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A B S T R A C T   

The Covid-19 pandemic has highlighted the value of strong surveillance systems in supporting our abilities to 
respond rapidly and effectively in mitigating the impacts of infectious diseases. A cornerstone of such systems is 
basic subnational scale data on populations and their demographics, which enable the scale of outbreaks to be 
assessed, risk to specific groups to be determined and appropriate interventions to be designed. Ongoing 
weaknesses and gaps in such data have however been highlighted by the pandemic. These can include outdated 
or inaccurate census data and a lack of administrative and registry systems to update numbers, particularly in 
low and middle income settings. Efforts to design and implement globally consistent geospatial modelling 
methods for the production of small area demographic data that can be flexibly integrated into health-focussed 
surveillance and information systems have been made, but these often remain based on outdated population data 
or uncertain projections. In recent years, efforts have been made to capitalise on advances in computing power, 
satellite imagery and new forms of digital data to construct methods for estimating small area population dis-
tributions across national and regional scales in the absence of full enumeration. These are starting to be used to 
complement more traditional data collection approaches, especially in the delivery of health interventions, but 
barriers remain to their widespread adoption and use in disease surveillance and response. Here an overview of 
these approaches is presented, together with discussion of future directions and needs.   

1. The value of small area demographic data for effective disease 
surveillance 

The Covid-19 pandemic has shone a spotlight on the importance and 
lack of comprehensive, timely and accurate health surveillance and in-
formation systems for mitigating the impact of infectious diseases. In-
tegrated systems that brought together timely data on cases, healthcare 
utilisation and deaths at small area scales, together with reliable data on 
underlying demographics, enabled rapid and accurate identification of 
outbreaks, key risk groups, scales of transmission and spread routes. 
These all facilitated the appropriate design of interventions and miti-
gation of impacts. Building such systems in the midst of a pandemic is 
challenging though and requires building upon existing routine systems 
and data collection. The Covid-19 pandemic exposed how many coun-
tries did not have such strong systems and underlying data in place 
(Aborode et al., 2021; Ibrahim, 2020). 

Key challenges in disease surveillance and the achievement of ‘pre-
cision’ in public health, include the registration of births and deaths and 
tracking disease (Dowell et al., 2016). These are impacted in multiple 
ways by weaknesses in underlying demographic data. In terms of birth 
and death registration, it is hard to know whether a national deworming 
programme for children in one country or a vaccination programme for 

pertussis in another is reducing mortality when less than 5% of deaths 
are registered. However, even if 100% of deaths are registered, it re-
mains challenging to both implement the programmes and place the 
numbers of deaths in context without reliable multi-temporal, dis-
aggregated data on population numbers and distributions, particularly 
when seasonal dynamics are strong and highly mobile population 
groups exist (Bharti et al., 2011; Buckee et al., 2017; Wesolowski et al., 
2017). Careful surveillance can guide public health in a country (Dowell 
et al., 2016), but improving detection and measurement of the numer-
ator without attention to the denominator however risks providing an 
inaccurate picture. Analyses in Namibia showed that improved quanti-
fication of denominator populations changed malaria incidence mea-
sures by more than 30% (Zu Erbach-Schoenberg et al., 2016). Moreover, 
by pairing just a small number of physical autopsies with verbal au-
topsies on the same deaths, the much larger number of verbal autopsies 
can be calibrated - but the verbal autopsy data are often drawn from 
surveys built on static and outdated sample frames (Carr-Hill, 2013; 
Thomson et al., 2020) and again it remains challenging to place outputs 
in context in settings where denominators are uncertain. The reliance on 
static and aging figures for denominators leads to the common occur-
rence of 200% vaccination rates (Cutts et al., 2021). 

The collection and maintenance of timely and accurate small area 
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data on population distributions, demographics and dynamics repre-
sents a challenge across the World. In many countries, Covid has 
exposed a lack of registry systems for recording cases, deaths, but also a 
lack of timely and reliable data on denominators. Moreover, Covid itself 
has disrupted the improvement of this situation. Seventy-three percent 
of National Statistical Offices (NSOs) had a Population and Housing 
Census planned in 2020 or 2021 before the pandemic hit (Con-
treras-Gonzalez et al., 2020; UNFPA, 2020a). In the low and 
lower-middle income group, 68% of the NSOs that were planning a 
census had to postpone it (United Nations, 2020). 

The value of small area demographic data remain clear and the 
Covid-19 pandemic demonstrated key applications of modelled geo-
spatial datasets. They formed the demographic basis for some of the 
most high profile and influential covid transmission models used to 
guide policy (Imperial College, 2022; Institute for Health Metrics and 
Evaluation, 2022), and are now built into health information system 
software (University of Oslo, 2022). They were also used in the con-
struction of microplans for the delivery of covid vaccines and in reacting 
and assessing responses to outbreak and mitigation measures (e.g 
(GRID3, 2021a; Shepherd et al., 2021).). These applications demon-
strate a growing acceptance and use of modelled population datasets 
built upon geospatial data from satellite imagery, GPS mapping and 
mobile data to fill gaps in small area demographic data availability. 
Nevertheless, the construction of such datasets remains an area of 
research, with substantial uncertainties remaining and differing inputs 
and approaches leading to large variations in output estimates. 

1.1. Modelled small area pop estimates 

Ideally, every country would have systems such as those in Nordic 
countries, where integrated registries and administrative data collection 
systems enable the production of timely small area data on population 
distributions and demographics, without the need for costly decennial 
national population and housing censuses (UNECE, 2018). While more 
countries move towards developing such systems, many are far behind, 
with the implementation of a national census every ten years still 
remaining a challenge. Even where these are implemented in a robust 
and rigorous way, demographic changes during intercensal periods can 
make the data rapidly outdated, particularly at small area scales where 
changes are harder to forecast. In some countries, registry and admin-
istrative systems can fill these gaps, but these can often be incomplete 
and inaccurate, especially in many low income settings. Rolling surveys 
are another solution that some countries have adopted to capture 
changes between censuses at relatively low costs, such as the US Census 
Bureau’s American Community Survey (Census, 2022), but these are 
also lacking across low income settings. Spatial modelling approaches 
that aim to address some of these challenges through use of satellite 
imagery and other geospatial data to capture small area changes 
occurring over relatively short timescales compares to the decennial 
census have therefore become more prominent in recent decades 
(UNFPA, 2020b). 

In the absence of publicly available small area data from censuses, or 
in the absence of consistent data between countries and across conti-
nents, or in the absence of any recent and reliable data at all, spatial 
modelling approaches aim to fill gaps. Since the 1990s (Tobler et al., 
1997), a major focus has been on so-called ‘top-down’ disaggregation, 
whereby large area census data, or projections matched to relevant 
administrative/enumeration boundaries are disaggregated to grid 
squares, maintaining counts at original units (‘mass-preserving’) and 
estimating distributions within these units (Tobler, 1979; Leyk et al., 
2019). The ongoing global assembly of such unit-based count data 
(CIESIN, 2018) has meant that different approaches to disaggregation 
have been explored and applied over recent years. These have been 
driven by the availability of settlement maps, relevant geospatial 
covariates and computing power among other factors, as well as inten-
ded user needs. Some have maintained the simplicity of simply 

spreading available population data equally over a grid, some have 
allocated population counts to mapped settlements, while others have 
built more complex models that use a set of geospatial covariates to try 
and capture variations within settlements and across countries. The 
focus of this perspectives piece is not to provide a comprehensive review 
of these approaches and resultant datasets, but readers interested in 
more background should refer to Leyk et al. (2019). for a recent review. 

The variety of ‘top down’ modelling approaches results in differing 
disaggregations of the same aggregate population count data. Using the 
example of the five most westerly provinces of the Democratic Republic 
of the Congo (DRC) that encompass Kinshasa and its surrounding region,  
Fig. 1 highlights how different a selection of commonly used open model 
estimates can be at the scale of health zones. These will in turn result in 
differing surveillance indicators, denominators for health metrics (Nil-
sen et al., 2021), and target populations for interventions. Fig. 2a-d 
shows the relative patterns of estimated population distributions in each 
dataset at the grid square scale for Kinshasa and its immediate sur-
rounding area with health area boundaries overlaid. While DRC repre-
sents an extreme example, having not conducted a national census since 
1984, and the population estimates input to the models are for large 
administrative units, the figures highlight how variations in top-down 
modelling methods can result in substantial differences in predictions. 
An obvious question when presented with such differing estimates of 
population distribution is ‘which is right?’. This is often a challenge to 
assess, as where detailed and recent population data exists, often it is the 
input to the models, leaving a lack of independent data to compare 
against. Studies using detailed census data (Bustos et al., 2020; Chen 
et al., 2020; Fries et al., 2021; Yin et al., 2021), as well as 
cross-validation (Reed et al., 2018; Stevens et al., 2015, 2020) have tried 
to assess how well different models replicate population numbers and 
distributions at the scale of available data, and unsurprisingly those 
more complex models using detailed settlement mapping and range of 
covariates tend to do best. However, multiple trade-offs exist in the 
production of such datasets that depend on aspects such as input data 
availability, geographical extent, temporal range, spatial resolution, 
intended use and user needs. For instance, a more complex model may 
produce more accurate outputs, but the production process can be more 
challenging to communicate to users. A dataset that estimates popula-
tion distributions over multiple years will necessarily have to compro-
mise on the quality and amount of data for older time periods, and a high 
spatial resolution dataset can be more difficult to process and incorpo-
rate into surveillance systems than a coarser scale one. Each model and 
dataset has often been designed with a different purpose in mind and 
have different types of uncertainty and variations inherent within them, 
which can often make them not directly comparable. 

A bigger issue than whether one model or another more accurately 
distributes the population counts from administrative unit to grid square 
scale, is the fact that the population counts themselves can be uncertain 
and inaccurate. The age, scale, type and quality of input population 
count data being disaggregated within top-down models is information 
that has often been poorly communicated, understood and addressed. 
While gridded outputs therefore tend to look similar between countries, 
there can be substantial variations in the accuracy of population esti-
mates. The differences between the DRC and nearby Malawi are illus-
trative, with input population count data for DRC coming from 
uncertain projections from the 1984 census and an average unit size of 
12,476 km2, while the data for Malawi come from their 2018 census, 
with an average unit size of just 9.4 km2. In these two settings, the 
choice of modelling approach has a significantly larger impact for the 
DRC, where population counts for massively larger units are being dis-
aggregated to the same size grid squares and the differences seen in 
Fig. 2a-d would be less apparent for Malawi. Nevertheless, as high-
lighted above, even in settings with high quality regular censuses with 
data available mapped to small units, the processes of migration, 
displacement, urbanization and heterogeneous fertility and mortality 
can make these data quickly outdated and are hard to accurately forecast 
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Fig. 1. Maps for the region encompassing the five most westerly provinces of the Democratic Republic of the Congo (Kinshasa, Kongo-Central, Kwango, Kwilu, and 
Mai-Ndombe, as shown in (a)), showing proportions of the total population of the region estimated to be in each health zone for a set of commonly used open gridded 
population datasets: (b) Gridded Population of the World version 4 (GPWv4) (CIESIN, 2018), (c) GHS Population grid (Florczyk et al., 2019), (d) Meta Data for Good 
High resolution population density maps (Meta Data for Good, 2022), (e) WorldPop global constrained top down estimates (Bondarenko, 2020), (f) WorldPop/GRID3 
bottom up population estimates (Boo et al., 2020). 
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Fig. 2. Gridded population estimates from the same datasets as Fig. 1 for Kinshasa and surrounding area in the Democratic Republic of the Congo, with health areas 
overlaid. The extent of the area shown is highlighted in the black box in Fig. 1(a). Each dataset has been displayed using a scale of 20 quantiles within the area shown 
to highlight the inherent population distribution patterns. (a) Gridded Population of the World version 4 (GPWv4) (CIESIN, 2018), (b) GHS Population grid (Florczyk 
et al., 2019), (c) Meta Data for Good High resolution population density maps (Meta Data for Good, 2022), (d) WorldPop global constrained top down estimates 
(Bondarenko, 2020), (e) WorldPop/GRID3 bottom up population estimates (Boo et al., 2020), (f) uncertainty of WorldPop/GRID3 bottom up population estimates, 
measured as the difference between the upper and lower 95% credible intervals of the posterior prediction divided by the mean of the posterior prediction. 
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at small area scales (Wilson et al., 2021), resulting in potentially major 
impacts on reliable surveillance and health metrics (Tatem, 2014). 

The issues outlined above have lead to the rise of census-independent 
small area pop estimation methods (Francoise, 1990; Harvey, 2002; 
Hillson et al., 2015; Leasure et al., 2020; Wardrop et al., 2018; Weber 
et al., 2018). These ‘bottom-up’ modelling methods typically rely on 
complete counts of population within small defined areas that can come 
from bespoke field surveys, listings from household surveys, or the re-
sults of rolling or partial censuses. Statistical models are then used to 
link these enumeration data to spatial covariate data, with full coverage 
over the regions of interest to predict population numbers in unsampled 
locations (UNFPA, 2020b; Wardrop et al., 2018). Often these are 
Bayesian models built to try and capture as many forms of measurable 
uncertainty and error in inputs and the modelling process as possible, 
and propagate them through to output predictions. The models produce 
full posterior prediction outputs for each grid square, meaning they can 
be summarised to produce most likely estimates, but also measures of 
uncertainty at differing levels and spatial scales. Recent examples 
include the development of models to estimate population counts in 
areas that could not be enumerated in national census efforts in coun-
tries such as Burkina Faso, Afghanistan and Colombia (Darin et al., 
2022; Sanchez-Cespedes et al., 2021; WorldPop Mapping, 2021). In 
Zambia, models were developed to make use of household listings from 
recent survey data as training data to construct national small area es-
timates that formed the basis for census planning and health interven-
tion delivery (Dooley et al., 2021; GRID3, 2021b; WorldPop, 2021a). 
Moreover, in settings where existing census data are outdated, bespoke 
field surveys were undertaken to obtain recent sample enumeration data 
for constructing modelled estimates in Nigeria, South Sudan and DRC 
(Leasure et al., 2020; Boo et al., 2022; UNFPA South Sudan Population, 
2021). The outputs of the bottom-up modelling efforts in DRC are pre-
sented in the same way as those from the multiple top-down models in 
Fig. 1f and 2e, but with the addition of a measure of prediction uncer-
tainty mapped in Fig. 2f (Boo et al., 2022). Given the significantly 
different input data and approach to production of the estimates, it is no 
surprise to see more differences in estimated patterns of population 
distributions in the figures. 

Are the bespoke bottom-up population estimation models producing 
more accurate estimates of small area population numbers than the top- 
down approaches? This is difficult to assess and remains context and 
location-specific, but there is growing evidence and many reasons to 
believe that the estimates are more reliable. While sample sizes are often 
small, building models upon recent enumeration data, rather than linear 
projections from census baselines many decades ago in settings where 
massive changes have occurred provides more confidence in outputs 
(Wardrop et al., 2018). A growing amount of anecdotal and quantitative 
feedback from field teams and national statistical offices on the accuracy 
of estimates adds to statistical evidence from model cross-validation, as 
well as assessments on the use of data in deriving metrics or in health 
delivery campaigns adds to this (Nilsen et al., 2021; Leasure et al., 2020; 
GRID3, 2021b; Boo et al., 2022; GRID3, 2020; Thomson et al., 2021; Ali 
et al., 2020). Moreover, the explicit measurement and communication of 
uncertainty in predicted population estimates provides users with 
quantitative insights on where confidence in predictions is higher or 
lower, taking small area population estimates a step forward beyond the 
opacity of many top-down model outputs (Leasure et al., 2020). 

1.2. The future for small area population data 

Geospatial modelling approaches have made great advances in sup-
porting the estimation of population numbers at small area scales. They 
should not be seen however as a replacement for censuses, surveys and 
systems of enumeration. These ensure that people are counted and are 
the source of a wealth of additional data that cannot be accurately 
estimated from models based on satellite imagery and other forms of 
geospatial data. Nevertheless, the challenges that physical enumeration 

of populations poses should be recognised (UNFPA, 2020b). National 
population and housing censuses are typically the largest peace-time 
operations that countries undertake, and the expense, complex logis-
tics and disrupting factors, such as conflict or covid, mean that full 
enumeration is not always possible. This in turn results in a lack of 
reliable and timely data that form a key component of disease surveil-
lance systems. Recent years have seen a growing use of modelled pop-
ulation data by ministries of health, national statistics offices and 
international agencies, in particular estimates produced from bottom-up 
models (Wardrop et al., 2018). As well as being used for health-related 
applications such as vaccination or bednet distribution campaigns 
(GRID3, 2021b; Ali et al., 2020), the value of these estimates in sup-
porting the census process (UNFPA, 2020b) or collection of survey data 
(Thomson et al., 2020; Qader et al., 2021, 2020; Thomson et al., 2017) 
has been shown. 

Many challenges remain to be addressed in capturing accurate 
population numbers at small area scales through both enumeration and 
modelling approaches, but ongoing research points towards potential 
solutions. Multiple innovations in data collection and sample design are 
pushing forward the ability to directly enumerate populations and 
capture data from those that can be hard to reach (Hoogeveen and Pape, 
2020; Tomaselli et al., 2021). These can provide valuable data to com-
plement and improve upon traditional approaches to enumeration, as 
well as form the basis for the geospatial modelling efforts that are the 
focus here. Substantial variations in population densities and land uses 
over small spatial scales make accurately estimating and mapping 
populations within urban areas a difficult exercise, but the automated 
ability to accurately map building footprints from recent satellite im-
agery is helping to quantify some of this variability (Boo et al., 2022). 
The further processing of these building datasets to map neighbourhood 
types (Jochem et al., 2020) and categorize residential status (Sturrock 
et al., 2018) is supporting refinements to urban population modelling 
(WorldPop, 2021b). Moreover, the development of approaches for 
estimating building heights and volumes from satellites (e.g (Esch et al., 
2022).) presents opportunities to account for high rise residential or 
commercial buildings in estimation modelling. Geostatistical modelling 
from GPS-located survey data also offer solutions for the small area 
mapping of population demographics to move beyond large area sum-
maries or outdated census data (e.g (Alegana et al., 2015).). 

The dynamics of urban populations present challenges, with constant 
changes in densities each day, week and season, and urbanization trends 
changing the shape and extent of settlements rapidly. Here again, new 
forms of geospatial digital datasets offer possibilities to capture and 
quantify such changes that would be costly to measure with surveys or 
full enumeration. These include the use of mobile phone call records 
(Bergroth et al., 2022; Deville et al., 2014), satellite-based measures 
(Bharti et al., 2016) and models that integrate multiple forms of spatially 
referenced data (Martin et al., 2015). Subnational changes in population 
distributions induced by migration and displacement have been shown 
to be reliably captured by models driven by mobile phone record data 
(Lai et al., 2019; Bengtsson et al., 2011), and approaches for incorpo-
rating such flow data into small area population estimation models 
continue to be explored (Dooley et al., 2020). Improved understanding 
of the processes and dynamics of population changes at small area scales 
in turn offer the potential for improved forecasting (Wilson et al., 2021). 

Ultimately, national statistical offices hold the responsibility for the 
production and maintenance of the official population data that feed 
into disease surveillance and health information systems. Many have 
invested in geospatial, geostatistical and data science skills to capitalise 
on advances in small area population data production. Across low and 
middle income regions, resources for such investment are often limited, 
and therefore challenges exist in abilities to adopt, develop and integrate 
new geospatial methods to complement more traditional enumeration 
approaches. Official population data underlie governance and can be 
highly sensitive since they determine allocations of resources, repre-
sentations in parliaments and delivery of services. It is generally 
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insufficient therefore for models developed and implemented elsewhere 
to be handed over to statistical offices. Country ownership and the 
ability of statistical offices to explain and defend methods adopted in the 
production of small area population data becomes vital for acceptance 
and use. This will remain a substantial barrier to the use of geospatial 
modelling to complement more traditional data collection, but the ex-
amples highlighted above from countries such as Burkina Faso, 
Colombia, Nigeria, DRC, Afghanistan and Zambia show how co- 
development and country ownership are beginning to address these 
challenges, providing data that can then be used by Ministries of Health 
as an important component of surveillance and healthcare delivery. 

The Covid pandemic has necessitated the acceleration of vaccines 
and treatment development, of the science of disease modelling, and of 
the shape and scale of infectious disease surveillance. The disruption 
that the pandemic has caused to traditional methods of population 
enumeration in some countries (Contreras-Gonzalez et al., 2020; 
UNFPA, 2020a) may also necessitate the accelerated development and 
adoption of modelling approaches to fill gaps. Moreover, increased de-
mands for timely and reliable small area denominator data to support 
the needs of expanded and reshaped disease surveillance systems will 
bring extra demands. Multiple types of denominator data exist, each 
with their own set of strengths, different sorts of uncertainty and 
different levels of accuracy. Clearly reporting the denominator data 
used, its source and features, as well as quantifying uncertainties should 
ideally be a goal for analyses and reports based upon them. Geospatial 
modelling can become an important tool in integrated approaches to the 
production of small area population data. For example, where a survey 
or new census is being planned, modelled estimates can provide a 
sample frame where previous census-based data are outdated, and in 
turn, the data collected using the new frame can be used to improve and 
update the modelled estimates for future use. These complimentary 
activities offer the possibility of moving towards a kind of ‘living’ 
census, something that is currently only a reality in countries with strong 
registry-based systems. In the meantime, geospatial modelling ap-
proaches provide a way to compliment ongoing data collection efforts to 
provide more timely and finer scale estimates, either through the 
‘top-down’ spatial disaggregation of projections to small areas, or the 
‘bottom-up’ estimation of population numbers from sample data into 
unenumerated areas. Having access to timely, reliable population data 
at small area scales that is able to be regularly updated should ideally be 
a target for the World to work towards to ensure appropriate, effective 
and efficient responses when the next outbreak or pandemic arrives. 
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