
PH
YS

IC
S

Observing the loss and revival of long-range phase
coherence through disorder quenches
Benjamin Naglera,b, Sian Barbosaa,b, Jennifer Kocha,b, Giuliano Orsoc,1 , and Artur Wideraa,b,1

aDepartment of Physics, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany; bState Research Center for Optics and Material Sciences
OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany; and cLaboratoire Matériaux et Phénomènes Quantiques, Université de
Paris, CNRS, F-75013 Paris, France

Edited by Vanderlei Bagnato, Instituto de Física de São Carlos, Universidade de Sao Paulo, Sao Carlos, Brazil; received June 15, 2021; accepted November
18, 2021

Relaxation of quantum systems is a central problem in nonequi-
librium physics. In contrast to classical systems, the underlying
quantum dynamics results not only from atomic interactions but
also from the long-range coherence of the many-body wave
function. Experimentally, nonequilibrium states of quantum flu-
ids are usually created using moving objects or laser potentials,
directly perturbing and detecting the system’s density. However,
the fate of long-range phase coherence for hydrodynamic motion
of disordered quantum systems is less explored, especially in three
dimensions. Here, we unravel how the density and phase coher-
ence of a Bose–Einstein condensate of 6Li2 molecules respond
upon quenching on or off an optical speckle potential. We find
that, as the disorder is switched on, long-range phase coherence
breaks down one order of magnitude faster than the density of
the quantum gas responds. After removing it, the system needs
two orders of magnitude longer times to reestablish quantum
coherence, compared to the density response. We compare our
results with numerical simulations of the Gross–Pitaevskii equa-
tion on large three-dimensional grids, finding an overall good
agreement. Our results shed light on the importance of long-
range coherence and possibly long-lived phase excitations for the
relaxation of nonequilibrium quantum many-body systems.

ultracold quantum gases | disorder | nonequilibrium dynamics | interacting
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Macroscopic quantum phenomena such as superconductivity
and superfluidity are central to our understanding of many-

body quantum systems and play an important role in emerging
quantum technologies (1). Their fascinating properties are tightly
linked to the existence of a global wave function

ψ =
√
ne iφ, [1]

with n being the density and φ being the quantum phase. Long-
range phase coherence, that is, a fixed phase relation between far
distant locations in the quantum system, is crucial for establishing
superfluid properties in interacting systems (2). Microscopically,
a large number of particles occupy the same quantum state
phase coherently, as first recognized by Fritz London providing
a description of the properties of superfluid 4He (3), which has
been successfully applied to the theoretical understanding and
experimental control of Bose–Einstein condensates (BEC) in
dilute atomic gases (4). The macroscopic quantum phase φ has
been revealed in numerous interference experiments on BECs,
including measurements of the first-order correlation function
(5–8), its dynamics (9–11) in low-dimensional gases, and its statis-
tics in disordered potentials (12). Moreover, it has been used as
evidence for superfluidity in optical lattices (8) and in rotating
traps generating vortices (13, 14).

The relaxation of such excited states is of central importance
to our understanding of the nexus of superfluid and macro-
scopic realms, such as superfluid helium flowing along rough
surfaces. For superfluid temperatures far below the transition
point, it has been predicted that relaxation should occur free of
dissipation as Kolmogorov-type turbulence (15). Experimentally,

quantum dynamics of superfluids out of equilibrium were stud-
ied in various nonequilibrium realizations of superfluid helium
(16–18), but also in turbulent relaxation of driven, ultracold
quantum gases (19–21). However, different from interference of
one-dimensional (1D) or 2D quantum fluids, the role of long-
range phase coherence in nonequilibrium quantum dynamics
and hydrodynamics is challenging to access experimentally for
3D systems. Quenches, that is, sudden changes of a system
parameter, have proven to be a powerful tool for studying the
nonequilibrium response of quantum systems. Examples include
the collapse and revival of the matter wave field of a BEC
(22), the transport of atoms in optical lattices (23, 24), and the
response of quasi-particles upon a quench of interaction strength
(25). Beyond spatially homogeneous or periodic quenches, lat-
tice systems have also been quenched into disorder, and the
response was interpreted to show signatures of a Bose glass
phase (26). However, the behavior of long-range phase coher-
ence following a quantum quench was not investigated in these
works.

Here, we study the response of a BEC to quenches of an optical
disorder potential. Recording the in situ density distribution and
the expansion dynamics upon releasing the system from the trap,
we can independently measure the responses of density and long-
range phase coherence to the perturbation. Experimentally, we
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Fig. 1. Schematic illustration of the experimental setup and measurement
sequences. (A) Experimental setup. The sample (yellow ellipsoid) is trapped
in a superposition of an optical dipole trap (blue tube) and a magnetic saddle
potential. The speckle beam (green volume) produces randomly distributed
anisotropic grains. Insets show a section of the speckle intensity distribution
in the x–y plane and an in situ absorption image of a BEC in disorder.
(B and C) Sequences for quenches into and out of disorder, respectively. Blue:
optical dipole trap depth; green: disorder strength; red: imaging pulse. For
measurements probing the expansion dynamics, the optical dipole trap and
disorder potential are instantaneously extinguished, and the gas is allowed
to expand in the saddle potential for a variable time τ before the density
distribution is recorded. The density dynamics are recorded in situ, that is,
with τ = 0.

prepare quasi-pure molecular BECs of typically 4× 105 6Li2
molecules in an elongated harmonic trap (Fig. 1) using stan-
dard techniques of laser and evaporative cooling (Materials and
Methods). The trapping potential is a superposition of an optical
dipole trap and a magnetic saddle potential, the latter being
anticonfining in the z direction. The trapping frequencies are
(ωx ,ωy ,ωz ) = 2π × (164, 22.6, 107)Hz, leading to typical peak
densities of n0 = 3.7× 1012 cm−3 at the cloud center. We tune
the interaction utilizing a magnetic Feshbach resonance, enabling
us to adjust the s-wave scattering length a between the molecules
(27). We use the gas parameter n0a

3, which relates a to the inter-
molecular distance ∝ n

−1/3
0 , to quantify the interaction strength.

Subsequently, a repulsive optical speckle disorder potential V (r)
composed of 532-nm laser light and with a typical grain size
η2
x ,y × ηz = (750 nm)2 × 10μm is superimposed on the cloud,

where ηx ,y and ηz are the correlation lengths along the respective
directions (SI Appendix and 28). We characterize the disorder
strength by its spatial average 〈V 〉, which also coincides with the
SD

√
〈V 2〉 − 〈V 〉2 of the distribution.

The dynamics of a condensate in a speckle potential was first
addressed experimentally (29) and theoretically (30) for elon-
gated samples. The introduction of the random potential affects
the BEC in two ways. First, the density distribution n readjusts to
the altered external potential in order to minimize the energy of
the system. Second, the phase is locally and dynamically shifted by
Δφ(r) = V (r)t/� (31), where � is the reduced Planck constant
and t is the illumination duration. Importantly, for quantum
fluids, both effects are coupled via the velocity field (31)

v =
�

m
∇φ, [2]

because a phase gradient is the source of a flow of density
current nv. The condensate can react to a spatial perturbation

on a length scale given by the healing length ξ = 1/
√
8πn0a . In

our experiment, the healing length at the trap center is below
but of the order of the disorder grain size for all interaction
strengths considered (SI Appendix). Therefore, the condensate
wave function resolves the spatial fluctuations of the speckle
amplitude (32).

Density versus Phase Response
To unravel how density and long-range phase coherence relax
under a disorder quench, we perform two different kinds of
experiments. First, we measure the in situ density distribution
n(x , y), column-integrated along the z direction via resonant
absorption imaging. Molecules are repelled from the regions of
large potential, leading to spatial density variations, albeit no
total fragmentation, the classical percolation threshold being far
below the chemical potential (33). We then quantify the degree
of density variations of these images as

σ =
√

〈Δn2〉 − 〈Δn〉2, [3]

where Δn = n − nfit is the difference between n and a fitted
2D Thomas–Fermi profile nfit, and the brackets denote averag-
ing over all pixels of the absorption image where nfit > 0 (see
Materials and Methods). In general, σ is nonzero even in the
absence of disorder, since the finite imaging resolution, as well
as thermal effects, cause deviations of the density distribution
from the expected Thomas–Fermi profile. In the following, we
subtract this contribution and focus on the disorder-induced
density response. The disorder effect on the density at long
times is shown in Fig. 2A, where the speckle is either introduced
adiabatically, within 50 ms, or through a quench. In the first case,
the degree of density variations σ increases monotonously with
the disorder strength, while, in the second case, it grows faster for
weak disorder but then saturates once the mean speckle potential
〈V 〉 approaches half the chemical potential μ. Below, we use the
time evolution of σ to quantify the response of the cloud’s density
to the disorder quench.

Second, we investigate the long-range phase coherence re-
sponse by studying the expansion of the quantum gas upon re-
lease from a confining potential. The ensuing dynamics is entirely
different from, for example, a noninteracting, thermal cloud. The
existence of a wave functionψ implies collective dynamics similar
to the hydrodynamic behavior of frictionless fluids (31, 34). Such
coherent hydrodynamics leads to an inversion of the cloud aspect
ratio during expansion from an anisotropic trap, which is a strong
indication for BEC (4). Coherent hydrodynamics originates from
the existence of a macroscopic wave function, hence long-range
coherence, and facilitates collective behavior such as quadrupole
excitations. By contrast, the collisional hydrodynamic behavior
in nondegenerate systems with strong interactions (35, 36), such
as unitary gases, is caused by frequent scattering events during
expansion and is therefore not connected to a macroscopic wave
function.

Expansion is initiated by extinguishing the dipole trap beam
and letting the cloud evolve in the stationary saddle potential.
Coherent hydrodynamics manifests itself as a sharp peak in the
aspect ratio during expansion (Materials and Methods), whose
magnitude we use as a measure of long-range coherence, sim-
ilar to a method proposed in ref. 37. Here, the aspect ratio is
Rx/Ry , with Rx and Ry as the Thomas–Fermi radii in x and y
directions obtained from fits to the 1D integrated column density
distributions n. Fig. 2B shows the dynamics of the aspect ratio
for two cloud temperatures T below and above Tc, the critical
temperature for condensation. The aspect ratio of a quasi-pure
BEC with T � Tc features an initial exponential growth (due
to the saddle point confinement) followed by a pronounced peak
with a value around 10 at roughly a quarter trapping period along
the long axis of the cloud. This behavior is attributed to the onset
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Fig. 2. Observables used to quantify the density and long-range phase coherence response upon disorder quenches. (A) Degree of density variation σ

in the long time limit versus disorder strength, in units of the unperturbed chemical potential μ of the condensate, for n0a3 = 1.1 × 10−2; the speckle is
introduced both adiabatically (blue) and through a quench (orange). Insets show absorption images for zero (Left) and maximum (Right) disorder strength,
image sizes are 80 μm × 260 μm. The error bars are SDs of five repetitions and different disorder realizations. (B) Evolution of the cloud aspect ratio for
n0a3 = 1.1 × 10−2 and temperatures above (purple) and below Tc (green) in the absence of disorder. The solid (dashed) line depicts the calculated trajectory
for coherent hydrodynamic (ballistic) expansion (Materials and Methods). For short times, the measured trajectory for T < Tc agrees well with the calculated
one. For longer times, imaging aberrations due to the accelerating motion of the cloud along the imaging axis distort the measured aspect ratios, but
qualitative agreement remains. Insets show absorption images for the case T < Tc after 0, 13, and 23 ms of expansion, image sizes are 270 μm × 270 μm.
(C) Condensate fraction and peak aspect ratio versus reduced temperature for n0a3 = 0.4 × 10−3 in the absence of disorder. Here, Tc is the critical
temperature of a noninteracting gas in a harmonic trap (31). The dotted line serves as a guide to the eye.

of quadrupole oscillations, indicating long-range coherence. This
is emphasized by Fig. 2C, which directly connects the onset of
coherent hydrodynamics, quantified by the peak aspect ratio
during expansion, with the appearance of a condensate fraction
in the cloud, and, therefore, of a macroscopic wave function. By
contrast, the aspect ratio of a thermal cloud, for which T > Tc,
varies slowly. The peak value of 2.5 is larger than 1, which is
the expected value for a gas with negligible interactions. We
attribute this to a short initial phase of collisional hydrodynamics
(38) due to the relatively large s-wave scattering length of a =
2706 a0, where a0 is the Bohr radius. We will use the peak aspect
ratio to quantify the breakdown and revival of long-range phase
coherence in the system after the disorder quench.

We parallel these two experimental investigations by large-
scale numerical simulations of the Gross–Pitaevskii (GP)
equation (39, 40) for a 3D interacting quantum gas at zero
temperature (see Materials and Methods for details). The
numerics takes into full account the specific properties of the
speckle pattern used in the experiment. We emphasize that
the study of the hydrodynamic expansion of the condensate
is extremely challenging, because the initial wavefunction is
affected by the disorder, implying that the analytical scaling
ansatz (41) breaks down, and the numerical solution of the GP
equation in the saddle potential requires huge grids. From the
numerical simulations, we extract time-resolved quantities after a
disorder quench, namely, the widths of the cloud and the column-
integrated density, to directly compare with the experimental
data. We obtain further insight into the many-body relaxation
dynamics from the spatial and temporal dependence of the con-
densate phase. Although this quantity is not directly accessible
in our experiment, the study of its autocorrelation function (see
Eq. 12 in Materials and Methods) provides a natural explanation
of the characteristic time scales for the loss and revival of long-
range phase coherence observed in the experiment.

Response to Quenches into Disorder
First, we focus on the system’s response upon quenches into
disorder, tracing the decay of the unperturbed BEC properties.
We instantaneously (< 1μs) apply the speckle to a BEC for a
time τon (Fig. 1B). The density response is evaluated by imaging
the cloud in situ after τon and recording the emerging density
variations σ(τon). For the coherence response, the dipole trap is
extinguished after τon, and we record the peak aspect ratio during
expansion as a function of τon.

Typical density and coherence response dynamics upon
quenches into disorder are shown in Fig. 3. Globally, the cloud
size (Fig. 3A) exhibits an initial steady growth along the strongly
confined x axis, while the weakly confined y axis is almost
unaffected. This effect, which is well reproduced by our numerics,
originates from the fact that atoms are pushed off by the repulsive
speckle potential, and, due to the small Thomas–Fermi radius
Rx = 18.5μm, they cannot rearrange along this axis without
increasing the system size.

By contrast, both phase and density variations respond much
faster to the disorder quench (Fig. 3B). Long-range coherence
rapidly disappears with increasing illumination duration τon,
while the density variations develop approximately one order of
magnitude slower than the coherence responds. We find this be-
havior to prevail for all parameters studied here. In the following,
we denote the half-life period τ1/2 as the characteristic time after
which density or coherence response have reached half their final
value (Materials and Methods). In Fig. 3C, we summarize the
half-life periods as a function of disorder strength. We find that
the half-life periods decrease with disorder strength. Besides, we
have investigated the influence of interaction strength on the
dynamics and found slightly larger response times for decreasing
interaction strength (SI Appendix).

An intuitive picture of the underlying mechanisms can be
obtained from simple energy arguments (see Materials and Meth-
ods for details). For the density, after switching on the speckle,
the random potential causes a spatially varying accumulation of
phase and, therefore, a local velocity field according to Fig. 2.
We are interested in the typical time tdon after which the flow
has traversed a given distance, which we set to the resolution
of our imaging system α= 2.2μm. Thus, we estimate the mean
velocity from the average gradient ∝ 〈V 〉/ηx ,y of the local dis-
order potential, yielding tdon ∝

√
αηx ,y/〈V 〉. This time scale is

indicated in Fig. 3C as a solid blue line. Furthermore, we at-
tribute the breakdown of coherent hydrodynamics to the phase
imprint onto the BEC by the disorder potential, which is given by
Δφ(r) = V (r)τon/�. The phase pattern changes on length scales
of the disorder correlation length, which is much smaller than
the size of the quantum gas, and roughly a factor of 2 larger than
the healing length of the condensate. Thus, the quench initiates
a rapid and fine-grained phase evolution, eventually leading to
dephasing between different locations within the cloud. From
the mean phase difference 〈δφ〉= 〈V 〉τon/� between two points
in the BEC, we deduce the time scale for breakdown of coher-
ent hydrodynamics thon ∝ �/〈V 〉. This time scale is indicated in
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Fig. 3. Response of a quantum gas upon quenches into disorder. Symbols refer to experimental data, while dashed lines represent numerical results from
the GP equation. (A) Time-resolved widths of the cloud, showing the broadening of the density distribution along the strongly confined axis. (B) Density
response (blue) and peak aspect ratio during expansion (orange) as a function of the exposure time τon, based on a time series of quantum gas images
for 〈V〉/μ = 1 and n0a3 = 1.1 × 10−2. Solid black line are fits to the data (Materials and Methods). The error bars are SDs of five repetitions and different
disorder realizations. (C) Half-life periods of emerging density variations (blue) and the breakdown of coherent expansion (orange) for variable disorder
strength and n0a3 = 1.1 × 10−2, extracted from decay curves as B; the arrows point at the data points taken with the same experimental parameters as A
and B. Error bars denote fitting uncertainties. The solid lines depict td

on (blue) and th
on (orange) as defined in the text. The th

on incorporates the difference
between the initial and final aspect ratio, which approaches zero for vanishing disorder strength (Materials and Methods). The orange shaded area displays
the decay times of the phase correlation length shown in F, where the gray lines indicate two different threshold values used to extract the decay time. From
the simulated wave function dynamics, we extract (D) the integrated column density and (E) the phase in the central plane at different times. (F) Normalized
phase correlation length, extracted from column density and phase distributions. The arrows indicate the times τon for which the column density and phase
distributions are shown in D and E. (G) The computed density responses at equilibrium and in the steady state (dashed lines) compared with the predictions
based on the LDA for a gas at equilibrium at T = 0 and T = 100 nK (solid lines).

Fig. 3C as a solid orange line and reproduces well the trend of
the experimental data.

Next, we compare our GP numerics with the experimental
data. We obtain time-resolved column density and in-plane phase
distributions, as shown in Fig. 3 D and E, respectively. The
density response is then computed by first convolving the density
data with a Gaussian function of width 2.2 µm, to account for
the limited resolution of the imaging system (SI Appendix). The
result agrees reasonably well with the measured data, although
numerics predicts a larger value of σ in the steady state, which,
in turn, leads to a larger half-life period, as shown in Fig. 3 B
and C. In Fig. 3G, we plot the density response as a function
of the disorder strength, calculated both at equilibrium and in
the steady state, following the disorder quench. The obtained
results are in good agreement with the experimental data shown
in Fig. 2A. A closer comparison reveals that the numerics over-
estimates σ, especially when the disorder is strong. We attribute
this residual difference to finite temperature effects, which are
neglected in the GP equation. To understand the role of tem-
perature, we compute the density response of the disordered
gas at equilibrium via the local density approximation (LDA),
both at T = 0 and at T = 100 nK, by using the Hartree–Fock
approach (see Materials and Methods). The results are plotted
in Fig. 3G with solid lines. Two comments are in order here.
First, while, for weak disorder, the LDA result for the disorder-
induced density response at zero temperature is indistinguishable
from the prediction of the GP equation, for strong disorder, the

LDA result falls below it. Indeed, LDA underestimates the atom
density in the center of the trap, which contributes mostly to
the signal, while it overestimates the density at the periphery.
Second, even if the gas is in the quantum degenerate regime,
thermal effects can broaden the density distribution and deplete
the density response.

Let us now discuss the GP results for the hydrodynamic ex-
pansion of the BEC, after exposure to the speckle potential.
The calculated peak aspect ratio and the associated half-life
period, displayed in Fig. 3 B and C, respectively, reproduce the
experimental trend, although with much faster decay of long-
range phase coherence for short illumination times, because the
GP numerics does not account for imaging aberration effects.
Notice that the difference in the peak aspect ratio observed for
large τon is mainly due to the large in-plane grid spacings used
for the expansion dynamics (SI Appendix). Notwithstanding, the
separation of time scales for density and phase relaxations is
recovered, and even accentuated, by the GP numerics.

The disorder-induced loss of long-range coherence can be
directly related to the scrambling of the condensate phase be-
fore the expansion. From the snapshots of density and phase
distributions as in Fig. 3 D and E, we extract the time-resolved
phase correlation function (Materials and Methods) of the BEC.
The result is shown in Fig. 3F. We see that the phase correlation
length σφ drops around τon = 20μs, which roughly corresponds
to the observed half-life period in Fig. 3C. We repeat the analysis
for different disorder strengths. We consider a range of phase
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correlation lengths between 0.2 and 0.8 of the maximum value
and extract the time scale on which these correlation lengths are
reached, indicated by an orange shaded area in Fig. 3C. The
numerical values yield, indeed, the correct order of magnitude
for the time response. We conclude that the density and phase
responses of the quantum gas to disorder quenches can be un-
raveled by the two measurement methods. Overall, the loss of
long-range phase coherence is typically one order of magnitude
faster than the density relaxation.

Response to Quenches out of Disorder
Next, we consider the case when the quantum system relaxes after
release from an initially disordered state and ask the question
regarding when an unperturbed density distribution and long-
range coherence are reestablished. Quenches out of disorder
are realized by slowly introducing the speckle during a 50-ms
linear ramp, in order to minimize excitations in the gas, and
subsequently waiting for 100 ms to let it equilibrate. Then we
suddenly extinguish the speckle and wait for a variable time τoff ,
during which the system can relax (Fig. 1C), before probing the
density variations or expansion dynamics.

For the density response, we do not find any dependence of the
half-life period τoff

1/2 ≈ 250μs on either disorder or interaction
strength (Fig. 4 B and F). The final value of σ after the longest
measured wait time of τoff = 1ms is up to 0.1× 109 cm−2 above
its value in the clean case for large disorder strengths (Fig. 4A).

By contrast, we find that it takes two orders of magnitude
longer to restore long-range phase coherence, with a peak aspect
ratio comparable in magnitude to the disorder-free case. This
is consistently observed for all disorder strengths applied, as

shown in Fig. 4B. Here, too, simple arguments allow relating the
observed time scales to the energy scales of the system. The long
time to reestablish coherent hydrodynamics can be compared
to the longest time scale in the system, that is, the time thoff a
signal needs to traverse the long axis of the cloud with the speed
of sound, thoff = 2Ry/vs, where Ry is the largest Thomas–Fermi
radius of the BEC, and vs =

√
μ/m is the maximum speed of

sound at the center of the cloud. Furthermore, we observe that
both the density and the coherent response are rather indepen-
dent of interactions in the gas (Fig. 4F). Importantly, there are no
significant particle losses during τoff (SI Appendix). This excludes
speckle-induced heating and subsequent evaporation as the ori-
gin of the breakdown and revival of coherent hydrodynamics. In
the transient regime after the quench, the widths of the BEC
along the x and y directions remain unchanged. The numerics
shows that the BEC shrinks along the z direction, where the
disorder potential varies slowly.

The GP simulations predict a rapid decay for the density
response (Fig. 4A), which ultimately saturates to a nonzero value,
as also found in the experiment. For sufficiently strong disorder
(〈V 〉/μ� 0.5), the calculated density response features large-
amplitude oscillations in the long time limit (after 1 ms), which
are absent in the experimental data. The origin of this effect can
be traced back to a corresponding oscillation of the Thomas–
Fermi radii, especially along the strongly confined x axis. The
compression of the cloud leads to an enhancement of the peak
atom density, which, in turn, causes an increase in the density
response. In the experiment, this collective mode is probably
damped by the coupling between the BEC and the thermal
component of the cloud (42). For this reason, the calculated

A

D E F

B C

Fig. 4. Response of a quantum gas upon quenches out of disorder. Symbols refer to experimental data, while dashed lines represent numerical results
from the GP equation. (A) Quantum gas dynamics showing decaying density variations (blue) and revival of coherent hydrodynamic expansion (orange) for
〈V〉/μ = 1 and n0a3 = 1.1 × 10−2. The error bars are SDs of five repetitions and different disorder realizations. The black lines are fits to the experimental
data (Materials and Methods). (B) Half-life periods of such dynamics as a function of disorder strength for a gas density of n0a3 = 1.1 × 10−2, where the
error bars denote fitting uncertainties. For comparison, the solid line depicts th

off as defined in the Materials and Methods, indicating the time scale to cross
the long axis of the BEC with the speed of sound. Clearly, the time scale for revival of quantum hydrodynamics is much longer than the time scale th

off.
Here, th

off incorporates the difference between the initial and final aspect ratio. (C and D) Three different snapshots of the numerically simulated column
density and in-plane phase distribution, respectively, following the quench. (E) Normalized phase correlation length σφ extracted from the two time-resolved
distributions in C and D, showing the absence of long-range coherence within the simulated times. The arrows in E indicate the times τoff for which the
column density and phase distributions are shown in C and D. (F) The half-life periods for variable interaction strength and 〈V〉/kB = 145 nK, where the
solid line again indicates the time scale th

off for comparison.
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half-life period for the density response (Fig. 4B) is slightly larger
than in the experiment. On the other hand, the calculation of
the peak aspect ratio for values of τ off of the order of tenths or
hundreds of milliseconds is numerically heavy, due to growing
errors, which affect the subsequent expansion dynamics. For this
reason, we leave it for future studies. In Fig. 4 C and D, we display
some snapshots of the column density and phase distributions
following the disorder quench, from which we extract the phase
correlation function (Fig. 4E). Within the simulated time inter-
vals, we observe a progressive locking of the local condensate
phase along the x axis. By contrast, the phase varies rapidly
along the weakly confined y direction, signaling the presence of
phonon-like excitations.

Conclusions
We have performed an experimental and numerical study of the
far-from-equilibrium dynamics of a molecular BEC subject to
a quench of the disorder potential. We have found that density
and long-range phase coherence respond to the perturbation
on different time scales. Specifically, the long times needed to
restore long-range phase coherence might indicate the decay
of a complex phase pattern toward an ordered phase, where,
for instance, phase boundaries or vortices originating from the
disorder quench are topologically robust and need a relatively
long time to decay.

In the future, it will be interesting to study the dynamical
response of quantum gases along the cross-over from a BEC to
a Bardeen–Cooper–Schrieffer (BCS) type superfluid to explore
the impact of quenched disorder on resonantly interacting super-
fluids. Our system is also ideally suited to follow further the phase
dynamics and its dependence on quench parameters. Finally,
our work calls for more refined numerical simulations of the
dynamics of the disordered BEC, including finite temperature
effects.

Materials and Methods
In the following, details on the experimental procedure and the theoretical
models, as well as additional data, are given.

Setup and Sequence. A general overview of our experimental apparatus
is presented in ref. 45. We prepare quantum gases in the BEC–BCS cross-
over regime by forced evaporative cooling of fermionic 6Li atoms in an
equal mixture of the two lowest-lying Zeeman substates of the electronic
ground state 2S1/2. Evaporation takes place in a hybrid magnetic–optical
trap at a magnetic field of 763.6 G on the repulsive side of a Feshbach
resonance centered at 832.2 G (46), where atoms of opposite spin form
bosonic molecules that eventually condense into a BEC. After evaporation,
the sample is held at constant trap depth for 250 ms to ensure thermal
equilibrium before the magnetic field is linearly ramped to its final value
during 200 ms. We employ resonant high-intensity absorption imaging (47)
to extract the column density distribution in the x–y plane. From bimodal fits
to the in situ density distribution (48) at 680 G, we are not able to discern a
thermal fraction.

This picture directly connects our observation to the recently reported ab-
sence of hydrodynamic behavior in BECs, where turbulence was introduced
by applying a spatially homogeneous, oscillating force (21, 43). Numerical
simulations show that random phase imprints, spatially varying on a length
scale slightly larger than the healing length, also result in turbulent flow
(44). Turbulence and accompanying vortices can be rather persistent, with
lifetimes exceeding several hundred milliseconds (14, 21). This suggests
that the phase dynamics ensuing after a disorder quench might generate
turbulent flow that takes a relatively long time to decay before long-range
phase coherence is established. The fact that we do not see a sign of this in
the density distributions for times longer than ∼ 1 ms after quenches might
be explained by the limited optical resolution of α = 2.2 μm of our imaging
system and the integration of the density along the z axis. In turbulent flow,
an energy cascade (21) could transfer excitations to smaller length scales we
cannot resolve.

The hybrid trap consists of an optical dipole trap and a magnetic saddle
potential, which provides weak (anti) confinement in (z) x and y directions,
whereas the optical trap strongly constrains the cloud along x and z. Since

the saddle potential is an accessory to the magnetic field used to address
the Feshbach resonance, its curvature depends on the field magnitude. For
all experiments presented here, the combined trapping frequencies of the
optical and magnetic trap are ωx = 2π × 164 Hz and ωz = 2π × 107 Hz. ωy

is listed in SI Appendix, Table S1 for the different magnetic fields addressed.
The speckle potential is created by passing a laser beam of wavelength

532 nm through a diffusive plate and focusing the light, using an objective
with numerical aperture 0.29, onto the atoms. They experience a repulsive
and spatially random (but temporally constant) dipole potential V, which we
characterize by its average 〈V〉 at the focal point of the objective. The typical
grain size of the speckle is given by the Gaussian-shaped autocorrelation
function of the potential with 1/e widths (correlation lengths) ηx,y = 750 nm
transversely to and ηz = 10 μm along the beam propagation direction. As
the speckle beam has a Gaussian envelope with waist 850 μm, the disorder
potential is slightly inhomogeneous, with less than 5% variation of 〈V〉
across the typical cloud size. We change the specific disorder realization by
slightly rotating the speckle pattern as a whole between repetitions. For that
reason, the diffusive plate is attached to a motorized rotation mount. This
allows us to measure disorder-averaged quantities that are independent of
the microscopic details of any specific disorder realization. Switching on and
off the speckle potential and letting the BEC equilibrate subsequently, we
do not find a measurable increase of temperature.

Measurement of Density Variation. We quantify the degree of density varia-
tion of a measured column density distribution n as σ =

√
〈Δn2〉 − 〈Δn〉2

with Δn = n − nfit, see Fig. 5. Here nfit is a smooth, two-dimensional
Thomas–Fermi profile

nfit ∝
{

p3/2 p > 0

0 else,
[4]

with p = 1 − (x/Rx)
2 − (y/Ry)

2, fitted to n. The brackets denote averaging
over all pixels with nfit > 0. Due to imaging aberrations and inhomo-
geneities of the imaging setup, σ is larger than zero even for density profiles
without disorder. We correct for that by subtracting this offset.

To extract the half-life period from the density response dynamics (Fig.
2A), we fit the time series with a Gompertz function ∝ exp(−b exp(−ct))
(49). The half-life period is obtained by calculatingτ1/2 = − log(log(2)/b)/c,
where log is the natural logarithm.

Cloud Expansion into a Saddle Potential. The time evolution of a BEC with ini-
tial density distribution n(r, t = 0) in a harmonic trap with time-dependent
frequencies ωi(t) (i = x, y, z) can be described in terms of a scaling transform
n(r, t) = n(x/bx , y/by , z/bz, t)/bxbybz (41). The scaling parameters bi(t) are
obtained from the solution of

b̈i = −ω
2
i (t)bi +

ωi(0)
2

bibxbybz
[5]

with boundary conditions bi(0) = 1 and ḃi(0) = 0. For our system,
(ωx(0),ωy(0),ωz(0)) = 2π × (164, 22.6, 107)Hz for 763.6 G. With decreas-
ing magnetic field, ωy(0) also decreases slightly (SI Appendix, Table S1),
while ωx(0) and ωz(0) are solely determined by the optical trap.
Upon extinction of the dipole trap at t = 0, the trapping frequencies
instantaneously take on the values ωx,y,z(t) = ωy(0),ωy(0), i

√
2ωy(0).

A B C

Fig. 5. Calculation of density variation σ from an exemplary density profile
obtained at interaction strength n0a3 = 1.1 × 10−2 and disorder strength
〈V〉/μ = 1.2. (A) Measured density distribution n. (B) Fitted Thomas–Fermi
profile nfit. (C) Difference Δn = n − nfit in the region where nfit > 0.
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Fig. 6. Scaling parameters and aspect ratio for coherent hydrodynamic
(solid lines) and ballistic (dashed lines) expansion into the saddle potential
for a magnetic field of 763.6 G in our setup.

The imaginary frequency reflects the anticonfining nature of the saddle
potential along z. Note that Eq. 5 neglects the contribution of the quantum
pressure ∝ ∇2√n (31). Fig. 6 shows the dynamics of the scaling parameters
during expansion. The reduction of the trapping frequency along the x
axis causes an initial rapid expansion of the cloud in this direction and
a concomitant contraction along the y axis, leading to the inversion of
the aspect ratio. This effect is further amplified by the presence of the
saddle potential along the z axis, stretching the cloud ever increasingly. In
contrast, a noninteracting cloud does not exhibit collective behavior, and
each particle escapes with its momentary velocity at the time of release. This
facilitates an analytical description of such ballistic expansion dynamics in
terms of a scaling transform (4); the corresponding trajectories are displayed
in Fig. 6. The most distinct feature of hydrodynamic expansion, as compared
to ballistic expansion, is the contraction and subsequent expansion of the
cloud along its initially longer axis, causing an inversion of the aspect
ratio.

Numerical Simulations of the Experiment.
Modeling the disorder. The disorder potential used in the experiment
is a single, blue-detuned, anisotropic speckle with an on-site probability
distribution given by the Rayleigh law, P(V) = e−V/〈V〉Θ(V)/〈V〉, where
Θ(x) is the Heaviside function. The speckle pattern is generated by a laser
beam parallel to the z axis and is characterized by the spatial correlation
function (50)

C(r) =
〈V(r)V(0)〉
〈V2(0)〉

=

∣∣∣∣ f(r)

f(0)

∣∣∣∣2 , [6]

where

f(r) =
∫ π

0
e

i2π z
λL

cos θ
J0

(
2π

ρ

λL
sin θ

)
h(θ) sin θdθ. [7]

Here, λL = 532 nm is the laser wavelength, J0(x) is the zero-order Bessel
function, and ρ =

√
x2 + y2. The function h(θ) in Eq. 7 depends on the

specific experimental setup. Following ref. 51, we write it as

h(θ) = exp

(
−

2 tan2 θ

θ2
0

)
Θ(tan θmax − | tan θ|), [8]

where θmax defines the maximal numerical aperture NA = sin(θmax) = 0.29
of the objective, while θ0 is a free parameter. Its specific value is fixed to
reproduce the measured correlation length ηx,y = 750 nm of the speckle in
the x–y plane, which is defined as C(x = ηx,y , 0, 0) = 1/e. By substituting
Eq. 8 into Eq. 7 and carrying out the numerical integration over the angle,
we find that this condition is satisfied for θ0 = 0.25.

The speckle potential has been generated numerically on a 3D grid with
uniform spacings Δx = Δy = Δz = 0.3λL. This is done by first generating,
at each site j of the grid, a complex field Ej , whose real and imaginary parts
are uncorrelated normally distributed random variables with zero mean and
unity variance. The total electric field at position r is obtained by convolving
the random field with an appropriate mask P(k) in Fourier space (33),

E(r) =
∑

k

E(k)P(k)eik·r, [9]

so that the resulting speckle potential V(r) = 〈V〉|E(r)|2/〈|E|2〉 obeys the
correlation function in Eqs. 6–8. This yields P(k) = δ(|k| − 2π/λL)

√
h(θ),

where the angle θ is defined by kz = |k| cos θ.
Numerical solution of the GP equation. At zero temperature, the BEC is
described by a macroscopic wave function ψ(r, t) obeying the nonlinear
mean-field GP equation (39, 40)

i
∂ψ

∂t
=

[
−

�
2

2m
∇2

+ Vtr(r) + V(r) + g|ψ(r, t)|2
]
ψ(r, t), [10]

where Vtr(r) = m(ω2
x x2 + ω2

y y2 + ω2
z z2)/2 is the harmonic confining

potential, and g = 4π�2a/m > 0 is the strength of the boson–boson
repulsion. The amplitude of the wave function is normalized according
to

∫
|ψ(r, t)|2d3r = 1 and is related to the 3D particle density through

n3D(r, t) = N|ψ(r, t)|2. The ground-state density profile of the BEC is
obtained from the GP equation via imaginary time propagation. In
the absence of disorder, the Thomas–Fermi radii of the condensate are
Rx = 18.5 μm, Ry = 134.4 μm, and Rz = 28.4 μm. The numerical integration
of the GP equation for the trapped gas is carried out on a grid of
fixed dimensions (Nx , Ny , Nz) = (300, 2,200, 450) and uniform spacing
Δx = Δy = Δz = 0.16 μm. We use the open-source code presented in refs.
52 and 53, implementing the split-step Crank–Nicholson method. Simulating
1 ms of time evolution for a given disorder configuration requires between
1 and 2 h of wall clock time on an Intel Haswell node with 24 CPU cores.

The maximum value of the aspect ratio during the expansion is reached
after (roughly) t = 13 ms. GP simulations for such long time scales are
difficult, also because the BEC widths along the x and z axes grow rapidly
with time, requiring exceedingly large grids. In particular, the anticonfining
potential accelerates the particles outward, implying that a fine mesh is
necessary to follow the rapid spatial oscillations of the wave function
and avoid numerical instability at the condensate tails. We simulate the
expansion dynamics by increasing the lattice spacing along the transverse
directions, Δx = Δy = 0.8 μm, while keeping unchanged the spacing along
the z axis. We further speed up the calculation by adapting dynamically the
grid shape to match the density profile, reaching sizes up to (Nx , Ny , Nz) =

(520, 520, 7,800) without producing memory errors. Each simulation of
the expansion dynamics takes between 16 and 24 h of wall clock time,
depending on the specific value of the exposure time τon. The use of a
coarser grid introduces some approximation; in particular, the peak aspect
ratio for large exposure time τon is underestimated, resulting in an apparent
discrepancy with the experimental data.

In order to extract the characteristic time τon
1/2 from the simulated expan-

sion dynamics, we calculate the time τon after which the peak aspect ratio
during expansion has dropped to half its initial value. To this end, the values
of the aspect ratio for varying τon are interpolated, and we only consider
values of the aspect ratio below 10, since larger values are experimentally
not accessible, due to imaging aberrations.
Finite temperature effects. The GP equation assumes that the gas is at
zero temperature. To understand how temperature affects the density
response of the gas, we focus on the equilibrium case, where the speckle is
loaded adiabatically. Assuming that the condensate healing length is small
compared to the speckle grain size in the x and y directions, we can treat
the disorder as a slowly varying potential and use a finite temperature
generalization of the LDA, based on the Hartree–Fock approach. Within this
theory, the condensate and the thermal densities, indicated, respectively, by
nc and nT , satisfy the coupled equations (33)

nc(r) =
1

g
(μ − Vext(r) − 2gnT (r)), [11]

nT (r) =
∫

d3p

(2π�)3

1

eβ(
p2
2m −μ+Vext(r)+2g(nc(r)+nT (r)) − 1

,

where Vext = Vtr + V is the total external potential acting on the atoms, and
β = 1/(kBT), with kB being the Boltzmann constant. The chemical potential
μ in the above equations must be fixed from the normalization condition
N =

∫
d3rn3D(r), where n3D(r) = nc(r) + nT (r) is the total density. From the

latter, we extract the column density and the density response, following
the same procedure used for the GP numerics.

Description of Time Scales. We extract the half-life periods of the density
(coherence) response by fitting the time series with Gompertz (exponential)
functions (49), which we have found to adequately describe all data.
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Density response. After the quench into disorder, the random poten-
tial causes a spatially varying accumulation of phase Δφ = Vt/�, result-
ing in a velocity field according to v = �/m∇φ. We can only detect
density variations once their size exceeds the resolution α = 2.2 μm of
our imaging system. Therefore, we are interested in the typical time
td
on after which the flow has traversed the distance α. Thus, we es-

timate 〈|v|〉 in order to be able to calculate Δs = 1/2 〈|a|〉 t2, where
〈|a|〉 = d〈|v|〉/dt = 〈|∇V|〉/m. Since the only relevant length and energy
scale of the speckle in the imaging plane are given by 〈V〉 and the
correlation length ηx,y , the magnitude of the mean speckle gradient
must be proportional to 〈V〉/ηx,y . Indeed, a numerical simulation provides
〈(∇V)x〉 = 〈(∇V)y〉 = 〈V〉/ηx,y , yielding 〈|∇V|〉 =

√
2〈V〉/ηx,y . This leads to

the estimation td
on =

√
2mα/〈|∇V|〉 =

√√
2mαηx,y/〈V〉.

Once the speckle potential is rapidly extinguished, the density redis-
tributes to adapt to the altered external potential. We assume that the
typical speed of flow is given by v. We can only detect the redistribution
as long as it occurs on a length scale larger than α. This yields the estimation
td
off = α/v. Plugging in either the speed of sound vs, the average thermal

velocity from the Maxwell–Boltzmann distribution ∝
√

kBT/m (T < 100 nK),
or the maximum velocity during a classical harmonic oscillation Rxωx in
the dipole trapping potential yields values close to the observed times. Rx

denotes the Thomas–Fermi radius of the condensate along x.
Coherent hydrodynamic response. Since we attribute the breakdown of
hydrodynamics to the loss of phase coherence, it must be related to the
spatially varying phase accumulation after the quench. The mean phase
difference between two points in the BEC after time t is 〈δφ〉 = 〈ΔV〉 t/�,
with the mean speckle potential difference 〈ΔV〉 = 〈

∣∣V(r) − V(r′)
∣∣〉. From

the numerical simulation, we obtain 〈ΔV〉 = 〈V〉, yielding th
on = �/〈V〉. In

order to incorporate the differences in initial (Ai) and final (Af) peak aspect
ratio in th

on, we write th
on = �/〈V〉 × ΔA/Ai , where ΔA = Ai − Af.

As the time scale of reoccurrence of hydrodynamics, we find th
off =

2Ry/vs = 2
√

2/ωy , where Ry =
√

2μ/m/ωy is the Thomas–Fermi radius
along y. Similar as for th

on, we write th
off = 2

√
2/ωy × |ΔA| /Af.

Calculation of the Phase Correlation Length. We get the correlation length
of the phase σφ by calculating the autocorrelation function

ACφ (δx, δy) =
∫

f(x, y)f∗(x + δx, y + δy)dxdy [12]

of the function f(x, y) =
√

n(x, y) × exp (iφ(x, y, z = 0)), which is the prod-
uct of the phase factor in the central plane of the cloud and the square
root of the integrated column density, the latter of which accounts for
the inhomogeneous density distribution. Both the phase factor and column
density are obtained from the numerical simulation of the GP equation.
To reduce the computational effort, we limit the evaluation to the central
x–y plane at z = 0. Hence, exploiting the Wiener–Khinchin theorem (54), the
autocorrelation function is given by

ACφ (δx, δy) = F−1
(PSD) (δx, δy) , [13]

where

PSD =
∣∣∣F (

exp (iφ(x, y, z = 0))
√

n(x, y)
)
(kx , ky)

∣∣∣2 [14]

is the power spectral density with the spatial frequencies (kx , ky). We
evaluate the Fourier transform F numerically using a fast Fourier transform
algorithm. The phase correlation length σφ in x (y) direction is defined as
the distance along δx (δy) across which ACφ drops to 1 − 1/e ≈ 63 % of its
value at δx = δy = 0.

Data Availability. All study data are included in the article and/or
SI Appendix.
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