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1  |  INTRODUC TION

Tissue factor pathway inhibitor (TFPI) is an alternatively spliced an-
ticoagulant protein present in plasma,1 platelets,2,3 and extracellular 
matrix,4 as well as on the surface of endothelial cells,5,6 monocytes, 
and macrophages.7 It is a multifunctional Kunitz- type serine prote-
ase inhibitor that acts at several steps of the blood coagulation cas-
cade.8 TFPI primarily inhibits initiation of coagulation, dampening 
procoagulant stimuli before thrombin is generated.9– 11 As such, it is 

an important regulator of bleeding in hemophilia,12– 14 and antibodies 
that block TFPI activity are under development for hemophilia treat-
ment.15– 18 In phase 2 clinical studies, an anti- TFPI antibody prevented 
bleeding episodes in people with hemophilia A and B, with or with-
out inhibitors.17 As an inhibitor of blood coagulation, TFPI also alters 
cellular trafficking and signaling pathways driven by coagulation pro-
teases of the TF pathway.19,20 Here, we review the biochemistry and 
physiology underpinning the effects of TFPI in blood coagulation and 
cellular signaling pathways, and how these may be altered by anti- TFPI 
therapeutic strategies.
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Abstract
Tissue factor pathway inhibitor (TFPI) is an alternatively spliced anticoagulant protein 
that primarily dampens the initiation phase of coagulation before thrombin is generated. 
As such, TFPI’s actions are localized to cells expressing TF and to sites of injury, where 
it is an important regulator of bleeding in hemophilia. The major splice isoforms TFPIα 
and TFPIβ localize to different sites within and surrounding the vasculature. Both forms 
directly inhibit factor Xa (FXa) via their Kunitz 2 domain and inhibit TF- FVIIa via their 
Kunitz 1 domain in a tight complex primarily localized to cells. By forming complexes 
localized to distinct cellular microenvironments and engaging additional cell surface 
receptors, TFPI alters cellular trafficking and signaling pathways driven by coagulation 
proteases of the TF pathway. TFPIα, which circulates in complex with FV and protein S, 
also serves an inhibitor of FXa independent of the TF initiation complex and prevents 
the formation of an active prothrombinase. This regulation of thrombin generation in 
the context of vessel injury is effectively blocked by antibodies to Kunitz 2 domain of 
TFPI and exploited as a therapy to restore efficient hemostasis in hemophilia.
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2  |  TFPI BIOCHEMISTRY

2.1  |  Overview of TFPI isoforms and structures

mRNA encoding three isoforms of TFPI are produced in humans. The 
isoforms, TFPIα, TFPIβ, and TFPIδ, result from three alternative splic-
ing events that produce distinctive C- terminal ends of the TFPIα and 
TFPIβ proteins. However, in vivo production of TFPIδ has not been 
demonstrated and its physiological relevance is uncertain.21 This 
variation in the C- termini targets the individual isoforms to different 
locations within the vasculature and alters their anticoagulant activi-
ties.8 The two major isoforms have identical N- termini consisting of 
an acidic stretch of amino acids followed by two Kunitz- type serine 
protease inhibitory domains (Figure 1). These two Kunitz domains 
(K1 and K2) inhibit the tissue factor- factor VIIa (TF- FVIIa) catalytic 
complex in a factor Xa (FXa)- dependent manner. The isoform struc-
tures diverge after the K2 domain (Figure 1). TFPIα has a third Kunitz 
domain (K3) that binds protein S (PS),22 followed by a stretch of 

basic amino acids that bind glycosaminoglycans and other negatively 
charged polymers.23,24 The basic C- terminus of TFPIα also binds to 
an acidic region of the FV B- domain allowing it to inhibit early forms 
of the FVa- FXa catalytic complex (prothrombinase) that assemble 
before thrombin is generated.10 TFPIβ has a stretch of amino acids 
that encode a glycosylphosphatidylinositol (GPI) cell- surface attach-
ment sequence.25 TFPIβ rapidly inhibits TF- FVIIa procoagulant ac-
tivity when both proteins are expressed on the same cell.19

2.2  |  Localization of TFPI isoforms

The distinctive C- termini of TFPIα and TFPIβ localize them to differ-
ent portions of the vasculature. TFPIα circulates in plasma as a soluble 
protein at ~0.4 nM (~12.5 ng/ml).1,26 TFPI circulates in association with 
PS and FV.27,28 Consistently, the plasma concentration of TFPIα cor-
relates with the plasma concentrations of PS and FV.26 TFPIα is also 
a heparin- releasable protein, and its plasma concentration rapidly 

F I G U R E  1  TFPI isoforms in humans. Yellow residues represent cysteine residues and disulfide bridges. Blue residues are basic. Red 
residues are acidic. a, active; F, factor; GPI, glycophosphatidylinositol; K, Kunitz domain; TFPI, tissue factor pathway inhibitor. Adapted from 
Maroney SA and Mast AE. J Thromb Haemost. 2015;13(S1):S200– S207113
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increases two-  to four- fold following heparin infusion.19,29 It has been 
suggested that the heparin- releasable pool of TFPIα is bound to the 
endothelial surface via interactions between its basic C- terminal re-
gion and glycosaminoglycans within the endothelial glycocalyx. TFPIα 
also interacts with cell surface glycosaminoglycan receptors,20 which 
can be either GPI- anchored (glypican 3)30 or transmembrane domain- 
anchored (syndecan- 3 and syndecan- 4)31,32 through its third Kunitz 
and carboxyl terminal domains.33 However, TFPIα is not detectable on 
the surface of cultured endothelial cells or human kidney endothelium, 
and recent data indicate the extracellular matrix is the major source of 
heparin releasable TFPIα.4 This localizes TFPIα within the extravascu-
lar space, where it is available to regulate the activity of endogenously 
expressed TF on cells exposed to blood following endothelial injury.

Although TFPIα is not present on the endothelial surface, it is 
present within granule- like structures distinct from Weibel- Palade 
bodies in cultured Ea.hy926 cells.4,34 TFPIα is also present within 
platelets.3 It is released from activated platelets and accumulates at 
the site of vascular injury, with a portion localizing to the platelet 
surface.2,3 Interestingly, TFPIα is not present in platelet α- granules,3 
and, accordingly, the platelet TFPIα concentration does not correlate 
with platelet PS or FV, both of which are within α- granules.26 TFPIα 
anticoagulant function is also regulated by polyphosphates that are 
released from activated platelets.10,35

TFPIβ is localized to the surface of endothelial cells and monocytes 
via a GPI anchor.5,7,25 Expression of TFPIβ on the surface of cultured 
endothelial cells is not altered by heparin,4,36 and TFPIβ does not con-
tribute to the heparin- releasable pool of TFPI observed in vivo.37 TFPIβ 
is not present in platelets3 or within the extracellular matrix.4

3  |  TFPI INHIBITS COAGUL ATION 
THROUGH DISTINC T BIOCHEMIC AL 
MECHANISMS

TFPI inhibits coagulation proteases at several steps of the blood co-
agulation cascade (Figure 2).8,9 The direct binding of K2 to the FXa ac-
tive site provides the foundation for its anticoagulant activities,38 the 
inhibition of TF- FVIIa performed by TFPIα and β,11 and the inhibition 
of early forms of prothrombinase performed by only TFPIα.10 These 
catalytic complexes assemble early in a procoagulant response, and 
their inhibition is unique to TFPI because they are relatively resistant 
to inhibition by other anticoagulant proteins, such as antithrombin39– 41 
and activated protein C.42,43 The inability to overcome TFPI inhibitory 
activity through generation of additional FXa via the FVIIIa- FIXa cata-
lytic complex reduces thrombin generation and results in the bleeding 
experienced by hemophilia patients.44 This provides the mechanistic 
basis for inhibition of TFPI as a treatment for hemophilia bleeding.

3.1  |  TFPI inhibition of TF- FVIIa

TF- FVIIa initiates the blood coagulation cascade by activating FX of 
the common blood coagulation pathway11 and FIX of the intrinsic 

blood coagulation pathway45 (Figure 2). The inhibition of TF- FVIIa is 
mediated by direct binding of K1 to the FVIIa active site.38 However, 
K1 is a poor inhibitor of TF- FVIIa and efficient inhibition requires 
FXa.11 Thus, TFPI has been described as a two- stage inhibitor where 
K2 binds to FXa, and in a subsequent inhibitory step the TFPI- FXa 
complex inhibits TF- FVIIa. However, the rate- limiting step for inhibi-
tion of TF- FVIIa is the inhibition of FXa.46 This indicates that instead 
of occurring in a two- step process, TFPI simultaneously inhibits the 
ternary TF- FVIIa- FXa complex in a single reaction occurring im-
mediately after FX is activated by TF- FVIIa but before FXa dissoci-
ates from the ternary TF- FVIIa- FXa complex.46 In this manner, TFPI 
blocks TF- FVIIa mediated generation of prothrombinase, FVa- FXa, 
in the common blood coagulation pathway. However, because TFPI 
does not inhibit activation of FIX by TF- FVIIa, TF- FVIIa- mediated 
initiation of blood coagulation can also proceed through the intrin-
sic pathway. Additionally, the TF- FVIIa- FXa ternary complex can di-
rectly activate FVIII in a process that is poorly inhibited by TFPI and 
occurs before the dissociation of the nascent product FXa.47 This 
provides a mechanism for TF- FVIIa– mediated activation of both 
antihemophilic factors and production of the FVIIIa- FIXa intrinsic 
tenase complex independent of thrombin providing feedback acti-
vation of FVIII.47

Because TFPIα and TFPIβ have K1 and K2, they both inhibit TF- 
FVIIa through this FXa- dependent mechanism. The localization of 
TFPIβ to cell surfaces via its GPI anchor greatly enhances its TF- 
FVIIa inhibitory activity; soluble forms of TFPI that mimic TFPIβ and 
contain only K1 and K2 are much weaker inhibitors.19 Similarly, the 
TFPIα K3 domain binds to PS,22,48 which contains a Gla domain that 
localizes TFPIα to cell surfaces and enhances its ability to inhibit 
FXa.49 Additionally, about two- thirds of plasma TFPIα is C- terminally 
degraded and associated with lipoproteins.37 This pool of plasma- 
truncated TFPIα has reduced anticoagulant activity in TF- FVIIa- 
initiated plasma coagulation assays. However, it is a potent inhibitor 
of the propagation phase in thrombin generation assays.50 At this 
point, the physiological importance of lipoprotein- associated plasma 
TFPIα remains uncertain.

3.2  |  TFPIα inhibition of early forms of 
prothrombinase

Prothrombinase is the FVa- FXa catalytic complex that converts pro-
thrombin to thrombin at the convergence of the intrinsic and extrin-
sic blood coagulation pathways. The discovery that TFPIα is the only 
TFPI isoform present in platelets3 and recognition of amino acid ho-
mology between the TFPIα C- terminus and the FV B- domain9 led to 
description of the inhibitory mechanism of early forms of prothrom-
binase (i.e., those that assemble before thrombin is generated10 and 
that involves FXa dependent activation of FV).51

In this mechanism, the TFPIα basic region binds tightly to par-
tially activated forms of FV that lack this basic region but still 
contain the acidic region of the B- domain, allowing interaction 
with TFPIα as well as protein S.52 This allows prothrombinase 
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inhibition mediated through K2 binding of the FXa active site 
and a lower affinity interaction between conserved uncharged 
amino acids in the TFPIα C- terminus and the FV heavy chain in 
the region of FV arginine 506.53 This later interaction is weak-
ened in patients with the FV Leiden mutation, which decreases 
the threshold for initiation of coagulation and thereby increases 
thrombotic risk in these patients.54,55 Thrombin rapidly cleaves 
and removes the entire FV B- domain56 after which TFPIα can no 
longer inhibit prothrombinase. However, the binding of TFPIα to 

FV slows this thrombin cleavage,57 further contributing to TFPIα 
anticoagulant activity. Three FV variants that lack the basic re-
gion of the B- domain have been identified: FV east Texas,58,59 
FV Amsterdam,60 and FV Atlanta.61 TFPIα binds tightly to these 
forms of FV, and consequently, patients have greatly increased 
plasma TFPIα concentrations and an associated bleeding disor-
der. Thus, it appears that TFPIα inhibition of prothrombinase is 
a physiologically important anticoagulant activity occurring at 
this early point in the coagulation cascade when nascent forms 

F I G U R E  2  Presence of TFPI isoforms result in the inhibition of the TF- FVIIa- FXa ternary complex. (A) The TF- FVIIa complex activates FIX 
(part of the intrinsic coagulation pathway) and FX (part of the common coagulation pathway). This results in plasma membrane association of 
FXa and FVa, forming the prothrombinase complex, and subsequent cleavage of prothrombin to thrombin. (B) The K2 domain of TFPIα binds 
to FXa, which supports inhibition of the TF- FVIIa complex. The binding of the K3 domain to PS supports membrane association of TFPIα and 
thus further promotes inhibition of the TF- FVIIa complex. The basic C- terminus of TFPIα can also interact with FVa, resulting in inhibition of 
the early prothrombinase complex. (C) TFPIβ localizes to the cell surface via its GPI anchor, increasing its ability to inhibit FXa. a, active; C, 
carboxy; F, factor; GPI, glycophosphatidylinositol; K, Kunitz; N, amino; TF, tissue factor; TFPI, tissue factor pathway inhibitor
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of prothrombinase have assembled, but before thrombin is gen-
erated. Interestingly, the saliva of the black fly, Simulium vittatum, 
contains a single Kunitz- type inhibitory domain that binds the 
active site of FXa followed by a basic C- terminal region with ho-
mology to TFPIα and the FV B- domain.62 This is a fascinating con-
vergent evolutionary event whereby the fly prevents coagulation 
through the same mechanism used by TFPIα to inhibit early forms 
of prothrombinase.

3.3  |  TFPI inhibition of thrombin generation in the 
cell- based model of coagulation

The cell- based model proposed by Hoffman and Monroe em-
phasizes that blood coagulation is regulated by the properties of 
the cell surfaces on which coagulation reactions occur.63 In line 
with this model, the presence of TFPIα and TFPIβ on different cell 
surfaces allows inhibition at different stages of the procoagulant 
response19 (Figure 2). TFPIβ inhibits the initiation of coagulation 
on endothelial cells that express intravascular TF following in-
flammatory stimuli or reactive oxidant stress,64 while TFPIα in the 
extracellular matrix is positioned to dampen the initiation of coag-
ulation by the TF- bearing cell that is exposed to circulating blood 
following vascular injury.4 However, TFPI is a poor inhibitor of 
TF- mediated activation of FIX and FVIII,46,47 which can diffuse to 
the surface of activated platelets accumulating at the injury site. 
The FVIIIa- FIXa catalytic complex on the platelet then activates 
FX.65 The FXa then interacts with FVa released from platelets 
to form prothrombinase.63 Because some forms of FVa released 
from platelets lack the basic region of B- domain while retaining 
the acidic region,13,66 platelet or plasma TFPIα can block the pro-
coagulant response by inhibition of early prothrombinase, thereby 
preventing the propagation of clotting by the subsequent burst 
of thrombin generation.10 There is evidence that this process is 
enhanced by interactions between TFPIα and PS that enable local-
ization of TFPIα to the platelet surface.67 Thus, TFPI prevents in-
appropriate coagulation by acting early in a procoagulant response 
on both the TF- bearing cell and the platelet.

By exerting anticoagulant activity at these early stages of the 
procoagulant response, TFPI is the primary physiological regulator 
of bleeding in hemophilia,14 and blocking TFPI activity is an ef-
fective approach for hemostatic prophylaxis in these patients.16– 18 
Several therapeutics that block TFPI have been evaluated in clin-
ical trials. An aptamer, BAX 499, which bound to K1, K3, and the 
TFPIα C- terminus, was withdrawn from development in 2012 
because it paradoxically increased bleeding frequency in people 
with hemophilia.68 This aptamer increased plasma TFPI levels up 
to 25- fold, possibly by causing release of endothelial stores of 
TFPI and/or by altering its clearance. Because the K2 domain was 
not blocked, the circulating aptamer- bound TFPI could potentially 
exert anticoagulant activity by inhibiting FXa. A monoclonal an-
tibody, BAY1093448, that bound to K1 and K2 was terminated 
in clinical development in 2020 because of thrombotic events 

in three people with hemophilia. There are two monoclonal an-
tibodies, concizumab and marstacimab, that bind to K2 and are 
currently in phase 3 clinical trials. Marstacimab was given to 58 
people with hemophilia in phase 2 studies with no episodes of 
thrombosis.69 Concizumab was given to 54 people with hemo-
philia in phase 2 studies with no episodes of thrombosis.17 Phase 
3 studies of concizumab were paused in March 2020 after three 
enrolled subjects with hemophilia had nonfatal thrombotic events. 
These patients also had preexisting risk factors and used concom-
itant hemostatic medication with FVIII or FVIIa.70 Phase 3 studies 
resumed in August 2020 after safety issues were addressed and 
guidelines for the management of bleeding episodes with concom-
itant hemostatic agents and updates to the concizumab prophy-
lactic dosing regimen were implemented.

Importantly, targeting TFPI does not alter the anticoagulant 
activity of activated protein C or antithrombin, which inhibits 
later steps of the coagulation cascade, and are still in place to limit 
thrombosis. Although inhibition of TFPI activity on both the TF- 
bearing cell and the platelet likely contributes to its efficacy in he-
mophilia prophylaxis, the cell- based model of coagulation suggests 
that diminished activation of FX on the platelet surface is a major 
contributor to bleeding in patients with hemophilia.63 In support 
of this model, inhibition of platelet TFPIα alone is sufficient for re-
storing hemostasis in a mouse model of hemophilia,71 suggesting 
that specifically targeting platelet TFPIα rather than endothelial 
TFPIβ may help to restore hemostasis while limiting the potential 
for thrombosis.

4  |  ROLE OF TF IN CELLUL AR SIGNALING

The TF coagulation pathway is directly connected to cell signaling 
by protease- activated receptors (PARs) located on the surface of 
endothelial cells and platelets within the vasculature, as well as on 
the surface of monocytes/macrophages, other immune and epi-
thelial cells in the extravascular space. PARs are activated by TF- 
associated proteases FVIIa and FXa, as well as by thrombin. The 
TF- FVIIa catalytic complex can directly activate PAR2 in a reaction 
independent of FX, and prolonged endosomal signaling through 
this pathway is dependent on the association with integrin β1 
through a binding site in the FVIIa protease domain (Figure 3).72,73 
Direct TF- FVIIa signaling through PAR2 is particularly relevant for 
extravascular processes, such as epithelial cell migration, wound 
healing responses, and tumor progression.72,74– 76 In addition, TF- 
FVIIa directly influences growth factor signaling and angiogen-
esis77,78 and alters cell- cell interactions independently of PAR2 by 
cleaving ephrin receptors.79

In a distinct signaling pathway, TF- FVIIa generated nascent prod-
uct FXa (TF- FVIIa- FXa) cleaves PAR2 in the presence of the endo-
thelial protein C receptor (EPCR).80,81 This signaling pathway plays 
a pivotal role in the innate immune system and is essential for the 
induction of interferon responses downstream of Toll- like receptor 
4 signaling.81,82 In this context, TF signaling is regulated at the level 
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of EPCR by the anticoagulant protein C pathway with FV and PS 
as cofactors.83 This PAR2 signaling pathway requires only very low 
concentrations of FVIIa80 and may therefore occur not only in intra-
vascular but also extravascular milieus when TF- expressing cells are 
exposed to exudated plasma components. Moreover, monocytes and 
macrophages autonomously synthesize FVII and FX, and macrophage 
polarization in the tumor microenvironment is critically dependent 
on macrophage FX synthesis and activation of PAR2.84 The synthe-
sis of coagulation factors by immune cells is differentially regulated. 
Whereas FVII is constitutively expressed in tissue resident macro-
phages of the peritoneal cavity and lungs,85,86 FX is transcriptionally 
induced in response to inflammatory stimuli.84 The innate immune cell 
signaling roles of the TF- VIIa complex can therefore involve either cell 
autonomous, extravascular FX synthesis or FX from plasma sources.

TF- initiated coagulation also induces procoagulant signal-
ing by thrombin activating PARs on endothelial and immune cells. 
Intravascular thrombin signaling is counterbalanced by multiple 
mechanisms, including the endothelial cell- localized anticoagulant 
protein C pathway as well as plasma anticoagulants, platelet re-
ceptors and fibrin(ogen).87 There is also expanding evidence that 
thrombin generation occurs in extravascular locations and can con-
trol stem cell activity through PAR1 signaling at steady state and 
in response to injury.88 Similarly, tissue macrophages synthesize FV 
and assemble a functional prothrombinase complex.89 No clear roles 
have emerged for TFPI in controlling these thrombin- dependent 
vascular and extravascular signaling events.

5  |  ROLE OF TFPI IN MODUL ATING  
TF-  DEPENDENT CELLUL AR SIGNALING

TFPI is a relatively weak inhibitor of TF- FVIIa.11,90 However, its af-
finity for TF- FVIIa is greatly increased by binding to PS in reactions 
that lack FX but include FIX.91 Similarly, TFPI associated with the 
matrix can support cell adhesion through interaction with TF- FVIIa 
expressed by tumor cells. Remarkably, this process studied in cell 
culture is entirely independent of FXa.76 Thus, there are no com-
pelling data that regulation of extravascular signaling functions of 
the TF- FVIIa complex are influenced by antibody blockade of TFPI 
binding to FXa.

TFPI is a potent inhibitor of the TF- FVIIa- FXa ternary com-
plex and thereby modulates cellular signaling at vascular inter-
faces.20 TFPI also decreases TF- initiated thrombin generation and 
may thereby dampen intravascular coagulation signaling mediated 
by thrombin in the context of sepsis. Indeed, leukocyte prote-
ases released in this context are known to degrade TFPI and thus 
contribute to disseminated intravascular coagulation in severe 
infections.92,93

Pathological mechanisms that release TF from the tight inhibi-
tion by TFPI are not restricted to TFPI degradation in infections. 
TF- dependent cell signaling is also stimulated in the context of au-
toimmune disease, where antiphospholipid antibodies destabilize 
the TF- FVIIa- FXa complex inhibited by TFPI. Remarkably, blocking 
TFPI with polyclonal antibodies did not trigger but rather prevented 

F I G U R E  3  Signaling and interactions of TF and TFPI. TFPIα binds coreceptors that support its cell- surface functions. Binding to GPI- 
anchored glycosaminoglycan receptors (e.g., glypicans) via the K3 domain mediates membrane association. GPI- anchored TFPIα or TFPIβ 
can translocate to sphingolipid- rich raft domains and caveolae. Binding to receptors involved in internalization and degradation of FXa (e.g., 
lipoprotein receptor related protein 1 and VLDLR) can modulate cellular responses to various stimuli. TFPIβ is a GPI anchored via its C- 
terminal domain and appears to regulate cell- intrinsic functions of TF, such as immune signaling of FXa in complex with TF- FVIIa via protease 
activated receptor (PAR) 2 in the presence of the endothelial protein C receptor (EPCR) or signaling of the TF- FVIIa associated with integrin 
receptors via PAR2 after endosomal uptake. a, active; C, carboxy; F, factor; GPI, glycophosphatidylinositol; K, Kunitz; LRP1, low density 
lipoprotein receptor- related protein- 1; TF, tissue factor; TFPI, tissue factor pathway inhibitor; VLDLR, very low- density lipoprotein receptor
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the same autoimmune signaling,7 emphasizing that TF control on 
immune cells can be achieved by alternative mechanisms in the ab-
sence of functional TFPI (e.g., by TF cellular degradation or release 
on extracellular vesicles).94

The two major TFPI isoforms distinctly modulate cell signal-
ing through their different mechanisms for cell- surface association 
(Figure 3). TFPIα binds GPI- anchored co- receptors on the cell surface, 
whereas TFPIβ is directly GPI- anchored to cellular microdomains.3,4 The 
mode for cell- surface association determines the subcellular and mem-
brane microdomain localization of TFPI isoforms, which, in turn, affects 
intracellular trafficking relevant for signaling and protein degradation. 
TFPIα also binds to transmembrane receptors mediating the cellular 
uptake and degradation of FXa (e.g., lipoprotein receptor related pro-
tein)95 or regulating angiogenesis (i.e., very low density lipoprotein re-
ceptor [VLDLR]).96 In this manner, soluble TFPIα from various sources 
may bind to target cells and modulate cellular responses. In contrast, 
cell- intrinsic functions of TF appear to be predominantly regulated by 
GPI- anchored TFPIβ and/or endogenously synthesized TFPIα tightly 
bound to the cell surface through GPI- anchored receptors.20,25,36,97

Monocytes express low levels of TF in the absence of inflam-
matory stimuli that can assemble into a TF- FVIIa- FXa complexes 
inhibited by membrane- anchored TFPI.7 Genetic evidence indicates 
that EPCR is required for the formation of the quaternary TF- FVIIa- 
FXa- TFPI complex on the monocyte cell surface.81 Antiphospholipid 
antibodies interact with EPCR and release the TF- FVIIa- FXa com-
plex from TFPI inhibition, triggering TF and PAR1/2- dependent 
procoagulant responses and pathogenic signaling.81 Thus, TFPI has 
a paradoxical prothrombotic role by priming responses in the auto-
immune antiphospholipid syndrome.7 However, genetic deletion of 
TFPI from monocytes has no apparent prothrombotic effect in other 
models of experimental thrombosis, indicating that TFPI has specific 
functions in disease pathologies that are unrelated to its physiolog-
ical regulatory roles.

Endogenously synthesized, membrane- anchored TFPI efficiently 
regulates signaling of the TF- FVIIa- FXa complex in cytokine stimu-
lated endothelial cells,20 in line with data demonstrating highly effi-
cient inactivation of cellular TF by TFPIβ.25 In contrast, exogenously 
added TFPIα appears to be relatively ineffective in blocking cell sig-
naling in comparison to suppressing TF- initiated coagulation.20 Thus, 
TFPI isoforms have different potencies in regulating TF- dependent 
cell signaling. However, loss of TFPI in endothelial cells, similar to the 
observations in monocytes, does not necessarily result in increased 
thrombosis because deletion of TFPI in endothelial cells downregu-
lates TF mRNA expression in the vessel wall.98

6  |  IMPLIC ATIONS OF TFPI LOSS 
ON SIGNALING PATHWAYS, AND 
PATHOLOGIC AL AND PHYSIOLOGIC AL 
PROCESSES

Deletion of K1 in mice causes embryonic lethality,99 implicating TFPI 
as a crucial regulator of TF activity during developmental processes. 

In addition, more detailed studies on mid- gestational lethality of 
TFPI- deficient mouse embryos demonstrate roles of TFPI in vas-
cular development and angiogenesis. TFPI deletion causes vascular 
abnormalities specifically in the central nervous system and defects 
in the cerebrovascular development are prevented by genetic de-
letion of FV,100 suggesting that TFPI is an important regulator of 
thrombin- dependent signaling events that modulate cerebrovas-
cular development. These vascular development defects cannot be 
rescued by genetic overexpression of platelet TFPIα,101 which is ef-
ficient in preventing death during early embryonic development. In 
addition, genetic reduction of TFPI expression leads to thrombotic 
perinatal lethality in mice carrying the prothrombotic FVLeiden mu-
tation,102 further emphasizing the crucial role of TFPI as a regula-
tor of the common coagulation pathway during pre-  and postnatal 
development.

The extent to which TFPI regulates vascular processes by mod-
ulating TF pathway signaling is not fully understood. TF supports 
postnatal vascular development in part through PAR2 signaling, 
and TFPI- like inhibitors specifically suppress hypoxia- induced an-
giogenic sprouting78 and tumor angiogenesis.103 Locally applied 
high concentrations of TFPI also suppress tumor growth, whereas 
FXa inhibitors were not effective in this study.103 It is conceivable 
that under pathological conditions with elevated TF levels, such as 
in cancer and pathological angiogenesis, extravascular TFPI is not 
produced at sufficiently high levels to control TF signaling and that 
these pharmacological inhibitory strategies restore functional con-
trol of increased TF expression and pathological signaling. In addi-
tion, TFPI interactions with endothelial cells modulate proangiogenic 
growth factor signaling104 and interaction of TFPI with VLDLR in-
duces endothelial cell apoptosis.96 These regulatory roles of TFPI 
have been mapped to carboxyl terminal domains of TFPIα, which 
are not directly targeted by anti- hemophilic strategies to neutralize 
TFPI’s inhibitory functions towards FXa.

TFPI degradation is observed in pathological processes. The con-
necting region between K1 and K2 is protease sensitive,93 and thera-
peutic intervention with fibrinolytics leads to TFPI degradation with 
a shift toward a procoagulant state on monocytes.105 Proteolytic 
inactivation of TFPI serves important functions in host defense 
against intravascular pathogens,106 but may ultimately lead to dis-
seminated intravascular coagulation in severe sepsis.107 Whereas 
TFPI degradation plays a role in the host defense to infection and 
inflammatory processes, loss of TFPI function leads to pathologies 
and disease particularly in the context of concomitant activation or 
upregulation of TF.

TFPI is expressed by cancer cell lines in vitro and bound to 
transmembrane syndecan- 332 or GPI- anchored glypican- 3108 re-
ceptors. Cancer cell- associated TFPI appears to play a minor role 
in regulating cancer cell TF clotting activity and rather supports 
leukemia dissemination by promoting chemokine- dependent cell 
motility in patient- derived cell lines.108 In contrast, downregula-
tion of TFPIβ enhances breast cancer cell line migration,109 sup-
porting the notion that TFPI isoforms regulate distinct aspects of 
cancer biology. Consistently, deletion of presumably membrane 



    |  1297MAST And RUF

anchored TFPI in endothelial cells enhances experimental metas-
tasis in mice.98 Thus, the role of TFPI in these processes is diverse 
and does not point to uniform functions in disease pathologies. 
TFPI also plays critical regulatory roles within the vessel wall 
and TFPI deletion exacerbates atherosclerosis,110 whereas over-
expression in smooth muscle cells prevents atherosclerosis and 
injury- induced hyperplasia in mouse models.111,112 There is no ev-
idence that the intravascular neutralization of TFPI for improved 
hemostasis in hemophilia influences these regulatory functions of 
vessel wall expressed TFPI in vascular inflammation.

7  |  CONCLUSIONS

Structural differences in the C- terminal regions of TFPIα and TFPIβ 
splice isoforms affect how they localize to cells or circulate in blood 
and regulate the coagulation cascade. The C- terminal region of 
TFPIα binds tightly to nascent forms of FVa, allowing for inhibition 
of prothrombinase, in a reaction that also involves binding of K2 to 
the FXa active site. The C- terminal region of TFPIβ encodes a GPI- 
anchor attachment sequence localizing it to the cell surface where 
it is a highly effective inhibitor of TF- FVIIa complexes that assemble 
on the same cells. Because TF- FVIIa can be inhibited by K1 of TFPIα 
when bound to PS in the absence of FXa, therapeutic strategies di-
rected to K2 may avoid, in part, the crucial function of TFPI in inhib-
iting TF- dependent coagulation reactions and cell signaling.

Directly or indirectly membrane anchored forms of TFPI regu-
late activity of TF- FVIIa and the TF- FVIIa- FXa coagulation initiation 
complex and their functions in cell signaling. TF- FVIIa regulates 
cellular functions occurring outside the vasculature, such as angio-
genesis, tumor biology, and inflammation. In these extravascular 
processes, TFPI is particularly important for control of the TF- FVIIa- 
FXa coagulation initiation complex. The TFPI- TF- FVIIa- FXa complex 
has remarkable stability and forms rapidly to control excessive sig-
naling of TF; however, other mechanisms may regulate TF on im-
mune or vascular cells, and anti- TFPI antibodies do not act within 
the extravascular space.

Within the intravascular space, TFPI exerts anticoagulant activ-
ity early in the coagulation cascade, before thrombin is generated, 
and at steps that do not require FVIII or FIX. Inhibition of TFPI allows 
amplification of coagulation through pathways that bypass FVIII 
and FIX. Therefore, TFPI is an attractive target for management of 
hemophilia- related bleeding. Currently, several anti- TFPI antibodies 
that target the intravascular activity of TFPI are in clinical trials for 
hemophilia prophylaxis. They can be dosed subcutaneously and ef-
fectively prevent bleeding episodes in patients with hemophilia A 
and B, with or without inhibitors.
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