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Abstract

Sexual selection must affect the genome for it to have an evolutionary impact,

yet signatures of selection remain elusive. Here we use an individual-based

model to investigate the utility of genome-wide selection components analysis,

which compares allele frequencies of individuals at different life history stages

within a single population to detect selection without requiring a priori knowl-

edge of traits under selection. We modeled a diploid, sexually reproducing pop-

ulation and introduced strong mate choice on a quantitative trait to simulate

sexual selection. Genome-wide allele frequencies in adults and offspring were

compared using weighted FST values. The average number of outlier peaks (i.e.,

those with significantly large FST values) with a quantitative trait locus in close

proximity (“real” peaks) represented correct diagnoses of loci under selection,

whereas peaks above the FST significance threshold without a quantitative trait

locus reflected spurious peaks. We found that, even with moderate sample sizes,

signatures of strong sexual selection were detectable, but larger sample sizes

improved detection rates. The model was better able to detect selection with

more neutral markers, and when quantitative trait loci and neutral markers

were distributed across multiple chromosomes. Although environmental varia-

tion decreased detection rates, the identification of real peaks nevertheless

remained feasible. We also found that detection rates can be improved by sam-

pling multiple populations experiencing similar selection regimes. In short, gen-

ome-wide selection components analysis is a challenging but feasible approach

for the identification of regions of the genome under selection.

Introduction

One of the most important questions in evolutionary

biology is how selection, which by definition acts on phe-

notypes, causes heritable changes (Nielsen 2005). Recent

advances in DNA sequencing technologies have provided

many new opportunities to explore how genomes are

affected by selection, but no method currently exists to

detect the signature of individual episodes of selection

within the time frame of a single generation on a gen-

ome-wide scale. Yet, we know that total selection can be

decomposed into several components of selection that

affect individuals at various stages during the life cycle

(Christiansen and Frydenberg 1973) and that these epi-

sodes can provide important insights into mating systems

(Emlen and Oring 1977), or ecological factors acting as

agents of selection (Loehle and Pechmann 1988). Episodes

of selection can also help evaluate threats and conserva-

tion issues (Stockwell et al. 2003). Additionally, much of

the quantitative genetics theory commonly used in empir-

ical studies focuses on individual episodes of selection

(Arnold and Wade 1984a,b), so having the ability to

examine the effects of selection at different episodes on

the genome might be useful in linking theory to empirical

work. Therefore, a method to detect the signature of each

component of selection within a natural population

would be an important addition to an evolutionary biolo-

gist’s toolkit.

Currently, three principal analytical methods are used

to diagnose the effects of selection on the genome. First,

quantitative traits can be mapped to specific loci using

linkage mapping techniques. Quantitative trait locus map-

ping is very effective, but requires crossing specific par-

ents, generating numerous offspring, and having a trait of

interest to map. Second, genome-wide association studies

can be used to correlate a specific trait (often disease
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related) with loci that differ between groups with different

values of the trait (e.g., a group with diabetes compared

to a group without; reviewed in Carlson et al. 2004).

Finally, population genomics methods compare summary

statistics describing allele frequencies, genetic diversity,

and linkage disequilibrium between multiple populations

of the same species to identify loci that lie outside of a

specified significance threshold (Hohenlohe et al. 2010b).

This method can be very powerful at detecting signatures

of positive selection (e.g., Gagnaire et al. 2013; Hess et al.

2013), balancing selection (e.g., Reitzel et al. 2013), local

adaptation (e.g., Hohenlohe et al. 2010a; Miller et al.

2012; Catchen et al. 2013a; Vincent et al. 2013), and

selective sweeps (e.g., Boitard and Rocha 2013; Clement

et al. 2013; Harris et al. 2013; Hubner et al. 2013; Rellstab

et al. 2013). One shortcoming of comparing population

genomics statistics between multiple populations is that

such comparisons do not facilitate a diagnosis of the type

of selection (e.g., sexual selection or viability selection)

causing the pattern.

A complementary approach, which has not yet been

applied on a whole-genome scale, is to measure the effects

of selection at various stages in the life cycle of a popula-

tion. At least four major types of selection occur during a

typical life cycle. These different components can be iso-

lated within a single generation using a cross-sectional

study design (e.g., Christiansen and Frydenberg 1973;

Christiansen et al. 1973), or by tracking a population over

multiple generations in a longitudinal design (Bundgaard

and Christiansen 1972; Clark and Feldman 1981; Clark

et al. 1981; Anderson et al. 2014). Although a longitudi-

nal design allows researchers to track allele frequencies

over multiple generations, it is not a feasible experimental

design for many organisms and is difficult to implement

in studies of natural populations.

Selection components analysis can be used to decom-

pose total selection into its parts in a variety of ways. For

instance, some researchers have compared preobservation

and postobservation components of selection (Prout

1965, 1969, 1971a,b), while others have examined

mother–offspring combinations, allowing a subset of the

male breeding population to be inferred and compared to

a random sample of adult males containing both mated

and unmated individuals (e.g., Christiansen and Fryden-

berg 1973; Nadeau and Baccus 1981). Allele frequencies

of individuals at different life history stages were com-

monly compared in studies using allozyme markers (e.g.,

Christiansen and Frydenberg 1973, 1974; Christiansen

et al. 1973; Nadeau and Baccus 1981; Heath et al. 1988;

McDonald 1989), but these studies usually did not target

enough loci to detect selection. Selection components

analysis was also used to investigate the patterns of selec-

tion on entire chromosomes (e.g., Anderson 1969; Prout

1971a; Bundgaard and Christiansen 1972; Anderson et al.

1979; Clark and Feldman 1981; Clark et al. 1981; Curt-

singer and Feldman 1980; Barbadilla et al. 1994), but

chromosomes were too broad of a target and so only

crude estimates of selection were detectable. However,

with next-generation sequencing approaches it is now

possible to identify large numbers of single nucleotide

polymorphisms distributed across the entire genome,

opening up the possibility to detect a genome-wide signa-

ture of selection components.

There is still much to learn about how selection affects

the genome, and selection components analysis may be one

solution. In this paper, we present findings from an indi-

vidual-based simulation model that tests the application of

existing population genomic approaches in the context of

selection components analysis. We show that this approach

holds promise for detecting genome-wide signatures of

strong selection, at least in a best-case scenario. Addition-

ally, this model allows us to make predictions about charac-

teristics of populations that might benefit most from a

selection components analysis approach.

Methods

Modeled sampling procedure

This model, described in detail below, was designed to

determine the power of an empirical selection components

analysis. An empirical study would require a one-time col-

lection of a population, including equal numbers of adults

and offspring. The sampled individuals would then

undergo some form of reduced representation sequencing,

such as restriction-site-associated DNA sequencing (RAD-

seq), to generate SNP data. From the genome-wide SNP

data, loci with approximately uniform allele frequencies

would be selected for genome-wide selection components

analysis (Fig. 1). From this analysis, we expect to detect

only loci of large effect, as every population genomics

study struggles to detect loci of small effect (Lewontin and

Krakauer 1973; Beaumont and Nichols 1996).

In the implementation of our simulation model, which

encapsulates a best-case scenario for this type of empirical

study, we wished to model a population with genetic vari-

ation upon which selection could act. Thus, we modeled

initial generations without sexual selection (i.e., with ran-

dom mating). Even though a natural population would

not typically make a single-generation transition from

random mating to strong sexual selection, our approach

uses this modeling convenience to simulate populations

in a way that gives us control over levels of genetic varia-

tion and patterns of linkage disequilibrium independent

of the strength of sexual selection. We chose to model a

polygynous mating system (females mate once, males
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mate multiply), with sexual selection acting on the male

trait, which is constrained by viability selection because

this is a well-studied sexual selection framework in quan-

titative genetics (e.g., Lande 1981). Although other mating

systems certainly exist and have strong sexual selection,

we restricted our analysis to this natural selection and

sexual selection trade-off for the scope of this paper.

Model overview

The model was written in C++, and the source code is

available on Dryad (doi: 10.5061/dryad.5k84d). We mod-

eled a population with a carrying capacity of N individu-

als, each of which had c chromosomes with m markers

(i.e., single nucleotide polymorphisms) and q quantitative

Figure 1. A schematic diagram of how to apply genome-wide selection components analysis in an empirical study. A population of some

organism, for example, pipefish, is sampled so that DNA samples are obtained from roughly equal numbers of very young offspring and adults.

Those DNA samples are then sequenced using a reduced representation sequencing method, such as RAD-sequencing. Loci with roughly even

allele frequencies would then be selected for use in genome-wide selection components analysis, which will identify outlier loci that are putatively

under selection.
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trait loci. The quantitative trait loci additively determined,

sometimes with added environmental noise, the pheno-

type of each individual. In a life cycle, individuals pro-

duced gametes, mated, and produced offspring. Females

chose mates based on the encountered males’ phenotypes,

putting sexual selection pressure on the male phenotype

only. The male offspring then underwent viability selec-

tion on the same trait females used to choose a mate.

Finally, the offspring matured into adults and replaced

the previous generation.

The life cycle was repeated for a given number of initial

generations, in which selection did not occur, to generate

enough genetic variation upon which sexual selection

could act. The initial generations were followed by one

experimental generation, during which the population

was randomly sampled and summary statistics calculated.

Allele frequencies were also compared between adults and

offspring (see below, “Sampling the population,” for more

detail) using weighted FST values. We tested some of the

parameters, such as the number of initial generations, to

fine-tune the model so that we could simulate the best-

case scenario for applying genome-wide selection compo-

nents analysis.

Because we wanted to focus our attention on the types

of markers that would be most informative in an empiri-

cal RAD-seq type of study, namely quantitative trait loci

of large effect with moderate allele frequencies, our initial

generations generated quantitative trait loci with relatively

uniform distributions. This approach differs from previ-

ous work, which also used simulation models (e.g.,

Thornton et al. 2013), but instead focused on detecting

rare alleles of moderate effect.

Genetics of the population

The simulated organism was assumed to be diploid. Both

neutral markers and quantitative trait loci were evenly

distributed among chromosomes. The locations of quanti-

tative trait loci were randomly chosen per chromosome

per run of the model, unless otherwise stated. For

instance, under the basic parameter combinations, each of

the four chromosomes had 1000 marker loci and two

quantitative trait loci, so that the total number of

observed markers was 4000 and the total number of

quantitative trait loci was eight. Although a suite of 4000

loci is a modest number of markers in the scheme of all

loci identified in RAD-seq studies, most studies do typi-

cally restrict their analyses to several thousand loci.

Therefore, we believe that 4000 markers is a reasonable

number. The alleles for the quantitative trait loci were

drawn from a normal distribution with a mean of zero

and a standard deviation of 0.5. Each locus could have up

to four alleles, and we started each simulation run with

chromosome-wide genotypes for each chromosome. In

other words, each run started with complete linkage dis-

equilibrium within particular chromosomes. Linkage dis-

equilibrium then decayed during the initial generations

due to recombination, which occurred during the produc-

tion of gametes in the form of r crossing-over events,

where r was drawn from a Poisson distribution with a

constant mean of 0.2. Each recombination event was ran-

domly assigned a location between two marker loci. This

approach allows the genome-wide level of linkage disequi-

librium to be altered by merely changing the number of

initial generations. No mutations occurred during the

production of gametes, because the simulation runs con-

sisted of so few generations that mutation would not be a

major factor affecting allele frequencies. Phenotypes were

calculated by summing across all alleles at all quantitative

trait loci plus an added value, e, a random number from

a normal distribution with a mean of 0 and a specified

environmental standard deviation.

We tested different numbers of initial generations to

see their effect on linkage disequilibrium and on the pros-

pects for reliably detecting quantitative trait loci. For this

analysis, we calculated pairwise linkage disequilibrium

between 100 randomly chosen loci on each chromosome

(i.e., all comparisons were from loci on the same chromo-

some). The pairwise linkage disequilibrium between ran-

domly chosen locus A and locus B was calculated as

follows. For each allele Ai and Bj, D was calculated as fij
� piqj, where fij is the frequency of the Ai Bj haplotype, pi
is the frequency of allele i, and qj is the frequency of allele

j. Dmax is the lesser of piqj or 1 � piqj when Dij < 0 and is

the minimum of (1 � pi)*qi or pi*(1 � qi) when D > 0.

Finally, D0 was evaluated as:

D0 ¼
Xm
i

Xn
j

piqj Dij

�� ��
Dmaxij

;

where m is the number of alleles at locus A and n is the

number of alleles at locus B.

Mating, production of gametes, and
selection

In this model, each female mated with at most one male,

and males were capable of mating with multiple females.

Females randomly sampled 50 males in the population,

and if they could not find an acceptable mate within

those 50, they did not mate. We incorporated this cost of

choosiness to add variability to the selection differentials

in males. In our framework, males with identical trait val-

ues are not necessarily guaranteed the same number of

matings. In the initial generations, females mated with
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the first male they encountered, so no sexual selection

occurred. Sexual selection was introduced to the model

during the experimental generation, after trait values were

standardized to a mean of 0 and a standard deviation of

1. When mate choice was implemented, the probability

that the female would mate with a given male was deter-

mined by a Gaussian-shaped function comparing the

male’s phenotype, z, to a population-level female prefer-

ence value, h,

PðzÞ ¼ e
�ðz�hÞ2

2x2
S ;

where x2
S is the width of the selection surface (i.e., it

determines the strength of selection). We set h to an arbi-

trary value of 4 for all runs of the model. If a random

number from a uniform distribution (0,1) was less than P

(z), the female mated with that male and they produced

four offspring. Therefore, the probability of mating for a

male was determined first by whether a female encoun-

tered him and then by his trait value (z) relative to the

population-level preference optimum (h = 4). When

selection was strong, few males possessed a trait value

favored by the females (Fig. 2).

When females found a mate and produced offspring,

we simulated meiosis in the following way. For each chro-

mosome pair, one of the mother’s two chromosomes was

randomly chosen to be passed to the offspring. Before

being passed to the zygote, recombination occurred. The

number of recombination events on a given chromosome

was a random number chosen from a Poisson distribu-

tion with a mean of 0.2. For each recombination event

that occurred in a given mating event on a given chromo-

some, a randomly chosen chunk of one of the mother’s

chromosomes was exchanged with the matching region

from the mother’s other homologous chromosome, while

maintaining the total size of each chromosome. The

recombined chromosome was then passed to the zygote.

A similar procedure was used for the father’s chromo-

somes, so recombination occurred in both sexes. This

procedure realistically simulates the process of meiosis for

a species in which crossing-over occurs at a similar rate

in both sexes. The sex of each offspring was determined

randomly, such that on average 50% of the offspring were

female and 50% were male.

After the zygotes were produced, viability selection

acted on the male offspring. Viability selection was imple-

mented in the model merely to maintain variation in the

male trait and to constrain sexual selection, and thus via-

bility selection was a weak force in the model. This selec-

tion was implemented as the following Gaussian fitness

surface with a given width, x2
V :

W zð Þ¼e
� z�hð Þ2
2x2

V ;

where z is an individual’s phenotype and h is the opti-

mum value (zero). Viability selection was implemented

during both the initial generations and the experimental

generations, although the strength of viability selection

was weak ðx2
VI

¼ x2
VE

¼ 500Þ. For each male, if a random

number drawn from a uniform distribution (0,1) was less

than W(z) for that individual, he survived to the next

(A)

(B)

Figure 2. Representative distributions of male trait values under

default parameters (A) and with an environmental variance of 1

(heritability = 0.5; B). Also shown are the uniform distributions based

on the trait values and the preference optimum (sexual selection

curve, h = 4) and the viability selection optimum (natural selection

curve, h = 0) with default selection strengths (Table 1).
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generation. As females did not express the trait, they were

unaffected by viability selection. We implemented very

weak viability selection, so that the majority of males sur-

vived the viability selection event (Fig. 2A), even when

environmental variance altered the distribution of male

trait values (Fig. 2B). After the viability selection event,

offspring were randomly chosen to survive to adulthood,

so that the number of surviving offspring was less than or

equal to the carrying capacity.

Sampling the population

Population demographic statistics were calculated for the

entire population each generation. Some of the statistics

calculated were population size, sex ratios, and mean trait

values for males and females. Additive genetic and pheno-

typic variances were calculated from the distribution of

values in all adults. Heritability was calculated as the

additive genetic variance divided by the phenotypic vari-

ance and was therefore always 1 whenever there was no

environmental variation added to the trait. “Long-dis-

tance” linkage disequilibrium was calculated for randomly

selected loci throughout the genome as described above

(see “Genetics of the population”), and the same equa-

tions were used to calculate pairwise linkage disequilib-

rium between neighboring polymorphic loci. Mating

differentials were calculated as the covariance between

standardized trait values and relative mating success

(Jones 2009).

During the experimental generation, the population

was randomly sampled after mating occurred and off-

spring were produced, but before the offspring experi-

enced viability selection. As females all produced the

same number of offspring (4) and meiotic drive was not

included in the model, this sampling strategy captured

the effects of sexual selection on allele frequencies. Both

parents and offspring were sampled without replacement,

and genealogical relationships were assumed to be

unknown. Summary statistics, including allele frequencies

and observed and expected heterozygosities, were calcu-

lated for adults, offspring, and the total population.

Expected heterozygosity, HE, was calculated as

1�Pa
i¼1p

2
i for each locus with a alleles. We then com-

pared allele frequencies in adults and offspring using the

Nei (1986) FST calculation:

FST ¼ 1�HEprogeny þHEadults

2 �HEtotalpopulation

 !
:

FST values were weighted using a kernel-smoothing

moving average, which incorporates the contribution of

nearby values to the FST for each locus. Specifically, each

polymorphic locus, k, was weighted by the FST values at

each marker position, d, within the sliding window region

in each direction, using the Gaussian function:

F0
STk

¼
Pkþrs

k�rs
FSTk

� e
�ðd�kÞ2

2r2s

Pkþrs
k�rs

e
�ðd�kÞ2

2r2s

;

where rs is the width of the sliding window region in

each direction (Hohenlohe et al. 2010a).

Much work in the field of population genetics has been

dedicated to detecting FST outliers, beginning with Le-

wontin and Krakauer (1973). They proposed the idea that

neutral markers all experience the same background selec-

tion, drift, and other demographic factors, so any loci

with statistics such as FST lying outside of the distribution

of the other loci are likely experiencing selection (Lewon-

tin and Krakauer 1973). Improvements on the original

method have been suggested, such as weighting FST values

by heterozygosity (Beaumont and Nichols 1996) and

using Bayesian methods (Beaumont and Balding 2004).

Other studies have tested the importance of the neutral

distribution, by comparing null models to the dataset

(e.g., Foll and Gaggiotti 2008; Lotterhos and Whitlock

2014). Indeed, other work has shown that increased

neutral variance in FST values leads to high rates of false

positives (Bierne et al. 2013). Despite the acknowledged

importance of the distributions of FST values in determin-

ing outliers, the distribution of the smoothed FST values

used commonly in modern population genomics studies

is unknown, and the neutral distributions are often not

mentioned in population genomics analyses. We were

therefore interested in evaluating different common meth-

ods for determining significance of our outlier summary

statistics.

We implemented three methods of determining cutoffs,

two of which are commonly used approaches in the liter-

ature. First, we calculated P-values for each F0
STk

statistic

at locus k using the v2 distribution, as FST values are

known to have a v2 distribution in a neutral model

(Workman and Niswander 1970; Lewontin and Krakauer

1973; Weir and Cockerham 1978; Beaumont and Nichols

1996). Specifically, the transformation 2Nðmk � 1ÞFSTk
is

the v2 statistic, where m is the number of alleles at locus

k in N individuals, with (m � 1)(n � 1) degrees of

freedom, where n is the number of subgroups within a

population (Workman and Niswander 1970). The Benja-

mini and Hochberg (1995) false discovery rate was then

calculated to establish a cutoff value by ranking all of the

P-values from smallest to largest. For each P-value, its rel-

ative rank (its order in the sorted list of P-values divided

by the total number of P-values) was multiplied by the
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significance value, 0.05. The largest P-value that was less

than or equal to this weighted rank was the false discov-

ery rate significance threshold. Second, we implemented

the bootstrapping algorithm used by the software package

STACKS (Catchen et al. 2011, 2013b), a common popula-

tion genomics bioinformatics program, re-sampling the

genome 10,000 times. This algorithm re-weights the

weighted F0
ST values using the kernel-smoothing approach

described above, but the nucleotide positions (d) are ran-

domly chosen loci from anywhere in the genome, rather

than the neighboring nucleotides. Confidence intervals

were then calculated from the distribution of the 10,000

bootstrapped Fst0 values in the same way as described

below for the genome-wide confidence intervals. Finally,

we determined the genome-wide distribution of F0
ST val-

ues and calculated confidence intervals. Although FST val-

ues have a v2 distribution (Workman and Niswander

1970; Lewontin and Krakauer 1973; Beaumont and Nic-

hols 1996; Lotterhos and Whitlock 2014), the distribution

of smoothed Fst0 values is unknown and appears to only

approximate a v2 distribution. Therefore, rather than cal-

culating confidence intervals from a v2 distribution, we

chose to use a Gaussian confidence interval, which is

based on two basic descriptors of the F0
ST distribution: the

mean and the variance. To calculate the confidence inter-

vals, the mean F0
ST and the variance and standard devia-

tion in F0
ST values were calculated across all sampled loci

on all chromosomes. Genome-wide confidence intervals

were then calculated as the mean F0ST value plus the

appropriate value from the cumulative normal distribu-

tion function multiplied by the standard deviation of F0
ST

values. For example, the 95% genome-wide confidence

interval is calculated as follows:

95%CI ¼ F0ST � 1:95996 � r0FST :

We present the 95% and 99% confidence intervals, as

those are two significance thresholds commonly used in

biology, although other confidence intervals certainly

could be used instead. After determining these various cut-

off values, each peak in Fst0 value was detected and the

value compared to the cutoffs. If the peak was above the

cutoff value, and if a known quantitative trait locus was

within x marker loci of the peak, then it was counted as a

“real” peak. If the peak was above the cutoff value but a

quantitative trait locus was not within x marker loci, then

it was counted as a “spurious” peak. The average and stan-

dard errors of both the number of real and spurious peaks

were calculated. The average number of real peaks detected

compared to the overall number of quantitative trait loci

reflected the amount of type II error in the analysis. In

contrast, the average number of spurious peaks indicated

the extent to which type I error occurred (i.e., the fre-

quency of false positives). To test various peak widths, we

varied x and tested values from 1 to 100 loci.

Testing parameter combinations

The default parameters from the model are in Table 1.

To address whether genome-wide selection components

analysis could be used in empirical studies of natural

populations, we focused on the effects of sample size,

strength of sexual selection, and environmental variance

in the focal trait. We also assessed the effects of the archi-

tecture of marker loci (covarying the number of marker

loci and number of chromosomes), population size, and

the number of quantitative trait loci underlying the trait

on this type of selection components analysis. We tested

many of these parameters in combination. The pairwise

parameter combinations tested included sample size and

carrying capacity; the number of markers and the number

of chromosomes; the number of markers and sample size;

the strength of sexual selection and number of quantita-

tive trait loci; the strength of selection and linkage dis-

equilibrium; environmental variation and the number of

quantitative trait loci; and environmental variation and

linkage disequilibrium.

Results

Peak detection

We explored how the peak detection width, or the dis-

tance from an actual quantitative trait locus required to

call a peak a “real” peak as opposed to a spurious peak,

Table 1. The baseline parameters for running the simulation model.

Selection variances refer to the Gaussian selection surface width. “Ini-

tial” refers to the width during the initial generations before sexual

selection was imposed, and “Experimental” refers to the width during

the subsequent generation during which the population was sampled.

Parameter Starting value

Carrying capacity 5000

Sample size (adults) 4000

Sample size (offspring) 4000

Number of markers per chromosome 1000

Number of QTL per chromosome 2

Number of chromosomes 4

Initial mate choice strength ðx2
SI
Þ Random mating

Experimental mate choice strength ðx2
SE
Þ 2

Initial viability selection strength ðx2
VI
Þ 500

Experimental viability selection strength ðx2
VI
Þ 500

Environmental variance 0

Number of populations 1
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affected the results. All of the values we tested beyond 2

loci resulted in equivalent results (Fig. 3). We used a peak

detection width of 50 loci for all of the other runs of the

model.

Replication

To determine whether running the model with only ten

replicates would negatively impact detection rates, we

ran the default parameters (Table 1) with both 10 repli-

cates and 100 replicates. We found qualitatively similar

detection rates (Table 2), so to conserve time we ran

the model for 10 replicates for all parameter combina-

tions.

Determining significance

Our three methods of choosing cutoff values for deter-

mining whether a peak was significant showed strikingly

different patterns. The false discovery rate was highly

unpredictable, such that in some cases nearly every locus

was significant, and at other times nearly none of the loci

were significant, when the parameters remained constant.

This unpredictability is reflected in the standard errors of

the mean number of spurious peaks detected and espe-

cially in the mean proportion of peaks detected (Table 3).

Additionally, the false discovery rate detected very few

actual peaks. The bootstrapped confidence intervals were

better than the false discovery rate and detected a high

number of real peaks, but consistently detected spurious

peaks (Table 3). In contrast, the genome-wide confidence

intervals were more conservative in the number of peaks

detected, but consistently detected over 30% of the real

peaks, and importantly very rarely detected spurious

peaks (Table 3). Thus, for the rest of our results, signifi-

cance was determined by 95% or 99% genome-wide

Table 2. A comparison of running the model with default parameters

(Table 1) and with either 100 replicates or 10 replicates. Here we dis-

play both the 99% and 95% cutoffs as determined by the genome-

wide confidence interval and the bootstrapped confidence interval.

We also present the 95% false discovery rate. Running 100 replicates

instead of 10 replicates did not significantly increase the average

number of real peaks (“real”) or decrease the average number of spu-

rious peaks (“spurious”).

Detection method

Significance

level

Number

of

replicates Real � SE Spurious � SE

Genome-wide

confidence interval

99% 100 3.300 � 1.22 0.000 � 0.00

10 3.800 � 1.25 0.100 � 0.30

95% 100 4.970 � 1.45 0.000 � 0.00

10 5.200 � 1.33 0.100 � 0.30

Bootstrapped

confidence interval

99% 100 0.948 � 0.85 0.113 � 0.84

10 0.875 � 0.79 0.088 � 0.84

95% 100 0.948 � 0.08 0.145 � 0.15

10 0.875 � 0.30 0.100 � 0.09

False discovery rate 95% 100 0.169 � 0.36 0.580 � 1.46

10 0.200 � 0.40 0.838 � 1.65

Figure 3. The effect of peak detection width on average number of

quantitative trait loci detected. When a peak was identified, it was

either designated “actual” or “spurious” based on whether there was

a quantitative trait locus x markers away. The value of x is the “peak

detection width,” represented on the x-axis here. To test peak

detection width, the model was run with default parameters

(Table 1), with 10 replicates for each peak detection width tested.

Bars are the standard error of the mean.

Table 3. The reliability of three methods to determine significance

cutoff thresholds for weighted FST values was compared using the

mean proportion of actual peaks detected and the mean number of

spurious peaks detected and their standard errors. These means were

generated by running the model with its default parameters (Table 1)

in 10 replicates, each of which had 200 initial generations where no

sampling occurred, followed by one experimental generation. Allele

frequencies and FST measures were calculated between adults and off-

spring. Viability selection was weak during both the initial and the

experimental generations ðx2
VI
¼ x2

VE
¼ 500Þ, and strong sexual selec-

tion was introduced at the start of the experimental generations

ðx2
SI
¼ random mating;x2

SE
¼ 2Þ.

Mean

proportion

of actual

peaks

detected SE

Mean

number

of spurious

peaks

detected SE

99% Genome-wide CI 0.3475 0.0245 0.1000 0.0428

95% Genome-wide CI 0.4925 0.0318 0.1000 0.0428

99% Bootstrapped CI 0.8000 0.0404 1.1400 0.1874

95% Bootstrapped CI 0.8075 0.0395 1.5600 0.2063

False discovery rate 0.1525 0.0455 4.0400 1.5367
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confidence intervals. It is important to note that rarely

were all quantitative trait loci detected, largely because

quantitative trait loci of small effect tended not to show

strong signatures of selection. The best detection rate

achieved was 92.5% of the quantitative trait loci, with a

spurious detection rate of 0, but more commonly a

“good” detection rate was 50-70%.

Linkage disequilibrium

The number of initial generations determined the degree

of linkage disequilibrium present when sexual selection

was introduced in the experimental generations. We mea-

sured long-distance linkage disequilibrium per chromo-

some (D0) at the end of the initial generations (see

Methods: Genetics of the population). The number of ini-

tial generations tested varied from 1 to 1000 to examine

how linkage disequilibrium affected our ability to detect

selection. We found that after 200 initial generations link-

age disequilibrium was 0.1007 and that detection rates

appeared to peak at this level of linkage disequilibrium

(Fig. 4). We chose to use 200 generations in the rest of

our permutations of the model to present the best-case

scenario for our genome-wide selection components

analysis approach.

We also explored the effects of linkage disequilibrium

on the detection rate when sexual selection strength was

varied (Fig. 5) and when environmental variation in the

trait was introduced (Fig. 6). In both cases, there was not

a large amount of variation in detection rates with differ-

ent levels of linkage disequilibrium. Very low linkage dis-

equilibrium (0.077–0.078, resulting from 1000 initial

generations; Figs. 5, 6) resulted in reduced detection rates

in both cases, as did high levels of linkage disequilibrium

(≥0.2, resulting from 50 initial generations or fewer;

Figs. 5, 6). This further solidifies our choice of 200 initial

generations as providing us with a best-case scenario for

testing genome-wide selection components analysis.

The effects of population size and sample
size

Population genetics theory predicts that selection will

have a stronger effect in larger populations due to a

reduction in the effects of drift (Hartl and Clark 2007).

Thus, we tested how well our selection components

(A)

(B)

Figure 4. The effect of linkage disequilibrium

(determined by the number of initial

generations) on the percentage of quantitative

trait loci accurately detected and the number

of spurious loci called as significant by 99%

and 95% genome-wide confidence intervals

for weighted FST values. The measure of

linkage disequilibrium presented here is D0

calculated as a pairwise measure between 100

loci randomly selected from each chromosome

and averaged across chromosomes and

replicates. Linkage disequilibrium was

calculated in the final initial generation, and

the number of initial generations was varied to

change linkage disequilibrium (initial

generation numbers are presented above the

points on the graphs). Panel A shows all

permutations of the number of initial

generations (1, 2, 4, 8, 10, 20, 40, 50, 75,

100, 150, 200, 250, 500, and 1000). Panel B

presents a close-up view of generations 40,

50, 75, 100, 150, 200, 250, 500, and 1000 to

highlight the changes that occur at low levels

of linkage disequilibrium (below 0.3). The

model was run with the parameters presented

in Table 1. Values presented here are averages

from 10 replicates. Bars are the standard error

of the mean.
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analysis detected selection in populations of varying sizes

(1000, 2500, 5000, and 10,000) with different sample sizes

(100, 250, 500, 1000, 2000, and 4000). Sample size and

population size both impacted the detection rates, and

they appeared to have an interactive effect. The minimum

sample size tested, 100 adults and 100 offspring, had a

high average number of spurious peaks detected (but this

number was still below 1, suggesting that on average

fewer than one spurious peak was detected) and a low

proportion of peaks detected (only 18.5% at the 99%

confidence level, which means that between 1 and 2 of

the eight actual quantitative trait loci were detected;

Fig. 7). This pattern was consistent across population

sizes. In other words, regardless of the actual population

size, a sample of 100 adults and 100 offspring was barely

adequate to detect any quantitative trait loci. However,

increasing the sample size improved detection rates

dramatically, especially in larger populations. As the

population size increased, the mean number of spurious

loci fell below the mean detection rate (Fig. 7). Large

sample sizes alone improved detection rates, but the com-

bination of a large sample with a large population led to

high detection rates as well as very low numbers of spuri-

ous loci detected.

The effects of the number of neutral
markers

In this model, the total number of neutral markers could

be manipulated by changing the number of chromo-

somes, changing the number of markers per chromosome,

or changing both. We investigated the interaction

between the total number of markers (1000, 2000, 4000,

and 9000) and chromosome number (1, 2, 4, and 8) on

Figure 5. The effects of linkage disequilibrium

and sexual selection on detection rates. The

measure of linkage disequilibrium is D0, a
pairwise measure of linkage disequilibrium

between 100 loci randomly selected from each

chromosome and averaged across

chromosomes and replicates, calculated in the

final initial generation. The number of initial

generations was varied to change linkage

disequilibrium. Because most of the effects on

detection rates occurred at low levels of

linkage disequilibrium (below 0.3; Fig. 3), we

restricted analysis to those measures, which

represent 40, 50, 75, 100, 150, 200, 250,

500, and 1000 initial generations. The number

of initial generations is presented above the

points, and D0 is presented on the x-axis. The

model was run with default parameters

(Table 1), except for the altered number of

initial generations and values of sexual

selection in the experimental generations.

Values presented are averages from 10

replicates with bars showing the standard error

of the mean.
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the detection of real and spurious peaks, and two major

patterns emerged. First, regardless of how many chromo-

somes among which the loci were distributed, having

more marker loci increased the average proportion of real

peaks detected, but also slightly increased the number of

spurious loci detected. The number of chromosomes

seemed to determine the magnitude of the increase in

spurious peaks. Low numbers of neutral markers (1000

and 2000) consistently had low detection rates (Fig. 8).

However, with the markers distributed across many chro-

mosomes, the detection rate increased dramatically once

there were more than 2000 markers. Indeed, with 12,000

markers spread evenly across 8 chromosomes, the quanti-

tative trait locus detection rate was 87.3% at the 99%

confidence level and 94.3% at the 95% confidence level,

which are some of the highest values we recorded. The

average F0
ST value for runs with 8 chromosomes was lower

than the average F0ST in runs with fewer chromosomes

(e.g., with 9000 total neutral loci and eight quantitative

trait loci, mean F0
ST8chrom

¼ 0:00016 and mean

F0ST1chrom
¼ 0:00072 ). Essentially no spurious peaks were

detected (Fig. 8) under these parameter combinations.

This pattern may be due to the fact that the quantitative

trait loci were equally distributed among chromosomes,

so with 8 chromosomes and 8 quantitative trait loci, there

was exactly 1 quantitative trait locus on each chromo-

some.

The effects of sample size and number of
neutral markers

As the number of neutral markers in our model repre-

sents the number of sampled markers in an empirical

study, we explored how varying adult sample size and the

Figure 6. The effect of linkage disequilibrium

and environmental variation on detection rates.

Linkage disequilibrium, D0, was calculated as a

pairwise measure between 100 randomly

selected loci from each chromosome and

averaged across chromosomes in the final

initial generation. The number of initial

generations is presented above the points, and

D0 is on the x-axis. We ran the model with

default parameters (Table 1), except for the

number of initial generations and

environmental variance. We present the

average heritabilities generated by various

environmental variance settings. Values shown

are the means of 10 replicates with standard

error bars.
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number of neutral markers affected our results. We found

a significant increase in the number of real quantitative

trait loci detected when both sample size and the number

of neutral markers were increased. When sample size was

small (100 or 250 adults), we found an increase in the

number of spurious markers detected with increasing

number of neutral markers (Fig. 9). This suggested that

more peaks were likely to be detected, whether they were

spurious or not, with an increased number of neutral

markers, and that increasing the adult sample size allowed

real peaks to be detected, as opposed to spurious peaks.

This may be due to the fact that having more neutral

markers diluted the effect of outlier Fst0 values on the

mean background Fst0 values, allowing outliers to be even

more differentiated from the background when there were

more neutral markers.

The effects of number of quantitative trait
loci and strength of selection

The number of quantitative trait loci had a strong effect

on the ability to detect real peaks, as we had predicted.

The total strength of selection was distributed among all

of the quantitative trait loci, so with fewer quantitative

trait loci, each locus received a greater portion of the total

selection. We tested sexual selection surface widths in the

experimental generations ðx2
SE
Þ of 2, 8, 20, 50, 100, and

500 acting on a total of 4, 8, 16, and 32 quantitative trait

loci distributed equally on 4 chromosomes. We also

included a test with random mating in the experimental

generation for comparison. Selection strength was greatest

at x2
SE

¼ 2 in each case (male m0 � 1.2). The number of

quantitative trait loci had a large effect on the detection

of selection: When strong selection was acting on a total

of 32 quantitative trait loci, only 6.5% real peaks were

detected at the 99% confidence level (~2 of the quantita-

tive trait loci), whereas with only 4 quantitative trait loci,

89.5% were detected on average (Fig. 10). The improve-

ment in detection rates with few quantitative trait loci

when selection was strong came with a cost when selec-

tion was weak: The number of spurious peaks detected at

low selection strengths and few quantitative trait loci was

higher than the number of peaks detected at low selection

strengths but many quantitative trait loci (Fig. 10). Over-

all, these results suggested that accurately and reliably

detecting selection required that selection acted strongly

on phenotypes that were mainly determined by a few

quantitative trait loci of major effect. Although this result

Figure 7. The effect of population size and

sample size on detection rates. For each of 10

replicates, the model ran for 200 initial

generations followed by one experimental

generation. The number of real and spurious

peaks detected was averaged across all ten

replicates. The carrying capacity and sample

size were constant throughout all initial and

experimental generations, and the same

number of adults and offspring was sampled

in the experimental generation. All other

parameters were the default parameters

shown in Table 1. Bars show the standard

error of the mean.
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was unsurprising, as it is well established that population

genetics techniques can only detect loci of major

effect (Lewontin and Krakauer 1973; Beaumont and

Nichols 1996), it is worth noting that our within-popula-

tion approach conforms to population genetics expecta-

tions.

The effects of environmental variation

The phenotype of an individual was determined by two

components: the genotype derived from the quantitative

trait loci and environmental effects. We tested how add-

ing environmental variation to individuals’ phenotypes

affected the reliability of our genome-wide selection com-

ponents analysis by changing the environmental variance

from zero (0, 0.1, 0.5, 1, 2, 8, 12, and 20) and the num-

ber of quantitative trait loci underlying the phenotype (4,

8, 16, and 32). Adding a small amount of environmental

variance (0.1 or 0.5) did not have a large effect on our

ability to detect quantitative trait loci under selection and

even led to a slight increase in the proportion of real

peaks detected (Fig. 11). Once the environmental variance

reached values greater than 1, the ability to detect loci

under selection declined and the number of spurious loci

detected increased (Fig. 11). However, the variance in

male trait values without added environmental variance

was typically between 0 and 1 in this model, so adding a

value of up to 20 to the phenotype may not be biologi-

cally relevant. Adding perhaps more relevant values (0.1,

0.5, 1, and 2) did not substantially alter the ability to

detect selection (Fig. 11).

The number of quantitative trait loci underlying the

trait also affected the prospects for detecting selection but

buffered the effects of environmental variation; when 32

quantitative trait loci affected the trait, the proportion of

quantitative trait loci detected was consistently below

20%, but did not decline significantly with added

amounts of environmental variation, and the number of

spurious loci detected remained near zero (Fig. 11). So

although environmental variance added noise to the data,

especially when many quantitative trait loci affected the

trait of interest, it was still possible to detect some loci

under selection even with low heritabilities. Our ability to

detect a small subset of quantitative trait loci was likely

due to random chance placing a spurious locus near a

quantitative trait locus, so it is unclear how these detec-

tion rates would translate into empirical studies in natural

populations.

Figure 8. The effect of the number of neutral

markers and number of chromosomes on

detection rates. These data represent averages

from ten replicates, each of which had a

carrying capacity of 5000, adult and offspring

sample sizes of 4000 each, and ran for an

initial 200 generations followed by one

experimental generation. A constant number

of 8 quantitative trait loci were distributed

equally across the chromosomes (so with 4

chromosomes, there were 2 quantitative trait

loci on each, but the location of each

quantitative trait locus on the chromosome

was randomly chosen). Other than the number

of chromosomes and the number of neutral

markers, all other parameters were set to the

defaults (Table 1). Bars indicate the standard

error of the mean.
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Comparing multiple populations

We ran the model on multiple populations that all had the

same quantitative trait loci, but that experienced no gene

flow, to determine whether comparing even distant popu-

lations of the same species might help improve the detec-

tion of quantitative trait loci. We found that there was no

increase in the reliability of detection (within a population,

the average number of real and spurious loci remained the

same). However, as predicted, the spurious loci differed

between populations, allowing peaks that were at consistent

loci to be identified as “real” loci (Fig. 12).

We also explored whether multiple populations will

help identify real quantitative trait loci even when sexual

selection was weak. We found that with moderate sexual

selection strengths ðx2
SE

¼ 8 andx2
SE
¼ 20Þ , having multi-

ple populations with the same quantitative trait loci

helped validate peaks as real, and the locus of each spuri-

ous peak was restricted to a single population (Fig. 13).

In an empirical study, this approach would allow a

researcher to focus on those outlier peaks that are present

in multiple populations.

When multiple populations were compared at different

levels of linkage disequilibrium, the populations generally

followed the same patterns. With only a few initial gener-

ations (1-2), there were no meaningful genome-wide pat-

terns, as linkage disequilibrium was still nearly 1

(Fig. 14). However, as linkage disequilibrium decayed

Figure 9. The effect of sample size and the

number of neutral markers on detection rates.

Each panel is a different sample size. The

offspring sample size was set to be equal to

adult sample size in each case. The neutral

markers were distributed evenly across four

chromosomes, each of which contained two

quantitative trait loci. Besides sample size and

the number of neutral markers, all other

parameters were set to the defaults (Table 1).

The values presented here are means from 10

replicates with standard error bars.
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with the addition of more initial generations, loci that

were significant in one population were also often signifi-

cant in others and contained a quantitative trait locus.

Discussion

With this model, we set out to investigate the prospects

for detecting a signature of sexual selection by comparing

allele frequencies in adults and in offspring from one

population using the type of data generated by next-gen-

eration sequencing approaches. We found that the genetic

architecture of the trait was one of the most important

factors determining the ability to detect selection. As

expected, more real peaks were detected when fewer

quantitative trait loci contributed to variation in the trait.

When sexual selection was strong and acted on a pheno-

type determined by few quantitative trait loci, even small

sample sizes (i.e., 100 parent–offspring pairs) could accu-

rately detect some of the real quantitative trait loci with-

out generating prohibitively huge numbers of spurious

peaks. Overall, we showed that a genome-wide selection

components analysis has the potential to detect signatures

of sexual selection within a single population, at least in a

best-case scenario with strong sexual selection, few loci of

major effect, and optimal linkage disequilibrium.

The results from our simulations suggest that current

empirical methods for assessing significance may be unre-

liable. The Benjamini–Hochberg false discovery rate, in

particular, was unpredictable. Although the observed

unreliability may be a feature of selection components

analysis, this finding is worth noting, as many studies

have used the false discovery rate in the analysis of RAD-

seq and genome-wide scans (e.g., Hohenlohe et al. 2010a,

2013; Helyar et al. 2012; Narum et al. 2013). Another

approach to determining outliers is to compare the over-

all distribution of FST values to a distribution from a set

of putatively neutral loci from an empirical dataset to

identify outlier loci (e.g., Lotterhos and Whitlock 2014).

This approach requires a way to know which loci are

likely to be neutral, however, and so is less versatile and

may be more difficult to apply in RAD-seq studies of

nonmodel organisms. We instead suggest that using the

very simple measure of genome-wide confidence intervals,

based on the empirical variance of the smoothed FST val-

ues, would not only be appropriate but also be an accu-

rate and repeatable method for defining cutoff values, as

it best excluded spuriously significant loci while catching

the majority of real peaks in our model.

Even though the occurrence of spurious loci was rare

in our model, spurious peaks occurred occasionally. In

Figure 10. The effect of sexual selection

strength and the number of quantitative trait

loci on detection rates. We tested random

mating and female choice with selection

surface widths ðx2
SE
Þ of 2, 8, 20, 50, and 100

during the experimental generation. There was

random mating during the initial 200

generations, and these selection strengths

were implemented during the experimental

generation. The quantitative trait loci were

distributed equally among the chromosomes,

and the total number of quantitative trait loci

tested was 4, 8, 16, and 32. These data are

averages and standard errors from the

experimental generation of 10 replicates.
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empirical studies, identifying which significant peaks are

real and which are spurious may be challenging, but our

results suggest that comparing multiple populations could

help differentiate between real and spurious peaks. Even

when genome scans are utilized to identify candidate

regions that will later undergo further screening, it would

be preferable to reduce the number of spurious loci

detected to save time and resources. Although spurious

loci occurred occasionally in our model, with multiple

populations it was possible to identify the real peaks as

those that occur consistently in all populations. Screening

for peaks in multiple populations helped identify peaks

when sexual selection was weak. This observation is con-

sistent with recent evidence from empirical work that

spurious loci should not be repeatable between popula-

tions or replicates. For instance, Tobler et al. (2014)

showed that comparing replicates of laboratory-reared

populations of Drosophila melanogaster was a very effec-

tive way to filter out false positives when looking for sin-

gle nucleotide polymorphisms that responded to artificial

selection regimes.

Environmental variation is expected to contribute to

quantitative traits in real-world settings. We included

environmental variation in our model and found encour-

aging results. Although large amounts of environmental

variation dramatically reduced quantitative trait locus

detection rates and increased the number of spurious loci,

small amounts of environmental variation had very little

effect on the detection of selection, even with many quan-

titative trait loci contributing to the trait. These small

amounts of environmental variation (up to an environ-

mental variance of 8) led to average heritability values

within the range of 0.1 to 0.8, which is the range reported

in studies with animal models (Visscher et al. 2008), so

our genome-wide selection components analysis was

robust to biologically relevant amounts of environmental

variation.

Genome-wide selection components analysis was most

effective at detecting only real peaks and not spurious

ones when the sample size was large (>1000 adults and

>1000 offspring). Such large samples may be difficult to

collect and also would be very costly to genotype. Fortu-

nately, even small sample sizes identified real quantitative

trait loci, at least when sexual selection was strong, with

little change in the average number of spurious loci

detected: In a large population (carrying capac-

ity = 10,000), sampling 100 adults and 100 offspring

identified on average 14.5% of the quantitative trait loci

(at least one real peak), but only detected 0.228 spurious

peaks (less than one spurious peak, on average). If 100

Figure 11. The effects of environmental

variation on the ability to detect quantitative

trait loci using an outlier FST approach.

Environmental variation was implemented by

drawing a number from a normal distribution

with variances of 0, 0.1, 0.5, 1, 2, 8, 12, and

20 and adding that value to the phenotype of

the individual. We calculated the average

heritability from all 10 replicates for each

environmental variance and present those

values on the x-axis, rather than the

environmental variances. The environmental

variances were tested with 4, 8, 16, and 32

total quantitative trait loci, which were

distributed equally among the chromosomes.

All other parameters were set to the defaults

(Table 1). Error bars are the standard error of

the mean.
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Figure 12. Sampling multiple populations can improve the detection of real quantitative trait loci, if the same loci underlie the trait affected by

selection. The model was run with 10 replicates, but in each replicate the 8 same quantitative trait loci were designated, rather than being

randomly assigned. Thus, each replicate was essentially another population with the same loci under selection, but without gene flow between

populations. The model was run with the default parameters (Table 1). Comparing the significant weighted FST values uncovered in each

population, it is obvious that the peaks that reappear in each population are the quantitative trait loci (whose locations are designated by red

asterisks). The four chromosomal regions are delineated by different colored backgrounds, and we show two genome-wide confidence intervals

(99% and 95%) on the graph.
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Figure 13. Sampling multiple populations improves the detection of real quantitative trait loci even when selection is weak. Each panel shows 10

replicates for that value of sexual selection strength. Each replicate is given a different color and shape. Both the 95% and 99% genome-wide

confidence intervals are shown on the graphs, averaged across replicates.
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Figure 14. Detection of real quantitative trait loci is improved by sampling multiple populations at various levels of linkage disequilibrium, D0.
Each panel shows 10 replicates for each value of D0, with a different color and shape for each replicate. Linkage disequilibrium was altered by

changing the number of initial generations, and D0 was calculated as the average per-chromosome pairwise linkage disequilibrium between 100

randomly chosen loci on a chromosome. We show the average 95% and 99% genome-wide confidence intervals.
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parent–offspring pairs were sampled from each of two

distant populations (assuming both populations had the

same genetic architecture of the trait and similar selection

pressures), then a real peak could be identified. This plan

would not be logistically prohibitive, especially if other

population genomics questions could be answered in the

comparison of the two populations. Additionally, as many

population genomics studies aim to identify candidate

regions, it may be reasonable to use a less stringent cutoff

than we used here (e.g., 90% instead of 99% confidence

intervals), and increase the number of both real and

spurious peaks detected.

Empirical work suggests that most quantitative traits in

several model organisms appear to have many underlying

quantitative trait loci of small effect (Flint and Mackay

2009). Our model’s ability to detect signatures of sexual

selection was negatively impacted by an increase in the

number of quantitative trait loci, which suggests that

there may be limitations to the applicability of this

method. However, we observed that a larger number of

neutral markers included in our model increased detec-

tion rates of real peaks, suggesting that scanning a larger

number of neutral markers may improve the ability to

detect quantitative trait loci of smaller effect. Thus, gen-

ome-wide selection components analysis may indeed be

able to capture signatures of selection on traits that are

determined by many loci of small effect.

If researchers want to apply genome-wide selection

components analysis to natural populations, we can pro-

vide several recommendations. First, this analysis was

most effective in populations experiencing strong sexual

selection, so it would be best applied to a species with

clear evidence that sexual selection is occurring. Addi-

tionally, although larger sample sizes are always better,

small sample sizes had the most spurious loci when the

carrying capacity was small. Therefore, if the species of

interest is known to have a small population size (as

might be the case in some endangered species), investing

in more comprehensive sampling may be especially

worthwhile (although sampling may be invasive and

could raise additional conservation concerns). Finally, it

is important to note that we detected signatures of selec-

tion with this model and did not necessarily identify the

exact locus underlying the trait. When we identified

peaks as “real,” the quantitative trait locus had to be

within 50 loci in either direction from the peak F0
ST value.

We tested different distances (peak detection widths,

Fig. 3) and found that any distance greater than 2 loci

up to 100 loci had generally equivalent detection rates. In

empirical work, the quantitative trait locus would be

unknown, so additional work will probably be necessary

in most cases to identify the actual DNA-level variant

affecting fitness.

Caveats

Several factors beyond the scope of this paper could affect

genome-wide selection components analysis. First, our

model of genetic architecture was not realistic in every

way. For example, we did not incorporate variable recom-

bination rates, although these are likely to occur in natu-

ral populations and could play a very important role in

the effects of selection on the genetic architecture. It

would be interesting to investigate how different patterns

of recombination within the genome might affect

selection components analysis. This could be done, for

example, by making use of the Drosophila Genetic Refer-

ence Panel (Mackay et al. 2012; Huang et al. 2014), which

encapsulates real patterns of recombination. Additionally,

we allocated the same number of quantitative trait loci to

each chromosome, which is an unlikely genetic architec-

ture for a trait, and which may affect the ability of selec-

tion components analysis to identify real quantitative trait

loci. Lastly, we implemented a contrived setup of our

population to generate sufficient genetic variation before

selection was imposed. We have also restricted our analy-

sis to loci with relatively high minor allele frequencies in

the population, even though quantitative trait loci could

have small minor allele frequencies. A more realistic

model might use coalescent simulations to generate

uneven allele frequencies more commonly seen in the

wild.

Additionally, viability selection was present in our

model only to control the levels of additive genetic varia-

tion, so the model was not set up to address how strong

viability selection might affect the power of selection

components analysis, with or without strong sexual selec-

tion. However, investigating trade-offs between the

strength of sexual and viability selection could be very

interesting for further research. Also of interest would be

the degree of the trade-off between natural and sexual

selection. We set our natural selection optimum to 0 and

sexual selection optimum to 4, so that trait values would

be restrained. Testing different values of both optima

could be very interesting and could result in intriguing

changes at the genomic level. Similarly beyond the scope

of this paper, but of great interest, is how genome-wide

selection components analysis might be affected by viabil-

ity selection on a trait separate from the target of sexual

selection; that is, if sexual selection and viability selection

both affected males, but acted on different traits with dif-

ferent genetic architectures.

In our model, the initial generations set up the popula-

tion with genetic variation upon which sexual selection

could act, so we did not model a long history of sexual

selection in our simulated populations. Therefore, we

could only address the case where sexual selection has
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been recently introduced to a system or where genetic

variation is somehow maintained in the presence of

strong sexual selection. We also did not investigate differ-

ent types of mating systems, or those in which there are

other costs to mating. We incorporated a cost of female

choice (if females did not find an acceptable mate after

sampling 50 males, they did not mate), but the impact of

this parameter was not addressed in our analysis. There

could be subtle effects of these details of the mating sys-

tem on the detection of selection at the genomic level,

but addressing how mating system parameters affect gen-

ome-wide selection components analysis is beyond the

scope of this paper.

Although FST has been used as a measure of differentia-

tion and population structure between populations, there

is some murkiness surrounding its application between

life stages within a population. More population genetics

theoretical work is needed to evaluate whether there are

any confounding factors in applying FST within a genera-

tion. Additionally, FST is sensitive to other modes of

selection (e.g., background or positive selection), so it is

possible that these forces may confound the effects of sex-

ual selection. Although ideally we would be able to follow

genotypes over multiple generations, FST is the most con-

venient summary statistic at this time. We believe that

applying genome-wide selection components analysis

using FST statistics to capture differentiation between life

stages is the best method currently available, but that the

same principle could be applied as genomics statistics are

improved and refined.

In addition to these factors that we could not test with

our model, our model is different from empirical studies

in several ways. Importantly, empirical genomics studies

would be affected by sources of error such as sampling

bias and sequencing errors. We chose not to include these

factors in our model, as these are problems that plague

all current population genomics studies and have been

evaluated by other researchers (e.g., Arnold et al. 2013;

Davey et al. 2013; Gautier et al. 2013). Finally, what we

present here can be called a best-case scenario, in which

sexual selection is recent and strong, linkage disequilib-

rium and genetic variance are at ideal levels, and there

are few quantitative trait loci with large effects.

Conclusion

In summary, we investigated the potential for genome-

wide selection components analysis to detect signatures of

sexual selection using an individual-based simulation

model, in which allele frequencies in adults and offspring

from a single population were compared. We were able

to accurately detect some or most of the quantitative trait

loci underlying the trait under selection, even when

sample sizes were low or the trait was highly polygenic.

However, selection must be very strong and there must

only be few loci of major effect for a high detection rate

to occur. Implementation of this method in studies of

natural populations could provide another tool to identify

genomic regions that are affected by sexual selection,

leading to a better understanding of how selection affects

the phenotype and results in the heritable changes that

allow evolutionary change in natural populations.
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