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A B S T R A C T   

SARS-CoV-2 3CL protease is one of the key targets for drug development against COVID-19. Most known SARS- 
CoV-2 3CL protease inhibitors act by covalently binding to the active site cysteine. Yet, computational screens 
against this enzyme were mainly focused on non-covalent inhibitor discovery. Here, we developed a deep 
learning-based stepwise strategy for selective covalent inhibitor screen. We used a deep learning framework that 
integrated a directed message passing neural network with a feed-forward neural network to construct two 
different classifiers for either covalent or non-covalent inhibition activity prediction. These two classifiers were 
trained on the covalent and non-covalent 3CL protease inhibitors dataset, respectively, which achieved high 
prediction accuracy. We then successively applied the covalent inhibitor model and the non-covalent inhibitor 
model to screen a chemical library containing compounds with covalent warheads of cysteine. We experimen-
tally tested the inhibition activity of 32 top-ranking compounds and 12 of them were active, among which 6 
showed IC50 values less than 12 μM and the strongest one inhibited SARS-CoV-2 3CL protease with an IC50 of 1.4 
μM. Further investigation demonstrated that 5 of the 6 active compounds showed typical covalent inhibition 
behavior with time-dependent activity. These new covalent inhibitors provide novel scaffolds for developing 
highly active SARS-CoV-2 3CL covalent inhibitors.   

1. Introduction 

Caused by the severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [1], the ongoing global coronavirus disease 2019 
(COVID-19) pandemic has led to more than 565 million confirmed cases 
and over 6 million deaths as of July 2022 according to World Health 
Organization. Despite the relentless effort of researchers, COVID-19 may 
still pose a great threat to human life in the future. On the one hand, the 
continuous emergence of virus variants compromises the efficacy of 
available vaccines [2], while the durability and long-term side effects of 
vaccines are unknown currently [3]. On the other hand, although 
several drugs such as remdesivir [4], molnupiravir [5], and Paxlovid [6] 
have been approved for emergent use by FDA for the treatment of pa-
tients with mild-to-moderate COVID-19, only Paxlovid performs 

relatively well. Therefore, it is still imperative to develop new effective 
therapies targeting this pandemic. 

SARS-CoV-2 and other coronaviruses encode a chymotrypsin-like 
protease (3C-like protease (3CLpro) or main protease (Mpro)), which 
cleaves the viral polyproteins at 11 sites and plays a pivotal role in the 
replication as well as transcription of viruses [7,8]. Its substrate cleaving 
sites involve a conserved glutamine at the P1 position that is essential to 
hydrolysis [9–11]. Such strict substrate specificity has never been found 
in human-host protease [12,13], enabling 3CLpro as an ideal target for 
developing drugs against COVID-19. A number of 3CLpro inhibitors for 
other coronaviruses had been studied before [14–19], which have been 
repurposed or further developed to treat COVID-19. Despite the thera-
peutic benefits, fear of toxicity caused by inherent chemical reactivity 
has impeded the development of covalent drugs for a long time and few 
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studies were dedicated to covalent inhibition 30 years ago [20]. 
Nevertheless, due to the development of characterization techniques 
and the discovery of some covalent inhibitors with moderate chemical 
reactivity, the design of covalent drugs becomes more prevalent [21,22]. 
At present, the known SARS-CoV-2 3CLpro inhibitors are also mainly 
covalent, such as PF-00835231 [22], PF-07321332 [6], myricetin [21], 
GC376 [23], MI-23 [24], 11a [25], calpain inhibitors I, II, and XII [26], 
carmofur [10], boceprevir [26], N3 [10], most of which contain the 
warheads such as aldehyde, alpha-ketoamide, nitrile, acrylamide, 
Michael acceptors, and chloroacetamide to react with the active site 
Cys145. There are also a few non-covalent inhibitors, such as S-217622 
[27], baicalin [28], and masitinib [29]. In view of the enhanced thera-
peutic potency and long-lasting effects of these covalent warheads [30, 
31], developing covalent inhibitors of SARS-CoV-2 3CLpro provides an 
effective way to combat the pandemic. 

In addition to rational design [32], molecular docking-based virtual 
screening [33], high-throughput experimental screening [34], and 
artificial intelligence (AI) have been used to screen for anti-SARS-CoV-2 
compounds. For example, Wang et al. [35] developed a transferable 
deep learning method to screen a large compound library and suggested 
a list of potential anti-SARS-CoV-2 compounds. Duc et al. [36] used 
algebraic topology and deep learning to understand the molecular 
mechanism of SARS-CoV-2 3CLpro inhibition from 137 complex crystal 
structures and predicted 71 possible covalent binding inhibitors, for 
which no experimental validation has been carried out. Hu et al. [37] 
developed a novel framework, AIMEE, that integrated an AI model with 
enzymological experiments to screen a bioactive chemical library and 
found four SARS-CoV-2 3CLpro inhibitors with half-maximal inhibitory 
concentration (IC50) at micromole level. Despite that the most successful 
SARS-CoV-2 3CLpro inhibitors until now all covalently bind to the active 
site Cys145, currently reported AI models for SARS-CoV-2 3CLpro in-
hibitor screen all used datasets of experimentally identified inhibitors 
that contain both covalent and non-covalent inhibitors. Most covalent 
inhibitors screened by these models can covalently bind to various tar-
gets without selectivity, which may easily result in off-target effects. 
Consequently, AI models that can be used to screen selective covalent 
inhibitors need to be developed. 

Given the contribution of non-covalent interactions to the selectivity 
of ligands and the increased efficacy when two binding mechanisms 
exist simultaneously [20], the existence of covalent warheads and the 
binding of non-covalent sub-structures should be taken into account 
together when screening new covalent inhibitors. In the present study, 
we developed a strategy that incorporates deep learning models and in 
vitro experiments to quickly identify potential selective covalent 
SARS-CoV-2 3CLpro inhibitors. Firstly, we applied a deep learning 
framework that integrated a directed message passing neural network 
with a feed-forward neural network to construct two different classifiers 
for the activity prediction of molecules. These two classifiers were 
trained on the covalent and non-covalent 3CLpro inhibitors dataset 
separately. Both models achieved satisfactory performance on the test 
sets. We then successively applied the covalent inhibitor model and the 
non-covalent inhibitor model to screen a library with more than 39, 000 
compounds that contain covalent warheads of cysteine. Among the 32 
top-ranking compounds that were experimentally tested, 6 showed IC50 
values less than 12 μM and the strongest one inhibited SARS-CoV-2 
3CLpro with an IC50 of 1.4 μM. Further investigation demonstrated 
that 5 of the 6 active compounds showed typical covalent inhibition 
behavior with time-dependent activity. These new inhibitors may pro-
vide useful guidance for the design of new drugs towards COVID-19. 

2. Material and methods 

2.1. Dataset 

Since SARS-CoV-2 3CLpro has up to 96% sequence identity with 
SARS-CoV 3CLpro, inhibitors targeting SARS-CoV 3CLpro are likely to 

have the same effect on SARS-CoV-2 3CLpro [38]. Therefore, we 
collected not only SARS-CoV-2 3CLpro inhibitors from recent literature 
(from 2020 to 2021) but also SARS-CoV 3CLpro inhibitors from previous 
studies (from 2004 to 2021) [11,14–19,23,25,39–42]. Experimental 
data of inhibition assays are available for all collected inhibitors in 
literature and IC50 of 50 μM was chosen as the cutoff to distinguish 
positive and negative samples. In addition, we divided this curated 
dataset into covalent and non-covalent datasets based on the binding 
mechanism of inhibitors. After dividing the dataset into training and test 
sets in a ratio of approximately 10:1, we finally constructed a covalent 
training dataset (Training Set 1) with 463 molecules (209 positives and 
254 negatives), a covalent test dataset (Test Set 1) with 53 molecules (25 
positives and 28 negatives), a non-covalent training dataset (Training 
Set 2) with 1086 molecules (224 positives and 862 negatives) and a 
non-covalent test dataset (Test Set 2) with 108 molecules (18 positives 
and 90 negatives) (Data S1). 

Cysteine Targeted Covalent Library from ChemDiv (https://www.ch 
emdiv.com) contains 39, 301 compounds that have specific warheads, 
which were designed to react with cysteine. After removing overlaps 
with the training set and test set, the remaining 39, 014 compounds of 
this library were used to screen potential covalent SARS-CoV-2 3CLpro 

inhibitors. 

2.2. Deep learning models 

We developed one classification model for covalent inhibitor classi-
fication (COVCL) and one classification model for non-covalent inhibitor 
classification (NOVCL) for SARS-CoV-2 3CLpro. The COVCL model, 
trained on Training Set 1, can be used to predict whether a compound 
has covalent inhibitory activity against SARS-CoV-2 3CLpro. The NOVCL 
model, trained on Training Set 2, can be used to predict whether a 
compound has non-covalent inhibitory activity against SARS-CoV-2 
3CLpro. Successive application of these two models can screen out 
compounds that may specifically bind SARS-CoV-2 3CLpro and form 
covalent bond with Cys145. 

We used the Chemprop architecture to train the models and encoded 
the molecules using SMILES representation. Chemprop model mainly 
includes a directed message passing neural network (D-MPNN) module 
for molecular feature extraction and a feed-forward neural network 
(FNN) for property prediction. Initially, Chemprop takes molecular 
SMILES as input and converts it into a molecular graph with atoms 
regarded as nodes and bonds as edges. After the message passing stage 
and readout stage, the D-MPNN module finally extracts all the atomic 
features and bond features in the molecular graph to generate a single 
feature vector representing the whole molecule [43]. In this work, we 
concatenated an additional vector containing 200 descriptors computed 
by RDKit [44] to introduce more molecular-level features. These de-
scriptors contain partial charge, number of heavy atoms, number of 
hydrogen-bond donors, etc (Table S1). The FNN structure means that 
information is transferred unidirectionally from the input layer to the 
output layer step by step, with no feedback between layers [45]. The 
final feature vector of D-MPNN module was then fed to the FNN module 
to predict the activity of candidate molecules (Fig. 1). 

2.3. Inhibition assay of SARS-CoV-2 3CLpro 

The expression and purification of SARS-CoV-2 3CLpro were carried 
out using the reported protocol [46]. A fluorescent substrate 
Dabcyl-KTSAVLQSGFRKM-E(Edans)-NH2 (GL Biochemistry Ltd) and 
assay buffer (40 mM PBS, 100 mM NaCl, 1 mM EDTA, 0.1% Triton 100, 
pH 7.3) were used for the inhibition assay. Stock solutions of the in-
hibitors were prepared with DMSO. 0.5 μM SARS-CoV-2 3CLpro was 
pre-incubated for 180 min or other lengths of time with 5 μL DMSO or 
inhibitor at various concentrations. Then, 20 μM fluorescent substrate 
was added into the system to initiate the reaction. The reaction system 
was excited at 360 nm and an increase in absorbance at 460 nm was 
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recorded for 20 min at an interval of 37 s with a kinetics mode program 
using a 96-well plate reader (Synergy, Biotek). The inhibition rate was 
calculated by Vi/V0, where V0 or Vi represents the mean reaction rate of 
the protease incubated with DMSO or compounds. IC50 was fitted with 
Prism GraphPad 8.0. 

For the inhibition test in presence of DTT, the final concentration of 
DTT in assay buffer was 5 mM. 

2.4. Inhibition kinetics analysis and reversibility assay 

We studied the enzyme kinetics properties by adding different con-
centrations of the fluorescent substrate to initiate the reaction. Mean 
velocities were collected and plotted then fitted with the Michaelis- 
Menten equation to obtain values of Km and Vmax. 

To investigate the reversibility of inhibition, 1 μM SARS-CoV-2 
3CLpro was incubated with 10 μM compound stock solution on ice for 
180 min and then divided into different Millipore tubes for various times 
of ultrafiltration. For each time of ultrafiltration, equal volume of assay 
buffer used in the inhibition assay was added to elute the protease then 
ultrafiltered at 4 ◦C, 12,000 rpm for 5 min and collected for the inhi-
bition assay. 

2.5. Half-life of compounds reacting with GSH 

Evaluation of the intrinsic reactivity of warheads was conducted by 
measuring the half-life of the compounds reacting with GSH. 500 μM 
compound was incubated with 10 mM GSH for 0–60 min and the 
remaining compounds were quantified by HPLC (Agilent 1200). Ln (the 
percentage of the remaining compound) was plotted against incubation 
time to generate the half-life time of the compound reacting with GSH. 

2.6. Cathepsin L inhibition assay 

The inhibition assay of Cathepsin L was performed as previously 
reported [47]. Briefly, compound 9 and compound 13 were tested 
using the commercial Cathepsin L Inhibitor Assay Kit (Abcam, Cat# 
ab197012). FF-FMK, a known inhibitor for Cathepsin L was used as a 
positive control. 

2.7. Mass spectrometry analysis 

For mass spectrometry analysis of the protease, 1 μM SARS-CoV-2 
3CLpro was incubated with DMSO or 10 μM compound on ice for 180 
min. The solution was ultrafiltered three times at 4 ◦C, 12,000 rpm for 5 

min and analyzed by Quadrupole-TOF LC-MS/MS System using the ESI 
(+) mode. Signals of observed mass were collected and deconvoluted. 

2.8. Covalent docking 

The crystal structure of SARS-CoV-2 3CLpro in complex with com-
pound 4 (PDB ID: 7JT7) was used as the target structure [48]. Protein 
and ligands were first prepared by the Protein Prep Wizard module [49] 
and LigPrep module in Schrodinger [50], respectively. Covalent Docking 
module [51] in Schrodinger was then used to carry out covalent docking 
of compounds with reaction type set to Michael addition and docking 
mode set to pose prediction. 

3. Results and discussions 

3.1. Models for prediction of covalent and non-covalent SARS-CoV-2 
3CLpro inhibitors 

We first trained and tested the COVCL and NOVCL models. Chem-
prop is a deep learning model for molecular property prediction that 
outperforms existing strong baselines on 16 proprietary datasets and 19 
publicly available datasets [52]. Given the outstanding performance of 
Chemprop, we considered using it as the framework of our models. Since 
the performance of deep learning model is usually limited by the size of 
dataset, we additionally tested the performance of several classical 
machine learning models including Random Forest (RF) [53], Support 
Vector Classification (SVC) [54], eXtreme Gradient Boosting (XGB) 
[55], and Artificial Neural Network (ANN) [56]. Firstly, 10-fold 
cross-validation was carried out on training sets to evaluate the per-
formance. Since ensemble methods can improve the stability of model 
by aggregating the predictions of multiple classifiers [57], we further 
constructed an ensemble of 10 models. The ensemble was trained by 
different splits of training data and validation data (9:1) from training 
sets. Then, performance of this ensemble was tested on the independent 
test sets and the final prediction was the average result of these 10 
models. The receiver operating characteristic curve (ROC-AUC) and 
accuracy (ACC) were used as metrics to evaluate the performance of 
different models. As indicated by Table S2 and Table S3, the perfor-
mance of classical models was close to Chemprop on both covalent and 
non-covalent datasets, but overall Chemprop performed slightly better. 
Consequently, considering that our small dataset does not diminish the 
effect of deep learning and that Chemprop incorporates more molecular 
structure information as described in methods, we finally chose Chem-
prop as the basic architecture of COVCL and NOVCL models. 

Fig. 1. Schematic of the framework used for two deep classifiers. VM represents a vector of the whole molecular features. VRDKit represents a vector containing 200 
descriptors calculated by RDKit. VM and VRDKit are concatenated to generate a final vector Vfinal, which is then used as the input of FNN module. 
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The default parameters of Chemprop model were used except for 
four hyperparameters: the number of message-passing steps (depth), the 
dropout values of all layers, the size of bond message vectors (hidden 
size), and the number of FNN layers. We used the automated hyper-
parameter optimization tool in Chemprop, which is achieved by the 
Bayesian optimization method, to identify the optimal hyperparameters 
(Table 1). 

As shown in Fig. 2A and Fig. 2C, AUC and ACC of ten-fold cross- 
validation on Training Set 1 were all above 0.850, while the AUC on Test 
set 1 achieved 0.987, indicating the good performance of COVCL. As for 
NOVCL, the AUC and ACC of ten-fold cross-validation this time were all 
above 0.880, while the AUC of Test set 2 could reach 0.853 (Fig. 2B and 
D). In summary, both COVCL and NOVCL showed satisfactory perfor-
mance, and thus can be used for the following screening of SARS-CoV-2 
3CLpro inhibitors. 

3.2. Virtual screening of Cysteine Targeted Covalent Library to identify 
potential 3CLpro inhibitors 

We constructed a generally applicable 5-step screening architecture 
that integrates deep learning and further properties analysis to identify 
potential selective covalent inhibitors (Fig. 3A). 

We first screened the Cysteine Targeted Covalent Library with the 
COVCL model for compounds that might covalently bind SARS-CoV-2 
3CLpro. The top 727 compounds with scores higher than 0.8 were 
selected (Fig. 3B) and subjected to the NOVCL model filtering for com-
pounds that specifically bind to the enzyme and form covalent bond with 
Cys145. Using a cutoff score of 0.7, 298 molecules were selected 
(Fig. 3C) for further analysis. 

Since some of these 298 compounds are structurally similar, a cluster 
analysis of the compounds was performed to select representative 
compounds from each cluster. We used the Butina [58] module of RDKit 
to cluster the above 298 molecules with a distance cutoff of 0.4. This 
allowed the compounds to be divided into 102 clusters, among which 
two clusters contain more than 20 compounds. We further clustered 
these two groups of compounds with a cutoff of 0.2 and the compound 
with the highest NOVCL score was taken as a representative for each 
class. These analyses gave 113 compounds for further study. 

As the physicochemical properties of a molecule can have a signifi-
cant impact on its absorption, distribution, metabolism, excretion 
(ADME), toxicity, and pharmacological activity, they were considered in 
the fourth step of the screening process. In the present study, we simply 
used the octanol-water partition coefficient (logP) to ensure the ab-
sorption and bioavailability property of a compound [59]. There are 79 
compounds among the 117 with logP values not higher than 5. We also 
limited the molecular weight to the range of 300–600 and 32 candidate 
compounds were selected for experimental study. 

In order to visualize the model prediction results and further analyze 
the structural information of the screened molecules, we applied t- 
distributed stochastic neighbor embedding (t-SNE) on the dataset to 
visualize the chemical space distribution of compounds. t-SNE is a 
dimensionality reduction method that can utilize Tanimoto similarity to 
quantify the chemical distance. The spatial proximity of two points on 
the t-SNE plot graph implies structural similarity. As shown in Fig. 4A, 
the molecules in the training set were widely distributed in chemical 
space and contained various structures. The distribution of 32 screened 
molecules was dispersed and 29 of these molecules had the maximum 
similarity of less than 0.5 to the positive compounds in the training set, 
indicating that COVCL and NOVCL can identify novel structures to some 

extent (Fig. 4B). This indicates that the models learned certain structure- 
activity relationships from the training set, and the learned features can 
be recombined into some new compounds. Certainly, the performance of 
deep learning models is closely related to the training data, so increasing 
the structural diversity of training data should facilitate the model to 
learn more information and hence enhance its prediction ability. 

3.3. Enzyme inhibition activity of the virtually screened compounds 

We then tested the inhibitory activity of the 32 compounds against 
SARS-CoV-2 3CLpro according to our previously published methods [46], 
using tideglusib as a positive control (Fig. S1) [10]. Among the 32 
compounds, 12 showed more than 50% inhibition at the concentration 
of 100 μM (Table S4) and 6 exhibited considerable inhibitory activity 
with IC50 < 12 μM with 180 min incubation time (Fig. 5). These 6 active 
compounds contain covalent warheads of α, β-unsaturated ketone 
(ester), disulfide bond, and heteroaromatic ester. To the best of our 
knowledge, no anti-SARS-CoV-2 activities nor other biological activities 
of these molecules have been reported before. We also used the 
D3Similarity web server to calculate the molecular similarity between 
our compounds and the reported bioactive compounds against corona-
viruses [60]. The maximum two-dimensional similarity of the 6 com-
pounds were all below 0.45, indicating their structural novelty 
compared to known inhibitors, which provides good starting points for 
designing novel SARS-CoV-2 3CLpro covalent inhibitors. 

3.4. Mode of action analysis of the active compounds 

To elucidate the mode of action of hit compounds against SARS-CoV- 
2 3CLpro, we carried out a series of enzymatic studies and mass spec-
trometry analysis. As time-dependent inhibition is a good indicator of 
covalent binding, we incubated the 6 compounds with SARS-CoV-2 
3CLpro for different lengths of time and measured their inhibition ac-
tivity. Five of them exhibited obvious time-dependent increase of inhi-
bition activity (Fig. 5 and Table S5). Among the 5 compounds, 
compound 9 and compound 13 with the most potent inhibitory ac-
tivities were selected for further analysis. 

As shown in Fig. 6A, the addition of dithiothreitol (DTT) could 
reverse the inhibitory effect of compound 9 and compound 13, which 
is typical of covalent inhibition through Cys binding. Furthermore, 
reversibility assay of both compounds to SARS-CoV-2 3CLpro revealed 
that the ultrafiltration of inhibitors could recover enzymatic activity to a 
certain extent (Fig. 6B), which indicated that they were reversible in-
hibitors. As exhibited in Fig. 6C and Table S6, the Michaelis-Menten 
kinetics analysis of compound 9 and compound 13 yielded both Km 
and Vmax values altered, indicating that they are mix-type inhibitors of 
SARS-CoV-2 3CLpro. Overall, the enzymatic studies demonstrated that 
both compound 9 and compound 13 were reversible covalent in-
hibitors of SARS-CoV-2 3CLpro. 

We have also explored the selectivity of compound 9 and com-
pound 13 by investigating their inhibitory activity against Cathepsin L, 
a key host cysteine protease utilized by coronaviruses for cell entry [3, 
61,62], using the reported method (the known Cathepsin L inhibitor 
FF-FMK was used as the positive compound, Fig. S2) [63]. At the con-
centration of 50 μM, the inhibition rates of Cathepsin L by compound 9 
and compound 13 are 20.3 ± 5.3% and 26.6 ± 5.8%, respectively. The 
weak inhibitory activity of both compounds against Cathepsin L sug-
gested their high selectivity for coronavirus protease. 

To reduce possible off-target covalent binding that may lead to 
toxicity risks, the intrinsic reactivity of the warheads should be low. The 
intrinsic reactivity of compound 9 and compound 13 was measured 
using a GSH assay which is routinely used to assess the reactivity of 
cysteine-targeted warheads [64]. The reaction half-life (t1/2) of com-
pound 9 and compound 13 were 1.4 min and 49.6 min, respectively 
(Fig. S3). Regarding the fact that t1/2s of clinical covalent kinase in-
hibitors determined in GSH assay were within the range of 30–512 min 

Table 1 
Optimal hyperparameters for the two models.  

model depth dropout FNN layers hidden size 

COVCL 5 0.1 2 1100 
NOVCL 3 0.1 2 1300  
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Fig. 2. Performance of two classification models (COVCL and NOVCL). (A) Result of 10-fold cross-validation on Training Set 1 for COVCL. (B) Result of 10-fold cross- 
validation on Training Set 2 for NOVCL. (C) Receiver operating characteristic curve of COVCL on Test Set 1. AUC is the area under the curve, which is usually used to 
evaluate the performance of classification model. (D) Receiver operating characteristic curve of NOVCL on Test Set 2. 

Fig. 3. Library screening for potential inhibitors. (A) Overall schematic of the screening architecture. (B) Distribution of predicted scores for Cysteine Targeted 
Covalent Library using the COVCL model. Count indicates the number of molecules. (C) Distribution of the predicted scores for the 727 selected molecules using the 
NOVCL model. 
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[65], compound 13 demonstrated moderate reactivity, implying its 
potential for further development of more potent SARS-CoV-2 3CLpro 

covalent inhibitors. 
We further carried out liquid chromatography-tandem mass spec-

trometry (LC-MS/MS) analysis of covalent binding between SARS-CoV-2 
3CLpro and compound 13. We found that compound 13 could only 
partially modify SARS-CoV-2 3CLpro (Fig. S4), perhaps due to the 
instability of reversible covalent binding manner. Intact protein mass 
spectrometry study confirmed that a covalent bond is formed between 
the protease and the α, β-unsaturated ketone unit of compound 13, 
detected as a peak with MW shift of +405 Da (C22H15NO7). Besides, a 
peak with MW shift of +319 Da (C19H13NO4), which is equal to the mass 
of the SARS-CoV-2 3CLpro/arylfurylpropenone complex along with the 
removal of methyl glyoxylate was detected. 

Eventually, we performed covalent docking to understand the in-
teractions of compound 13 with SARS-CoV-2 3CLpro. As shown in 
Fig. 7A, compound 13 mainly occupied the S1′, S1, and S2 pockets. A 
covalent bond is formed between Cys145 and the α, β-unsaturated ke-
tone unit. In the docking model, two π-π stackings are observed between 
the furan unit and the benzene ring of compound 13 and His41 of 
3CLpro. His41 also interacts with the nitro group of compound 13 by 

cation-π interaction. In addition, compound 13 forms three hydrogen 
bonds with Ser144, Cys145, and His163, respectively (Fig. 7B). Apart 
from the covalent bond formed between Michael acceptors and Cys145, 
those mentioned non-covalent interactions of compound 13 also 
contribute to its inhibitory activity and selectivity against SARS-CoV-2 
3CLpro. In the docking model, compound 13 occupies a similar posi-
tion as myricetin, a natural product that was reported to target Cys145 
with its pyrogallol warhead [21]. Myricetin bound to 3CLpro distinc-
tively (PDB ID: 7DPP), mainly occupying the S1′ and S2 pockets. The 
benzene ring in the case of compound 13 binding to 3CLpro is similar to 
the binding position of the pyrogallol moiety. On the other hand, 
different from the cyclic moieties adopted in the reported peptidomi-
metic covalent inhibitors of 3CLpro [6,23,25,66,67], the methyl glyox-
ylate moiety in compound 13 occupies the S1 pocket (Fig. S8). In 
addition, the occupied S1’ pocket and currently unoccupied S4 pocket 
are relatively novel situations among cases of binding to 3CLpro with 
covalent inhibitors, which would hopefully provide inspiration for 
developing novel 3CLpro covalent inhibitors. 

Fig. 4. Chemical space distribution of molecules. (A) Visualization of the molecular structures in two dimensions space for Cysteine Targeted Covalent Library (grey 
dots) and training set (green, blue, red and orange dots) by t-SNE plot. The spatial proximity of two points on the graph implies structural similarity. (B) Visualization 
of the molecular structures in two dimensions space for training set (green and grey dots) and 32 screened molecules (red crosses) by t-SNE plot. 

Fig. 5. Dose-response curves of the inhibition of SARS-CoV-2 3CLpro by the 6 hits under different incubation times. IC50 values under 180 min incubation time 
are shown. 
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4. Conclusion 

We have developed a generally applicable deep learning screening 
strategy that uses both covalent and non-covalent classifiers to identify 
selective covalent enzyme inhibitors. In the present study, we trained 
the two classifiers on covalent and non-covalent SARS-CoV-2 3CLpro 

inhibitor datasets, respectively, and successfully applied them to iden-
tify 5 novel covalent SARS-CoV-2 3CLpro inhibitors. Such a deep learning 
approach only requires molecular SMILES as input files, making it 
convenient to be applied. Compared to experimental and docking-based 
screening, it is highly efficient. The inhibitors that we found provide new 
scaffolds for developing the next generation of specific covalent SARS- 
CoV-2 3CLpro inhibitors. Especially, our framework can be easily 
extended to other targets or diseases in principle although we only 

presented the study of SARS-CoV-2 3CLpro here. For instance, papain- 
like protease (PLpro) of SARS-CoV-2, which is another promising target 
for the treatment of coronavirus, can also form a covalent bond with 
ligands through Cys111 in the catalytic site [68,69]. The covalent in-
hibitors of PLpro can be screened out by our framework as long as re-
searchers replace the original datasets with PLpro-related data. Overall, 
the deep learning-based framework for rapid identification of covalent 
inhibitors established in this work is feasible and efficient, providing a 
significant complementary approach to guide drug development. 
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