loss
of cIAP1 may claim the decrease in proliferation and immigration in GBC cells due to the less transcription of some
inflammatory cytokines as indicated [36]. Last, the level of cIAP1 was greatly descended within apoptotic GBC cells
treated with TNF-α/cycloheximide compared with that of cycloheximide group but elevated to an extent in that of
TNF-α group. It was probably the Caspases that were responsible for the sharp drop of the cIAP1 level and there
was no literature proving the loss of cIAP1 could lead to apoptosis in positive feedback. While the rise of cIAP1 may
answer why overexpression of cIAP1 co-exist with TNF-α and endure its toxicity in vivo and indirectly explain how
this inflammatory cytokine promotes progression in GBC. In other words, there are plausible reasons supporting
our assumption that aberrant cIAP1 expression and NF-κB hyperactivation make GBC cells free from the apoptosis
induced by TNF-α by inducing the expression of c-FLIP.

Our study highlighted the oncological and protective roles of cIAP1 and the underlying mechanism inside in GBC
cells in vitro for the first time. However, present work showed the loss of cIAP1 can fall short of TNF-α-killing in GBC
cells due to the intervention of c-FLIP. Therefore, with respect to treatments by the cIAP1 elimination, the inhibitor of
the NF-κB pathway or c-FLIP had better be utilized to realize higher effectiveness. As various IAP antagonists testing
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in different phases of clinical trials [37], our study may illuminate cIAP1 antagonists should be applied in combined
with GBC injuring drugs such as cycloheximide to limit the progression and enhance apoptosis simultaneously.
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