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Abstract Living cells often need to measure chemical concentrations that vary in time, yet how

accurately they can do so is poorly understood. Here, we present a theory that fully specifies,

without any adjustable parameters, the optimal design of a canonical sensing system in terms of

two elementary design principles: (1) there exists an optimal integration time, which is determined

by the input statistics and the number of receptors; and (2) in the optimally designed system, the

number of independent concentration measurements as set by the number of receptors and the

optimal integration time equals the number of readout molecules that store these measurements

and equals the work to store these measurements reliably; no resource is then in excess and hence

wasted. Applying our theory to the Escherichia coli chemotaxis system indicates that its integration

time is not only optimal for sensing shallow gradients but also necessary to enable navigation in

these gradients.

Introduction
Living cells continually have to respond and adapt to changes in their environment. They often do so

on a timescale that is comparable to that of the environmental variations. Examples are cells that

during their development differentiate in response to time-varying morphogen gradients

(Durrieu et al., 2018) or cells that navigate through their environment (Tostevin and ten Wolde,

2009; Sartori and Tu, 2011; Long et al., 2016). These cells shape, via their movement, the statistics

of the input signal, such that the timescale of the input fluctuations becomes comparable to that of

the response. In all these cases, it is important to understand how accurately the cell can estimate

chemical concentrations that vary in time.

Cells measure chemical concentrations via receptors on their surface. These measurements are

inevitably corrupted by the stochastic arrival of the ligand molecules by diffusion and by the stochas-

tic binding of the ligand to the receptor. Wiener and Kolmogorov (Extrapolation, 1950; Kolmo-

gorov, 1992) and Kalman, 1960 have developed theories for the optimal strategy to estimate

signals in the presence of noise. Their filtering theories have been employed widely in engineering,

and in recent years they have also been applied to cell signaling. They have been used to show that

time integration can improve the sensing of time-varying signals by reducing receptor noise,

although it cannot remove this input noise completely because of signal distortion (Andrews et al.,

2006; Hinczewski and Thirumalai, 2014; Becker et al., 2015). It has been shown that circadian sys-

tems can adapt their response to the statistics of the input signal, as predicted by Kalman filtering

theory (Husain et al., 2019). Moreover, Wiener–Kolmogorov filtering theory has been employed to

derive the optimal topology of the cellular network depending on the statistics of the input signal

(Becker et al., 2015). Negative feedback and incoherent feedforward, which are common motifs in

cell signaling (Alon, 2007), make it possible to predict future signal values via signal extrapolation,

which is useful when the past signal contains information about the future in addition to the current

signal (Becker et al., 2015).

The precision of sensing depends not only on the topology of the cellular sensing network but

also on the resources required to build and operate it. Receptors and time are needed to take the
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concentration measurements (Berg and Purcell, 1977), downstream molecules are necessary to

store the ligand-binding states of the receptor in the past, and energy is required to store these

states reliably (Govern and Ten Wolde, 2014a). Many studies have addressed the question how

receptors and time limit the precision of sensing static concentrations that do not vary on the time-

scale of cellular response (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005; Wang et al.,

2007; Rappel and Levine, 2008; Endres and Wingreen, 2009; Hu et al., 2010; Mora and Wing-

reen, 2010; Govern and Ten Wolde, 2012; Mehta and Schwab, 2012; Govern and Ten Wolde,

2014a; Govern and Ten Wolde, 2014b; Kaizu et al., 2014; Ten Wolde et al., 2016; Mugler et al.,

2016; Fancher and Mugler, 2017). In addition, progress has been made in understanding how the

number of readout molecules and energy set the precision of sensing static signals (Mehta and

Schwab, 2012; Govern and Ten Wolde, 2014a; Govern and Ten Wolde, 2014b). Yet, what the

resource requirements for sensing time-varying signals are is a wide open question. In particular, it is

not known how the number of receptor and readout molecules, time, and power required to main-

tain a desired sensing precision depend on the strength and the timescale of the input fluctuations.

In this article, we present a theory for the optimal design of cellular sensing systems as set by

resource constraints and the dynamics of the input signal. The theory applies to one of the most

common motifs in cell signaling, a receptor that drives a push–pull network, which consists of a cycle

of protein activation and deactivation (Goldbeter and Koshland, 1981, see Figure 1). These sys-

tems are omnipresent in prokaryotic and eukaryotic cells (Alon, 2007). Examples are GTPase cycles,

as in the Ras system, phosphorylation cycles, as in MAPK cascades, and two-component systems like

the chemotaxis system of Escherichia coli. Push–pull networks constitute a simple exponential filter

(Hinczewski and Thirumalai, 2014; Becker et al., 2015), in which the current output depends on

the current and past input (with past input values contributing to the output with a weight that

decays exponentially with time back into the past). Wiener–Kolmogorov filtering theory (Extrapola-

tion, 1950; Kolmogorov, 1992) shows that these networks are optimal for estimating signals that

are memoryless (Becker et al., 2015), meaning that the past input does not contain information that
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Figure 1. The cell signaling network. (a) The time-varying ligand concentration is modeled as a memoryless

(Markovian) signal with mean L, variance s2

L, and correlation time t L ¼ l�1. A free ligand molecule L (light blue

circle) can bind at rate k1 to a free receptor R (magenta protein) on the cell membrane (black line), forming the

complex RL, and unbind at rate k2 from RL. The correlation time of the receptor state is t c. The complex RL

catalyzes the phosphorylation reaction, driven by adenosine triphosphate (ATP) conversion, of a downstream

readout from the unphosphorylated (inactive) state x to the phosphorylated (active) state x�, with rate kf . The

phosphorylated readout then spontaneously decays to the x state with rate kr. Microscopic reverse reactions of

each signaling pathway are represented by dashed arrows. The relaxation time of the push–pull network is t r. (b)

Free-energy landscape of a readout molecule across the activation/deactivation reactions. Fuel turnover, provided

by ATP conversion, drives the activation (phosphorylation) reaction characterized by the forward rate kf and its

microscopic reverse rate k�f (green arrows). Associated with this activation reaction is a free-energy drop

D�1 ¼ log kfx
k�fx

�. The deactivation pathway corresponds to the spontaneous release of the inorganic phosphate; it is

characterized by the rate kr and its microscopic reverse k�r (blue arrows) and corresponds to a free-energy drop

D�2 ¼ log krx
�

k�rx
.
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is not already present in the current input. These networks are useful because they act as low-pass

filters, removing the high-frequency receptor–ligand-binding noise (Andrews et al., 2006;

Hinczewski and Thirumalai, 2014; Becker et al., 2015). Push–pull networks thus enable the cell to

employ the mechanism of time integration, in which the cell infers the concentration not from the

instantaneous number of ligand-bound receptors, but rather from the average receptor occupancy

over an integration time (Berg and Purcell, 1977). Our theory gives a unified description in terms of

all the cellular resources, protein copies, time, and energy, that are necessary to implement this

mechanism of time integration. It does not address the sensing strategy of maximum-likelihood esti-

mation (Endres and Wingreen, 2009; Mora and Wingreen, 2010; Lang et al., 2014; Hartich and

Seifert, 2016; Ten Wolde et al., 2016) or Bayesian filtering (Mora and Nemenman, 2019).

While filtering theories are powerful tools for predicting the optimal topology and response

dynamics of the cellular sensing network (Andrews et al., 2006; Hinczewski and Thirumalai, 2014;

Becker et al., 2015), they do not naturally reveal the resource requirements for sensing. Our theory

therefore employs the sampling framework of Govern and Ten Wolde, 2014a and extends it here

to time-varying signals. This framework is based on the observation that the cell estimates the cur-

rent ligand concentration not from the current number of active readout molecules directly, but

rather via the receptor: the cell uses its push–pull network to estimate the receptor occupancy from

which the ligand concentration is then inferred (see Figure 2). To elucidate the resource require-

ments for time integration, the push–pull network is viewed as a device that employs the mechanism

of time integration by discretely sampling, rather than continuously integrating, the state of the

receptor via collisions of the readout molecules with the receptor proteins (see Figure 2). During

each collision, the ligand-binding state of the receptor protein is copied into the activation state of
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Figure 2. The precision of estimating a time-varying ligand concentration L. (a) The cell estimates the current ligand concentration L ¼ LðtÞ by
estimating the average receptor occupancy p

t r
over the past integration time t r and by inverting the dynamic input–output relation p

t r
ðLÞ (black solid

line). The latter describes the mapping between the current concentration LðtÞ of the time-varying signal and the average receptor occupancy p
t r

over

the past t r, see also (b); it depends on the timescale t L of the input signal and hence differs from the conventional static input–output relation pðLsÞ,
which describes the mapping between the average receptor occupancy and a static ligand concentration Ls that does not vary in time (gray solid line).

The squared error in the estimate of the concentration ðdL̂Þ2 ¼ s2

p̂
t r
=~g2L!p

t r
depends on the variance s2

p̂
t r

in the estimate of the average receptor

occupancy p̂
t r

and the dynamic gain ~gL!p
t r
, which is the slope of p

t r
ðLÞ. Only in the limit t c; t r � t L, does pt r

ðLÞ reduce to (the linearized form of)

pðLsÞ and does the dynamic gain ~gL!p
t r

become the static gain gL!p, which is the slope of pðLsÞ at the average ligand concentration L. The input

distribution, shown in blue, has width sL. (b) The average receptor occupancy p
t r

over the past integration time t r is estimated via the downstream

network, which is modeled as a device that discretely samples the ligand-binding state of the receptor via its readout molecules x (Govern and Ten

Wolde, 2014a); the fraction of modified readout molecules provides an estimate of p
t r
. The sensing error has two contributions (Equation 6): sampling

error and dynamical error. The sampling error arises from the error in the estimate of p
t r

that is due to the stochasticity of the sampling process; it

depends on the number of samples, their independence, and their accuracy. (c) The dynamical error arises because the current ligand concentration

LðtÞ is estimated via the average receptor occupancy p
t r

over the past integration time t r: the latter depends on the ligand concentration in the past

t r, which will, in general, deviate from the current concentration. Two different input trajectories (L1 in blue, L2 in green) ending at time t at the same

value LðtÞ (red dot) lead to different estimates of LðtÞ due to their different average receptor occupancy (p
t r ;1>pt r ;2) in the past t r.
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the readout molecule (Ouldridge et al., 2017). The readout molecules thus constitute samples of

the receptor state, and the fraction of active readout molecules provides an estimate of the average

receptor occupancy. The readout activation states have, however, a finite lifetime, which means that

this is an estimate of the (running) average receptor occupancy over this lifetime, which indeed sets

the receptor integration time t r. The cell can estimate the current ligand concentration L from this

estimate of the average receptor occupancy p
t r

over the past integration time t r because there is a

unique one-to-one mapping between p
t r

and L. This mapping p
t r
ðLÞ is the dynamic input–output

relation and differs from the conventional static input–output relations used to describe the sensing

of static concentrations that do not vary on the timescale of the response (Berg and Purcell, 1977;

Bialek and Setayeshgar, 2005; Kaizu et al., 2014; Ten Wolde et al., 2016) in that it depends not

only on the response time of the system but also on the dynamics of the input signal.

Our theory reveals that the sensing error can be decomposed into two terms, which each depend

on collective variables that reveal the resource requirements for sensing. One term, the sampling

error, describes the sensing error that arises from the finite accuracy by which the receptor occu-

pancy is estimated. This error depends on the number of receptor samples, as set by the number of

receptors, readout molecules, and the integration time; their independence, as given by the recep-

tor-sampling interval and the timescale of the receptor–ligand-binding noise; and their reliability, as

determined by how much the system is driven out of thermodynamic equilibrium via fuel turnover.

The other term is the dynamical error and is determined by how much the concentration in the past

integration time reflects the current concentration that the cell aims to estimate; it depends on the

integration time and timescale of the input fluctuations.

Our theory gives a comprehensive view on the optimal design of a cellular sensing system. Firstly,

it reveals that the resource allocation principle of Govern and Ten Wolde, 2014a can be general-

ized to time-varying signals. There exist three fundamental resource classes – receptors and their

integration time, readout molecules, and power and integration time – which each fundamentally

limit the accuracy of sensing; and, in an optimally designed system, each resource class is equally

limiting so that none of them is in excess and thus wasted. However, in contrast to sensing static sig-

nals, time cannot be freely traded against the number of receptors and the power to achieve a

desired sensing precision: there exists an optimal integration time that maximizes the sensing preci-

sion, which arises as a trade-off between the sampling error and dynamical error. Together with the

resource allocation principle, it completely specifies, without any adjustable parameters, the optimal

design of the system in terms of its resources protein copies, time, and energy.

Our theory also makes a number of specific predictions. The optimal integration time decreases

as the number of receptors is increased because this allows for more instantaneous measurements.

Moreover, the allocation principle reveals that when the input varies more rapidly both the number

of receptors and the power must increase to maintain a desired sensing precision, while the number

of readout molecules does not.

Finally, we apply our theory to the chemotaxis system of E. coli. This bacterium searches for food

via a run-and-tumble strategy (Berg and Brown, 1972), yielding a fluctuating input signal. In small

gradients, the timescale of these input fluctuations is set by the typical run time of the bacterium,

which is on the order of a few seconds (Berg and Brown, 1972; Taute et al., 2015), while the

strength of these fluctuations is determined by the steepness of the gradient. Interestingly, experi-

ments have revealed that E. coli can sense extremely shallow gradients, with a length scale of

approximately 104mm (Shimizu et al., 2010), raising the question how accurately E. coli can measure

the concentration and whether this is sufficient to determine whether during a run it has changed,

even in these shallow gradients. To measure the concentration, the chemotaxis system employs a

push–pull network to filter out the high-frequency receptor–ligand-binding noise (Sartori and Tu,

2011). Applying our theory to this system predicts that the measured integration time, on the order

of 100 ms (Sourjik and Berg, 2002), is not only sufficient to enable navigation in these shallow gra-

dients but also necessary. This suggests that this system has evolved to optimally sense shallow con-

centration gradients.
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Results

Theory: model
We consider a single cell that needs to sense a time-varying ligand concentration LðtÞ (see

Figure 1a). The ligand concentration dynamics is modeled as a stationary memoryless, or Markovian,

signal specified by the mean (total) ligand concentration L, the variance s2

L, and the correlation time

t L ¼ l�1, which determines the timescale on which input fluctuations decay. It obeys Gaussian statis-

tics (Tostevin and ten Wolde, 2010).

The concentration is measured via RT receptor proteins on the cell surface, which independently

bind the ligand (Ten Wolde et al., 2016), Lþ R
k2

*)
k1

RL. The correlation time of the receptor state,

which is the timescale on which fluctuations in the number of ligand-bound receptors regresses to

the mean, is given by t c ¼ 1=ðk1Lþ k2Þ (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005;

Kaizu et al., 2014; Ten Wolde et al., 2016). It determines the timescale on which independent con-

centration measurements can be made.

The ligand-binding state of the receptor is read out via a push–pull network (Goldbeter and

Koshland, 1981). The most common scheme is phosphorylation fueled by the hydrolysis of adeno-

sine triphosphate (ATP) (see Figure 1b). The receptor, or an enzyme associated with it such as CheA

in E. coli, catalyzes the modification of the readout, xþ RLþ ATP *) x� þ RLþ ADP. The active read-

out proteins x� can decay spontaneously or be deactivated by an enzyme, such as CheZ in E. coli,

x�*) xþ Pi. Inside the living cell the system is maintained in a non-equilibrium steady state by keep-

ing the concentrations of ATP, adenosine diphosphate (ADP), and inorganic phosphate (Pi) constant.

We absorb their concentrations and the activities of the kinase and, if applicable, phosphatase in the

(de)phosphorylation rates, coarse-graining the (de)modification reactions into instantaneous second-

order reactions: xþ RL
k�f

*)
kf

x� þ RL, x�
k�r

*)
kr

x. This system has a relaxation time

t r ¼ 1=½ðkf þ k�fÞRLþ kr þ k�r� (Govern and Ten Wolde, 2014a), which describes how fast fluctua-

tions in x� relax. It determines how long x� can carry information on the ligand-binding state of the

receptor; t r thus sets the integration time of the receptor state.

Theory: inferring concentration from receptor occupancy
The central idea of our theory is illustrated in Figure 2a: the cell employs the push–pull network to

estimate the average receptor occupancy p
t r

over the past integration time t r. It then uses this esti-

mate p̂
t r

to infer the current concentration L via the dynamic input–output relation p
t r
ðLÞ, which pro-

vides a one-to-one mapping between p
t r

and L.

Dynamic input–output relation
The mapping p

t r
ðLÞ is the dynamic input–output relation. It gives the average receptor occupancy

over the past integration time t r, given that the current value of the input signal is L ¼ LðtÞ (see

Figure 2a). Here, the average is not only over the noise in receptor–ligand binding and readout acti-

vation (Figure 2b) but also over the subensemble of past input trajectories that each end at the

same current concentration L (Figure 2c; Tostevin and ten Wolde, 2010; Hilfinger and Paulsson,

2011; Bowsher et al., 2013). In contrast to the conventional static input–output relation pðLsÞ, which
gives the average receptor occupancy p for a steady-state ligand concentration Ls that does not

vary in time, the dynamic input–output relation takes into account the dynamics of the input and the

finite response time of the system. It depends on all timescales in the problem: the timescale of the

input, t L, the receptor–ligand correlation time t c, and the integration time t r. Only when

t L � t c; t r does the dynamic input–output p
t r
ðLÞ become equal to the static input–output relation

pðLsÞ.

Sensing error
Linearizing the dynamic input–output relation p

t r
ðLÞ around the mean ligand concentration L (see

Figure 2a) and using the rules of error propagation, the expected error in the concentration esti-

mate is
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ðdL̂Þ2 ¼
s2

p̂
t r

~g2L!p
t r

: (1)

Here, s2

p̂
t r

is the variance in the estimate p̂
t r

of the average receptor occupancy over the past

t r, given that the current input signal is L (see Figure 2a). The quantity ~gL!p
t r

is the dynamic gain,

which is the slope of the dynamic input–output relation p
t r
ðLÞ; it determines how much an error in

the estimate of p
t r

propagates to that in L. Equation 1 generalizes the expression for the error in

sensing static concentrations (Berg and Purcell, 1977; Bialek and Setayeshgar, 2005; Wang et al.,

2007; Mehta and Schwab, 2012; Kaizu et al., 2014; Govern and Ten Wolde, 2014a; Ten Wolde

et al., 2016) to that of time-varying concentrations.

Signal-to-noise ratio
Together with the distribution of input states, the sensing error ðdL̂Þ2 determines how many distinct

signal values the cell can resolve. The latter is quantified by the signal-to-noise ratio (SNR), which is

defined as

SNR� s2

L

ðdL̂Þ2
: (2)

Here, s2

L is the variance of the ligand concentration LðtÞ; because the system is stationary and time

invariant, we can omit the argument in LðtÞ and write L¼ LðtÞ. The variance s2

L is a measure for the

total number of input states, such that the SNR gives the number of distinct ligand concentrations

the cell can measure. Using Equation 1, it is given by

SNR¼
~g2L!p

t r

s2

p̂
t r

s2

L: (3)

The SNR also yields the mutual information Iðx�;LÞ ¼ 1=2 lnð1þSNRÞ between the input L and out-

put x� (Tostevin and ten Wolde, 2010).

Readout system samples receptor state
Receptor time averaging is typically conceived as a scheme in which the receptor state is averaged

via the mathematical operation of an integral: p
t r

¼ 1=t r

R
t r

0
pðt0Þdt0. Yet, readout proteins are dis-

crete components that interact with the receptor in a discrete and stochastic fashion. To derive the

dynamic gain ~gL!p
t r

and error in estimating p
t r
, s2

p̂
t r

(Equation 3), we therefore view the push–pull

network as a device that discretely samples the receptor state (see Figure 2b; Govern and Ten

Wolde, 2014a). The principle is that cells employ the activation reaction xþ RL ! x� þ RL to store

the state of the receptor in stable chemical modification states of the readout molecules. Readout

molecules that collide with a ligand-bound receptor are modified, while those that collide with an

unbound receptor are not (Figure 2b). The readout molecules serve as samples of the receptor at

the time they were created, and collectively they encode the history of the receptor: the fraction of

samples that correspond to ligand-bound receptors is the cell’s estimate for p
t r
. Indeed, this is the

discrete and stochastic implementation of the mechanism of time integration. The effective number

of independent samples depends not only on the creation of samples, xþ RL ! x� þ RL, but also on

their decay and accuracy. Samples decay via the deactivation reaction x� ! x, which means that they

only provide information on the receptor occupancy over the past t r. In addition, both the activation

and the deactivation reaction can happen in their microscopic reverse direction, which corrupts the

coding, that is, the mapping between the ligand-binding states of the receptor proteins and the acti-

vation states of the readout molecules. Energy is needed to break time reversibility and protect the

coding. Furthermore, for time-varying signals, we also need to recognize that the samples corre-

spond to the ligand concentration over the past integration time t r, which will in general differ from

the current concentration L that the cell aims to estimate (see Figure 2c). While a finite t r is neces-

sary for time integration, it will, as we show below, also lead to a systematic error in the estimate of

the concentration that the cell cannot reduce by taking more receptor samples.

This analysis reveals that the dynamic gain is (see Appendix 1)
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~gL!p
t r
¼ gL!p 1þ t c

t L

� ��1

1þ t r

t L

� ��1

: (4)

Only when t L � t r;t c is the average ligand concentration over the ensemble of trajectories ending

at dLðtÞ equal to the current concentration dLðtÞ (Figure 2c) and does ~gL!p
t r

become equal to its

maximal value, the static gain gL!p ¼ pð1� pÞ=L, where p is the average receptor occupancy aver-

aged over all values of dLðtÞ. The analysis also reveals that the error in p
t r

can be written as (see

Appendix 1, Equation 29)

s2

p̂
t r
¼ s

2; samp
p̂
t r

þs
2; dyn
p̂
t r

; (5)

where s
2; samp
p̂
t r

is a statistical error due to the stochastic sampling of the receptor and s
2; dyn
p̂
t r

is a sys-

tematic error arising from the dynamics of the input, as elucidated in Figure 2b, c.

Central result
To know how the error s2

p̂
t r

in the estimate of p
t r

propagates to the error ðdL̂Þ2 in the estimate of

the current ligand concentration, we divide s2

p̂
t r

by the dynamic gain ~gL!p
t r

given by Equation 4 (see

Equation 1). For the full system, the reversible push–pull network, this yields via Equation 3 the cen-

tral result of our article, the SNR in terms of the total number of receptor samples, their indepen-

dence, their accuracy, and the timescale on which they are generated:

SNR�1 ¼ 1þ t c

t L

� �2

1þ t r

t L

� �2 L=sL

� �2

pð1� pÞNI

þ L=sL

� �2

ð1� pÞ2Neff

" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sampling error

þ 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt c þ t rÞ

� �

� 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamical error

: (6)

This expression shows that the sensing error SNR�1 can be decomposed into two distinct contri-

butions, which each have a clear interpretation: the sampling error, arising from the stochasticity in

the sampling of the receptor state, and the dynamical error, arising from the dynamics of the input.

When the timescale of the ligand fluctuations t L is much longer than the receptor correlation

time t c and the integration time t r, t L � t r; t c, the dynamical error reduces to zero and only the

sampling error remains. Here, Neff is the total number of effective samples and NI is the number of

these that are independent (Govern and Ten Wolde, 2014a). For the full system, they are given by

NI ¼
1

ð1þ 2t c=DÞ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

fI

ebD�1 � 1
� �

ebD�2 � 1
� �

ebD�� 1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
q

_nt r

p

z}|{
�N

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Neff

: (7)

The quantity _n¼ kfpRTx� k�fpRTx
� is the net flux of x around the cycle of activation and deactivation,

with RT the total number of receptor proteins and x and x� the average number of inactive and

active readout molecules, respectively. It equals the rate at which x is modified by the ligand-bound

receptor; the quantity _n=p is thus the sampling rate of the receptor, be it ligand bound or not. Multi-

plied with the relaxation rate t r, it yields the total number of receptor samples N obtained during

t r. However, not all these samples are reliable. The effective number of samples is Neff ¼ qN, where

0<q<1 quantifies the quality of the sample. Here, b¼ 1=ðkBTÞ is the inverse temperature, D�1 and

D�2 are the free-energy drops over the activation and deactivation reaction, respectively, with

D�¼ D�1 þD�2 the total drop, determined by the fuel turnover (see Figure 1b). If the system is in

thermodynamic equilibrium, D�1 ¼ D�2 ¼ D�¼ 0, q! 0 and the system cannot sense because the

ligand-binding state of the receptor is equally likely to be copied into the correct modification state

of the readout as into the incorrect one. In contrast, if the system is strongly driven out of equilib-

rium and D�1;D�2 !¥, then, during each receptor–readout interaction, the receptor state is always

copied into the correct activation state of the readout; the sample quality parameter q thus

approaches unity and Neff !N. Yet, even when all samples are reliable, they may contain redundant
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information on the receptor state. The factor fI is the fraction of the Neff samples that are indepen-

dent. It reaches unity when the receptor sampling interval D¼ 2t r=ðNeff=RTÞ becomes larger than the

receptor correlation time t c.

When the number of samples becomes very large, NI;Neff ! ¥, the sampling error reduces to

zero. However, the sensing error still contains a second contribution, which, following

Bowsher et al., 2013, we call the dynamical error. This contribution only depends on timescales. It

arises from the fact that the samples encode the receptor history and hence the ligand concentration

over the past t r, which will, in general, deviate from the quantity that the cell aims to predict – the

current concentration L. This contribution yields a systematic error, which cannot be eliminated by

increasing the number of receptor samples, their independence, or their accuracy. It can only be

reduced to zero by making the integration time t r much smaller than the ligand timescale t L

(assuming t c is typically much smaller than t r; t L). Only in this regime will the ligand concentration

in the past t r be similar to the current concentration and can the latter be reliably inferred from the

receptor occupancy, provided the latter has been estimated accurately by taking enough samples.

Importantly, the dynamics of the input signal not only affects the sensing precision via the dynam-

ical error but also via the sampling error. This effect is contained in the prefactor of the sampling

error, ð1þ t c=t LÞ2ð1þ t r=t LÞ2, which has its origin in the dynamic gain ~gL!p
t r
(Equation 4). It deter-

mines how the sampling error s2;samp
p̂
t r

in the estimate of p
t r

propagates to the error in the estimate

of L (see Equation 3). Only when t c; t r � t L can the readout system closely track the input signal

and does ~gL!p
t r

reach its maximal value, the static gain gL!p, thus minimizing the error propagation

from p
t r

to L.

Fundamental resources
We can use Equation 6 to identify the fundamental resources for cell sensing (Govern and Ten

Wolde, 2014a) and derive Pareto fronts that quantify the trade-offs between the maximal sensing

precision and these resources. A fundamental resource is a (collective) variable Qi that, when fixed

to a constant, puts a non-zero lower bound on SNR�1, no matter how the other variables are varied.

It is thus mathematically defined as MINQi¼const SNR�1
� �

¼ f ðconstÞ>0: To find these collective varia-

bles, we numerically or analytically minimized SNR�1, constraining (combinations of) variables yet

optimizing over the other variables. This reveals that the SNR is bounded by (see Appendix 2)

SNR�1 � 1þ t r

t L

� �2
4 L=sL

� �2

h
þ t r

t L

; (8)

where

h�MIN RTt r=t c;XT;b _wt rð Þ: (9)

Equations 8 and 9 show that the fundamental resources are the number of receptors RT, the inte-

gration time t r, the number of readouts XT, and the power _w¼ _nD�.

Figure 3a, b illustrates that RT; t r;XT; _w are indeed fundamental: the sensing precision is

bounded by the limiting resource and cannot be enhanced by increasing another resource. Panel (a)

shows that when XT is small, the maximum mutual information Imax cannot be increased by raising

RT: no matter how many receptors the system has, the sensing precision is limited by the pool of

readout molecules and only increasing this pool can raise Imax. Yet, when XT is large, Imax becomes

independent of XT. In this regime, the number of receptors RT limits the number of independent

concentration measurements and only increasing RT can raise Imax. Similarly, panel (b) shows that

when the power _w is limiting, Imax cannot be increased by RT but only by increasing _w. Clearly, the

resources receptors, readout molecules, and energy cannot compensate each other: the sensing pre-

cision is bounded by the limiting resource.

Importantly, while for sensing static concentrations the products RTt r=t c and _wt r are fundamen-

tal (Govern and Ten Wolde, 2014a), for time-varying signals RT, _w, and t r separately limit sensing.

Consequently, neither receptors RT nor power _w can be traded freely against time t r to reach a

desired precision, as is possible for static signals. In line with the predictions of signal filtering theo-

ries (Extrapolation, 1950; Kolmogorov, 1992; Kalman, 1960), there exists an optimal integration

Malaguti and ten Wolde. eLife 2021;10:e62574. DOI: https://doi.org/10.7554/eLife.62574 8 of 26

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.62574


time t r
opt that maximizes the sensing precision (Andrews et al., 2006; Hinczewski and Thirumalai,

2014; Becker et al., 2015; Monti et al., 2018b; Mora and Nemenman, 2019). Interestingly, its

value depends on which of the resources RT, XT, and _w is limiting (Figure 3c–f). We now discuss

these three regimes in turn.

Receptors
Berg and Purcell, 1977 pointed out that cells can reduce the sensing error by either increasing the

number of receptors or taking more measurements per receptor via the mechanism of time integra-

tion. However, Equation 8 reveals that for sensing time-varying signals time integration can never

eliminate the sensing error completely, as predicted also by filtering theories (Extrapolation, 1950;

Kolmogorov, 1992; Kalman, 1960). Equation 8 shows that in the Berg–Purcell regime, where

receptors and their integration time are limiting and h ¼ RTt r=t c, the sensing precision does not

depend on RTt r=t c, as for static signals (Govern and Ten Wolde, 2014a), but on RT and t r sepa-

rately, such that an optimal integration time t r
opt emerges that maximizes the sensing precision (see

Figure 3c). Increasing t r improves the mechanism of time integration by increasing the number of
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Figure 3. Receptors RT, readout molecules XT, and _w fundamentally limit sensing, and there exists an optimal integration time t r that depends on

which of the resources is limiting. (a, b) RT, XT, and _w are fundamental resources, with no trade-offs between them. Plotted is the maximum mutual

information Imax ¼ 1=2 lnð1þ SNRmaxÞ, obtained by minimizing Equation 6 over p and t r, for different combinations of (a) XT and RT in the irreversible

limit q ! 1 and (b) _w and RT for two different values of D�. The sensing precision is bounded by the limiting resource, RT (solid gray lines, Equation 8

with h ¼ RT=t r=t c), XT (dashed gray line, Equation 8 with h ¼ XT, panel a), or _w (dashed gray lines, Equation 8 with h ¼ b _wt r or h ¼ _wt r=ðD�=4Þ,
panel b). (c) Imax as a function of t r for different values of RT in the Berg–Purcell limit (q ! 1 and XT ! ¥). There exists an optimal integration time t r

opt

that maximizes the sensing precision; t r
opt decreases with RT. (d) In this limit, t r

opt depends non-monotonically on the receptor–ligand correlation time

t c: it first increases with t c to sustain time-averaging, but then drops when t r
opt=t c becomes of order unity and time-averaging is no longer effective

(see inset). (e) t r
opt as a function of XT for different values of RT. When XT<RT, time averaging is not possible and the optimal system is an

instantaneous responder, t r
opt ! 0; when XT � RT, the system reaches the Berg–Purcell regime in which Imax is limited by RT rather than XT (see panel

a). (f) t r
opt and XT as a function of _w. When the power _w ~XT=t r is limiting, the sampling error dominates and t r

opt equals t L to maximize XT,

minimizing the sampling error; t r
opt then decreases to trade part of the decrease in the sampling error for a reduction in the dynamical error such that

both decrease; when the sampling interval D~ t rRT=XT becomes comparable to t c, in the region marked by the yellow bar, the sampling error is no

longer limited by XT, such that t r now limits both sources of error; the two sources can therefore no longer be decreased simultaneously by increasing

_w ~XT=t r; the system has entered the Berg–Purcell regime, where t r
opt is determined by RT rather than _w (see panel b). Parameter values unless

specified: t c=t L ¼ 10
�2; sL=LT ¼ 10

�2.
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independent samples per receptor, t r=t c, thus reducing the sampling error (Equation 6). However,

increasing t r raises the dynamical error. Moreover, it lowers the dynamical gain ~gL!p
t r
, which

increases the propagation of the error in the estimate of the receptor occupancy to that of the

ligand concentration. The optimal integration time t r
opt arises as a trade-off between these three

factors.

Figure 3c also shows that the optimal integration time t r
opt decreases with the number of recep-

tors RT. The total number of independent concentration measurements is the number of indepen-

dent measurements per receptor, t r=t c, times the number RT of receptors, NI ¼ RTt r=t c. As RT

increases, less measurements t r=t c per receptor have to be taken to remove the receptor–ligand-

binding noise, explaining why t r
opt decreases as RT increases – time integration becomes less

important.

Interestingly, t r
opt depends non-monotonically on the receptor–ligand correlation time t c

(Figure 3d). When t c increases at fixed t r, the receptor samples become more correlated. To keep

the mechanism of time integration effective, t r must increase with t c. However, to avoid too strong

signal distortion the cell compromises on time integration by decreasing the ratio t r=t c (see inset).

When t r becomes too large, the benefit of time integration no longer pays off the cost of signal dis-

tortion. Now not only the ratio t r=t c decreases but also t r itself. The sensing system switches to a

different strategy: it no longer employs time integration but becomes an instantaneous sensor.

Readout molecules
To implement time integration, the cell needs to store the receptor states in the readout molecules.

When the number of readout molecules XT is limiting, the sensing precision is given by Equation 8

with h ¼ XT. This bound is saturated when t r ! 0. This is in marked contrast to the non-zero optimal

integration t r
opt in the Berg–Purcell regime (see Figure 3c).

To elucidate the non-trivial behavior of t r
opt, Figure 3e shows t r

opt as a function of XT. When XT

is smaller than RT, the average number of samples per receptor is less than unity. In this regime, the

system cannot time integrate the receptor, and to minimize signal distortion t r
opt

» 0. Yet, when XT

is increased, the likelihood that two or more readout molecules provide a sample of the same recep-

tor molecule rises, and time averaging becomes possible. Yet to obtain receptor samples that are

independent, the integration time t r must be increased to make the sampling interval D~ t rRT=XT

larger than the receptor correlation time t c. As XT and hence the total number of samples N are

increased further, the number of samples that are independent, NI, only continues to rise when t r

increases with XT further. However, while this reduces the sampling error, it also increases the

dynamical error. When the decrease in the sampling error no longer outweighs the increase in the

dynamical error, t r
opt and the mutual information no longer change with XT (see Figure 3a). The sys-

tem has entered the Berg–Purcell regime in which t r
opt and the mutual information are given by the

optimization of Equation 8 with h ¼ RTt r=t c (gray dashed line). In this regime, increasing XT merely

adds redundant samples: the number of independent samples remains NI ¼ RTt r
opt=t c.

Power
Time integration relies on copying the ligand-binding state of the receptor into the chemical modifi-

cation states of the readout molecules (Mehta and Schwab, 2012; Govern and Ten Wolde, 2014a).

This copy process correlates the state of the receptor with that of the readout, which requires work

input (Ouldridge et al., 2017).

The free-energy D� provided by the fuel turnover drives the readout around the cycle of modifica-

tion and demodification (Figure 1). The rate at which the fuel molecules do work is the power

_w ¼ _nD�, and the total work performed during the integration time t r is w � _wt r. This work is spent

on taking samples of receptor molecules that are bound to ligand because only they can modify the

readout. The total number of effective samples of ligand-bound receptors during t r is pNeff (Equa-

tion 7), which means that the work per effective sample of a ligand-bound receptor is

w=ðpNeffÞ ¼ D�=q (Govern and Ten Wolde, 2014a).

To understand how energy limits the sensing precision, we can distinguish between two limiting

regimes (Govern and Ten Wolde, 2014a). When D�>4kBT, the quality parameter q ! 1 (Equation 7)

and the work per sample of a ligand-bound receptor is w=ðpNeffÞ ¼ D� (Govern and Ten Wolde,
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2014a). In this irreversible regime, the SNR bound is given by Equation 8 with h ¼ _wt r=ðD�=4Þ. The
power limits the sensing accuracy not because it limits the reliability of each sample but because it

limits the rate _n ¼ _w=D� at which the receptor is sampled.

When D�<4kBT, the system enters the quasi-equilibrium regime in which the quality parameter

q ! bD�=4 (see Equation 7, noting that in the optimal system D�1 ¼ D�2 ¼ D�=2). The sensing

bound is now given by Equation 8 with h ¼ b _wt r, which is larger than h ¼ _wt r=ðD�=4Þ in the irre-

versible regime (where D�>4kBT). The quasi-equilibrium regime minimizes the sensing error for a

given power constraint (Figure 3b) because this regime maximizes the number of effective measure-

ments per work input pNeff=w ¼ q=D� ¼ b=4 (Govern and Ten Wolde, 2014a).

While the sensing precision for a given power and time constraint is higher in the quasi-reversible

regime, more readout molecules are required to store the concentration measurements in this

regime. Noting that the flux _n ¼ f ð1� f ÞXTq=t r ¼ _w=D�, it follows that in the irreversible regime

(q ! 1) the number of readout molecules consuming energy at a rate _w is

Xirr
T ¼ _wt r

D�f ð1� f Þ ; (10)

while in the quasi-equilibrium regime (q! D�=4) it is

X
qeq
T ¼ _wt r4kBT

D�2f ð1� f Þ : (11)

Since in the quasi-equilibrium regime D�<4kBT, X
qeq
T >Xirr

T .

Equation 8 shows that the sensing precision is fundamentally bounded not by the work w ¼ _wt r,

as observed for static signals (Govern and Ten Wolde, 2014a), but rather by the power _w and the

integration time t r separately such that an optimal integration time t r
opt emerges. Figure 3f shows

how t r
opt depends on _w. Since the system cannot sense without any readout molecules, in the low-

power regime the system maximizes XT subject to the power constraint _w ~XT=t r (see Equations 10

and 11) by making t r as large as possible, which is the signal correlation time t L – increasing t r
opt

further would average out the signal itself. As _w is increased, XT rises and the sampling error

decreases. When the sampling error becomes comparable to the dynamical error (Equation 6), the

system starts to trade a further reduction in the sampling error for a reduction in the dynamical error

by decreasing t r
opt. The sampling error and dynamical error are now reduced simultaneously by

increasing XT and decreasing t r
opt. This continues until the sampling interval D~RTt r=XT becomes

comparable to the receptor correlation time t c, as marked by the yellow bar. Beyond this point,

D<t c and the sampling error is no longer limited by XT but rather by t r since t r bounds the number

of independent samples per receptor, t r=t c. The system has entered the Berg–Purcell regime,

where t r
opt is determined by the trade-off between the dynamical error and the sampling error as

set by the maximum number of independent samples, RTt r=t c (Figure 3c).

Optimal design
In sensing time-varying signals, a trade-off between time averaging and signal tracking is inevitable.

Moreover, the optimal integration time depends on which resource is limiting, being zero when XT

is limiting and finite when RT or _w is limiting (Figure 3). It is therefore not obvious whether these

sensing systems still obey the optimal resource allocation principle as observed for systems sensing

static concentrations (Govern and Ten Wolde, 2014a).

However, Equation 8 shows that when for a given integration time t r, RTt r=t c ¼ XT ¼ b _wt r, the

bounds on the sensing precision as set by, respectively, the number of receptors RT, the number of

readout molecules XT, and the power _w are equal. Each of these resources is then equally limiting

sensing and no resource is in excess. We thus recover the optimal resource allocation principle:

RTt r=t c »XT »b _wt r: (12)

Irrespective of whether the concentration fluctuates in time, the number of independent concentra-

tion measurements at the receptor level is RTt r=t c, which in an optimally designed system also

equals the number of readout molecules XT and the energy b _wt r that are both necessary and suffi-

cient to store these measurements reliably.
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The design principle XT »b _wt r (Equation 12) predicts that there exists a driving force D�opt that

optimizes the trade-off between the number of samples and their accuracy. Noting that

b _wt r ¼ b _nD�t r ¼ bqf ð1� f ÞXTD� reveals that the principle XT »b _wt r (Equation 12) specifies D� for

the optimal system in which f ! 1=2 and D�1 ¼ D�2 ¼ D�=2 via the equation qðD�optÞ ¼ 4kBT=D�
opt,

where qðD�Þ is defined in Equation 7. A numerical inspection shows that to a good approximation

the solution of this equation is precisely given by the crossover from the quasi-equilibrium regime to

the irreversible one: D�opt
» 4kBT. This can be understood by noting that in the quasi-equilibrium

regime XT can, for a given power and time constraint, be reduced by increasing D� (Equation 11)

without compromising the sensing precision (Equation 8 with h ¼ _wt r); in this regime, increasing D�

increases the reliability of each sample, and a smaller number of more reliable samples precisely

compensates for a larger number of less reliable ones. Yet, when D� becomes larger than 4kBT, the

system enters the irreversible regime. Here, XT corresponding to a given _w and t r constraint still

decreases with D� (Equation 10), but the sensing error now increases (Equation 8 with

h ¼ _wt r=ðD�=4Þ) because each sample has become (essentially) perfect in this regime – hence, the

samples’ accuracy cannot (sufficiently) increase further to compensate for the reduction in the sam-

pling rate _n~XT=t r.

Equation 12 holds for any integration time t r, yet it does not specify t r. The cell membrane is

highly crowded, and many systems employ time integration (Berg and Purcell, 1977; Bialek and

Setayeshgar, 2005; Govern and Ten Wolde, 2014a). This suggests that these systems employ time

integration and accept the signal distortion that comes with it simply because there is not enough

space on the membrane to increase RT. Our theory then allows us to predict the optimal integration

time t r
opt based on the premise that RT is limiting. As Equation 8 reveals, in this limit t r

opt does not

only depend on RT but also on t c, t L, and sL=L : t opt
r ¼ t

opt
r ðRT; t r; t L;sL=LÞ. The optimal design

of the system is then given by Equation 12 but with t r given by t r
opt ¼ t r

optðRT; t c; t L;sL=LÞ:

RTt r
opt=t c »X

opt
T »b _wopt

t r
opt: (13)

This design principle maximizes for a given number of receptors RT the sensing precision and mini-

mizes the number of readout molecules XT and power _w needed to reach that precision.

Comparison with experiment
To test our theory, we turn to the chemotaxis system of E. coli. This system contains a receptor that

forms a complex with the kinase CheA. This complex, which is coarse-grained into R (Govern and

Ten Wolde, 2014a), can bind the ligand L and activate the intracellular messenger protein CheY (x)

by phosphorylating it. Deactivation of CheY is catalyzed by CheZ, the effect of which is coarse-

grained into the deactivation rate. This push–pull network allows E. coli to measure the current con-

centration, and the relaxation time of this network sets the integration time for the receptor

(Sartori and Tu, 2011). The system also exhibits adaptation on longer timescales due to receptor

methylation and demethylation. The push–pull network and the adaptation system together allow

the cell to measure concentration gradients via a temporal derivative, taking the difference between

the current concentration and the past concentration as set by the adaptation time (Segall et al.,

1986). A lower bound for the error in the estimate of this difference is given by the error in the esti-

mate of the current concentration, the central quantity of our theory. Here, we ask how accurately E.

coli can estimate the latter and whether the sensing precision is sufficient to determine whether dur-

ing a run the concentration has changed.

Our theory predicts that if the number of receptors is limiting then the optimal integration time

t r
optðRT; t c; t L;sL=LÞ is given by minimizing Equation 8 with h ¼ RTt r=t c. The number of receptor–

CheA complexes depends on the growth rate and varies between RT » 10
3 and RT » 10

4 (Li and

Hazelbauer, 2004). The receptor correlation time for the binding of aspartate to the Tar receptor

can be estimated from the measured dissociation constant (Vaknin and Berg, 2007) and the associ-

ation rate (Danielson et al., 1994), t c » 10ms (Govern and Ten Wolde, 2014a). The timescale t L of

the input fluctuations is set by the typical run time, which is on the order of a few seconds, t L » 1s

(Berg and Brown, 1972; Taute et al., 2015).

This leaves one parameter to be determined, ðsL=LÞ2. This is set by the spatial ligand–concentra-

tion profile and the typical length of a run. We have a good estimate of the latter. In shallow gra-

dients, it is on the order of l » 50�m (Berg and Brown, 1972; Taute et al., 2015; Jiang et al., 2010;

Malaguti and ten Wolde. eLife 2021;10:e62574. DOI: https://doi.org/10.7554/eLife.62574 12 of 26

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.62574


Flores et al., 2012); specifically, Figure 4 of Taute et al., 2015 shows that the typical run times are

1–2 s while the typical run speeds are 20� 60�ms�1, yielding a run length on the order

of indeed 50 mm. We do not know the spatial concentration profiles that E. coli has experienced dur-

ing its evolution. We can however get a sense of the scale by considering an exponential ligand–con-

centration gradient. For a profile LðxÞ ¼ L0e
x=x0 with length scale x0, the relative change in the signal

over the length of a run is sL=L ’ ðdL=dxÞl=L ¼ l=x0. We consider the range sL=L » l=x0<1, where

sL=L<0:1 corresponds to shallow gradients with x0 >
~

500�m in which cells move with a constant drift

velocity (Shimizu et al., 2010; Flores et al., 2012).

Figure 4a shows that as the gradient becomes steeper and sL=L» l=x0 increases the optimal inte-

gration time t r
opt decreases. This can be understood by noting that the relative importance of the

dynamical error compared to the sampling error scales with sL=L
� �2

(Equation 6). Shallow ingre-

dients thus allow for a larger integration time while steep gradients necessitate a shorter one.

Experiments indicate that the relaxation rate of CheY is t r
�1

» 2s�1 for the attractant response

and » 20s�1 for the repellent response (Sourjik and Berg, 2002), such that the integration time

t r » 50� 500ms (Sourjik and Berg, 2002; Govern and Ten Wolde, 2014a). Figure 4a shows that

this integration time is optimal for detecting shallow gradients. Our theory thus predicts that the E.

coli chemotaxis system has been optimized for sensing shallow gradients.

To navigate, the cells must be able to resolve the signal change over a run. During a run of dura-

tion t L, the system performs t L=t r independent concentration measurements. The effective error

for these measurements is the instantaneous sensing error ðdL̂Þ2 divided by the number of indepen-

dent measurements t L=t r : ðdL̂Þ2=ðt L=t rÞ. Hence, the SNR for these concentration measurements is

SNR
t L

� ðsL=dL̂Þ2t L=t r.
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Figure 4. The optimal integration time for the chemotaxis system of E. coli. (a) The optimal integration time t r
opt, obtained by numerically optimizing

Equation 8 with h ¼ RTt r=t c, as a function of the relative strength of the input noise, sL=L, for two different copy numbers RT of the receptor–CheA

complexes; for an exponential gradient with length scale x0, the relative noise strength sL=L ’ l=x0, where l» 50�m is the run length of E. coli. It is seen

that t r
opt increases as sL=L decreases because the relative importance of the sampling error compared to the dynamical error increases. The figure

also shows that t r
opt decreases as RT is increased because that allows for more instantaneous measurements (see also Figure 3). The red bar indicates

the range of the estimated integration time of E. coli, 50ms<t r<500ms, based on its attractant and repellent response, respectively (Sourjik and Berg,

2002), divided by the input timescale t L » 1s based on its typical run time of about a second (Berg and Brown, 1972; Taute et al., 2015). The panel

indicates that E. coli has been optimized to detect shallow concentration gradients. (b) The signal-to-noise ratio SNR
t L

¼ ðsL=dL̂Þ2t L=t r, with

ðsL=dL̂Þ2 ¼ SNR given by Equation 6, as a function of sL=L ’ l=x0. To be able to detect the gradient, the SNR
t L

must exceed unity. The panel shows

that the shallowest gradient that E. coli can detect (marked with dashed red line) has, for RT ¼ 10
4, a length scale of x0 » 25000�m (corresponding to

sL=L » 2� 10
�3), which is consistent with experiments based on ramp responses (Shimizu et al., 2010). Other parameter: receptor–ligand-binding

correlation time t c ¼ 10ms (Vaknin and Berg, 2007; Danielson et al., 1994).
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Figure 4b shows that our theory predicts that when RT ¼ 10
3, the shallowest gradient that cells

can resolve, defined by SNR
t L

¼ 1, is l=x0 »sL=L » 1� 10
�2, corresponding to x0 » 7500�m, while

when RT ¼ 10
4, l=x0 » 2� 10

�3 and x0 » 25000�m. The shallowest gradient is thus on the order of

x0 » 10
4�m. Shimizu et al., 2010 show that E. coli cells are indeed able to sense such very shallow

gradients: Figure 2A of Shimizu et al., 2010 shows that E. coli cells can detect exponential up ramps

with rate r ¼ 0:001=s; using r ¼ vr=x0, where vr » 10�m=s is the run speed (Jiang et al., 2010),

this corresponds to x0 » 10
4�m. Importantly, the predictions of our theory (Figure 4) concern the

shallowest gradient that the system with the optimal integration time can resolve. These observa-

tions indicate that the optimal integration time is not only sufficient to make navigation in these very

shallow gradients possible but also necessary.

Figure 4 also shows that t r
opt decreases as the number of receptor–CheA complex, RT, increases

because the latter allows for more instantaneous measurements, reducing the need for time integra-

tion (Figure 3c). Interestingly, the data of Li and Hazelbauer, 2004 shows that the copy numbers of

the chemotaxis proteins vary with the growth rate. Clearly, it would be of interest to directly mea-

sure the response time in different strains under different growth conditions.

Discussion
Here, we have integrated ideas from Tostevin and ten Wolde, 2010; Hilfinger and Paulsson, 2011;

and Bowsher et al., 2013 on information transmission via time-varying signals with the sampling

framework of Govern and Ten Wolde, 2014a to develop a unified theory of cellular sensing. The

theory is founded on the concept of the dynamic input–output relation p
t r
ðLÞ. It allows us to develop

the idea that the cell employs the readout system to estimate the average receptor occupancy p
t r

over the past integration time t r and then exploits the mapping p
t r
ðLÞ to estimate the current

ligand concentration L from p
t r
. The theory reveals that the error in the estimate of L depends on

how accurately the cell samples the receptor state to estimate p
t r
, and on how much p

t r
, which is

determined by the concentration in the past t r, reflects the current ligand concentration. These two

distinct sources of error give rise to the sampling error and dynamical error in Equation 6,

respectively.

While the system contains no less than 11 parameters, Equation 6 provides an intuitive expres-

sion for the sensing error in terms of collective variables that have a clear interpretation. The dynam-

ical error depends only on the timescales in the problem, most notably t r=t L. The sampling error

depends on how accurately the readout system estimates p
t r
, which is determined by the number of

receptor samples, their independence, and their accuracy; yet it also depends on t r=t L via the

dynamic gain, which determines how the error in the estimate of p
t r

propagates to that of L. The

trade-off between the sampling error and dynamical error yields an optimal integration time.

Our study reveals that the optimal integration time t r
opt depends in a non-trivial manner on the

design of the system. When the number of readout molecules XT is smaller than the number of

receptors RT, time integration is not possible and the optimal system is an instantaneous responder

with t r
opt

» 0. When the power _w ~XT=t r, rather than XT, is limiting, t r
opt is determined by the

trade-off between the sampling error and dynamical error. In both scenarios, however, one resource,

XT or _w, is limiting the sensing precision. In an optimally designed system, all resources are equally

limiting so that no resource is wasted. This yields the resource allocation principle (Equation 12),

first identified in Govern and Ten Wolde, 2014a, for sensing static concentrations. The reason it

can be generalized to time-varying signals is that the principle concerns the optimal design of the

readout system for estimating the receptor occupancy over a given integration time t r, which holds

for any type of input: the number of independent concentration measurements at the receptor level

is RTt r=t c, irrespective of how the input varies, and in an optimally designed system this also equals

the number of readout molecules XT and energy b _wt r to store these measurements reliably. We

thus expect that the design principle also holds for systems that sense signals that vary more

strongly in time (Mora and Nemenman, 2019).

While the allocation principle Equation 12 holds for any t r, it does not specify the optimal inte-

gration time t r
opt. However, our theory predicts that if the number of receptors RT is limiting, then

there exists a t r
opt that maximizes the sensing precision for that RT (Equation 8 with h ¼ RTt r=t c).

Via the allocation principle Equation 13, RT and t r
opt then together determine the minimal number
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of readout molecules XT and power _w to reach that precision. The resource allocation principle,

together with the optimal integration time, thus completely specifies the optimal design of the sens-

ing system.

Applying our theory to the E. coli chemotaxis system shows that this system not only obeys the

resource allocation principle (Govern and Ten Wolde, 2014a) but also that the predicted optimal

integration time to measure shallow gradients is in agreement with that measured experimentally

(Figure 4a). This is remarkable because there is not a single fit parameter in our theory. Moreover,

Figure 4b shows that the optimal integration time is not only sufficient to enable the sensing of

these shallow gradients but also necessary. This is interesting because the sensing precision could

also be increased by increasing the number of receptors, readout molecules, and energy devoted to

sensing – but this would be costly. Our results thus demonstrate not only that the chemotaxis system

obeys the design principles as revealed by our theory but also that there is a strong selection pres-

sure to design sensing systems optimally, that is, to maximize the sensing precision given the

resource constraints.

Our theory is based on a Gaussian model and describes the optimal sensing system that mini-

mizes the mean square error in the estimate of the ligand concentration (see Equation 1). The latter

is precisely the performance criterion of Wiener–Kolmogorov (Extrapolation, 1950; Kolmo-

gorov, 1992) and Kalman, 1960 filtering theory, which, moreover, become exact for systems that

obey Gaussian statistics. In fact, since our system (including the input signal) is stationary, they pre-

dict the same optimal filter, which is an exponential filter for signals that are memoryless. The signals

studied here belong to this class, and the push–pull network forms an exponential filter

(Hinczewski and Thirumalai, 2014; Becker et al., 2015). This underscores the idea that our theory

gives a complete description, in terms of all the required resources, for the optimal design of cellular

sensing systems that need to estimate this type of signals. Furthermore, because our model is

Gaussian, the goal of minimizing the mean-square error in the estimate of the input signal is equiva-

lent to maximizing the mutual information between the input (the ligand concentration) and the out-

put (the readout x�) (Becker et al., 2015).

In recent years, filtering theories and information theory have been applied increasingly to neuro-

nal and cellular systems (Laughlin, 1981; Brenner et al., 2000; Fairhall et al., 2001;

Andrews et al., 2006; Ziv et al., 2007; Nemenman et al., 2008; Cheong et al., 2011; Nemen-

man, 2012; Hinczewski and Thirumalai, 2014; Becker et al., 2015; Husain et al., 2019;

Tkacik et al., 2008; Tkačik and Walczak, 2011; Dubuis et al., 2013; Monti and Wolde, 2016;

Monti et al., 2018a). A key concept in these theories is that optimal sensing systems match the

response to the statistics of the input. When the noise is weak, maximizing the entropy of the output

distribution becomes paramount, which entails matching the shape of the input–output relation to

the shape of the input distribution to generate a flat output distribution (Laughlin, 1981;

Tkacik et al., 2008; Monti et al., 2018a). Yet, when the noise is large, the optimal response is also

shaped by the requirement to tame the propagation of noise in the input signal (Andrews et al.,

2006; Hinczewski and Thirumalai, 2014; Becker et al., 2015; Monti et al., 2018a; Monti et al.,

2018b; Mora and Nemenman, 2019) or to lift the signal above the intrinsic noise in the response

system (Tostevin and ten Wolde, 2010; Bowsher et al., 2013). In Appendix 3, we show that esti-

mating the concentration from p
t r

is equivalent to that via readout x�. This makes it possible to con-

nect our sampling framework, which is based on p
t r
ðLÞ, to filtering and information theory, which

are based on x�ðLÞ. In particular, we show in this appendix how the optimal integration and dynamic

gain can be understood from these ideas on matching the response to the input. We also briefly dis-

cuss in Appendix 3 the concepts from information theory that are beyond the scope of the Gaussian

model considered here.

Yet, our discrete sampling framework gives a detailed description of how the optimal design of

sensing systems depends on the statistics of the input signal in terms of all the required cellular

resources: protein copies, time, and energy. In an optimal system, each receptor is sampled once

every receptor–ligand correlation time t c, D» t c, and the number of samples per receptor is

t r
opt=D» t r

opt=t c. The optimal integration time t r
opt for a given RT is determined by the trade-off

between the age of the samples and the number required for averaging the receptor state. When

the input varies more rapidly, the samples need to be refreshed more regularly: to keep the dynam-

ical error and the dynamic gain constant, t r
opt must decrease linearly with t L (see Equation 6). Yet,
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only decreasing t r
opt would inevitably increase the sampling error s2;samp

p̂
t r

in estimating the receptor

occupancy because the sampling interval D~RTt r
opt=Xopt

T would become smaller than t c, creating

redundant samples. To keep the sensing precision constant, the number of receptors RT needs to

be raised with t L
�1, such that the sampling interval D~RTt r

opt=Xopt
T remains of order t c and the

decrease in the number of samples per receptor, t r
opt=t c, is precisely compensated for by the

increase in RT. The total number of independent concentration measurements, RTt r
opt=t c, and

hence the number of readout molecules X
opt
T to store these, does indeed not change. In contrast,

the required power b _wopt
»RT=t c rises (Equation 12): each receptor molecule is sampled each t c at

D�opt
» 4kBT, and the increase in RT raises the sampling rate _n ¼ _wopt=D�opt

~X
opt
T =t r

opt. Our theory

thus predicts that when the input varies more rapidly the number of receptors and the power must

rise to maintain a required sensing precision, while the number of readout molecules does not.

The fitness benefit of a sensing system does not only depend on the sensing precision but also

on the energetic cost of maintaining and running the system. In principle, the cell can reduce the

sensing error arbitrarily by increasing RT and decreasing t r. Our resource allocation principle (Equa-

tion 12) shows that then not only the number of readout molecules needs to be raised but also the

power. Clearly, improving the sensing precision comes at a cost: more copies of the components of

the sensing system need to be synthesized every cell cycle, and more energy is needed to run the

system. Our theory (i.e., Equation 6) makes it possible to derive the Pareto front that quantifies the

trade-off between the maximal sensing precision and the cost of making the sensing system (see

Figure 5). Importantly, the design of the optimal system at the Pareto front obeys, to a good

approximation, our resource allocation principle (Equation 12). This is because this principle speci-

fies the optimal ratios of RT, XT, _w, and t r given the input statistics, and these ratios are fairly
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Figure 5. The benefit of a sensing system depends on the sensing precision it can achieve and the cost of making

it. The Pareto front characterizes the trade-off between the maximal sensing precision, quantified by the maximal

mutual information Imaxðx�;LÞ, and the cost of making the sensing system, C ¼ RT þ cXXT, where cX is the relative

cost of making a readout versus a receptor protein, here taken to be cX ¼ 1. System designs below the Pareto

front are suboptimal and can be improved by reducing the cost, that is, the number of proteins, and / or

increasing the sensing precision. The optimal systems at the Pareto front obey, to a good approximation, the

allocation principle Equation 12. The Pareto front, formed by the maximal value Imaxðx�; LÞ of
Iðx�;LÞ ¼ 1=2 lnð1þ SNRÞ as a function of C, is obtained by minimizing Equation 6 over p; t r;RT;XT subject to the

constraint C ¼ RT þ XT; the quality parameter is qopt » 0:76 corresponding to D�opt
» 4kBT ; t c=t L ¼ 10

�2;

sL=LT ¼ 10
�2.
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insensitive to the costs of the respective resources: resources that are in excess cannot improve sens-

ing and are thus wasted, no matter how cheap they are. It probably explains why our theory, without

any fit parameters, not only predicts the integration time that allows E. coli to sense shallow gra-

dients (Figure 4) but also the number of receptor and readout molecules (Govern and Ten Wolde,

2014a).

In our study, we have limited ourselves to a canonical push–pull motif. Yet, the work of

Govern and Ten Wolde, 2014a indicates that our results hold more generally, pertaining also to

systems that employ cooperativity, negative or positive feedback, or multiple layers, as the MAPK

cascade. While multiple layers and feedback change the response time, they do not make time inte-

gration more efficient in terms of readout molecules or energy (Govern and Ten Wolde, 2014a).

And provided it does not increase the input correlation time (Skoge et al., 2011; Ten Wolde et al.,

2016), cooperative ligand binding can reduce the sensing error per sample, but the resource

requirements in terms of readout molecules and energy per sample do not change (Govern and Ten

Wolde, 2014a). In all these systems, time integration requires that the history of the receptor is

stored, which demands protein copies and energy.

Lastly, in this article we have studied the resource requirements for estimating the current con-

centration via the mechanism of time integration. However, to understand how E. coli navigates in a

concentration gradient, we do not only have to understand how the system filters the high-frequency

ligand-binding noise via time averaging but also how on longer timescales the system adapts to

changes in the ligand concentration (Sartori and Tu, 2011). This adaptation system also exhibits a

trade-off between accuracy, speed, and power (Lan et al., 2012; Sartori and Tu, 2015). Intriguingly,

simulations indicate that the combination of sensing and adaptation allows E. coli not only to accu-

rately estimate the current concentration but also the future ligand concentration (Becker et al.,

2015). It will be interesting to see whether an optimal resource allocation principle can be formu-

lated for systems that need to predict future ligand concentrations.

Materials and methods
Methods are described in Appendices 1–3. Appendix 1 derives the central result of our article

(Equation 6). Appendix 2 derives the fundamental resources and the corresponding sensing limits

(Equations 8 and 9). Appendix 3 describes how the optimal gain and integration time can be under-

stood using ideas from filtering and information theory.
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Appendix 1

Signal-to-noise ratio
Here, we provide the derivation of the central result of this article, Equation 6 of the main text. The

derivation starts from the SNR, given in Equation 2. Here, s2

L is the width of the input distribution,

while ðdL̂Þ2 is the error in the estimate of the concentration. The latter is derived from the dynamic

input–output relation p
t r
ðLÞ, which is the mapping between the average receptor occupancy over

the past integration time t r and the current ligand concentration L (see Figure 2). Concretely, the

error ðdL̂Þ2 is given by Equation 1, where s2

p̂
t r

is the error in the estimate of the average receptor

occupancy over the past integration time t r and ~gL!p
t r

is the dynamic gain, which is the slope of the

dynamic input–output relation p
t r
ðLÞ. Below, we first derive the dynamic gain ~gL!p

t r
and then the

error in the estimate of the receptor occupancy s2

p̂
t r
.

Dynamic input–output relation
The dynamic input–output relation p

t r
ðLÞ is the average receptor occupancy p

t r
over the past inte-

gration time t r, given that the current ligand concentration LðtÞ ¼ L. The cell estimates p
t r

via its

receptor readout system, which is a device that takes samples of the receptor: the readout mole-

cules at time t constitute samples of the ligand-binding state of the receptor at earlier sampling

times ti (see Figure 2). More specifically, the cell estimates p
t r

from the number of active readout

molecules x�ðLðtÞÞ ¼ x�ðLÞ:

p̂
t r
ðLÞ ¼ x�ðLÞ

N
; (14)

where N is the average of the number of samples N taken during the integration time t r. Hence, the

dynamic input–output relation is

p
t r
ðLÞ � EhnðtiÞiLðtÞ; (15)

where nðtiÞ ¼ 0;1 is the receptor occupancy at time ti, E denotes the expectation over the sampling

times ti, and h. . .iLðtÞ denotes an average over receptor–ligand binding noise and the subensemble of

ligand trajectories that each end at LðtÞ (see Figure 2c); the quantity hnðtiÞiLðtÞ is indeed the average

receptor occupancy at time ti, given that the ligand concentration at time t is LðtÞ ¼ L. Importantly,

the receptor samples can also decay via the deactivation of x�. Taking this into account, the proba-

bility that a readout molecule at time t provides a sample of the receptor at an earlier time ti is

pðtijsampleÞ ¼ e�ðt�tiÞ=t r=t r (Govern and Ten Wolde, 2014a). Averaging the receptor occupancy over

the sampling times ti then yields

p
t r
ðLÞ ¼

Z t

�¥
dtihnðtiÞiLðtÞ

e�ðt�tiÞ=t r

t r

: (16)

Dynamic gain

When the current ligand concentration LðtÞ deviates from its mean L by dLðtÞ � LðtÞ � L, then p
t r

deviates on average from its mean p (the average receptor occupancy over all dLðtÞ) by

dp
t r
� p

t r
� p¼ EhdnðtiÞidLðtÞ ¼

Z t

�¥
dtihdnðtiÞidLðtÞ

e�ðt�tiÞ=t r

t r

: (17)

Here, E denotes again the expectation over the sampling times ti, and hdnðtiÞidLðtÞ � hnðtiÞidLðtÞ� p is

the average deviation in the receptor occupancy nðtiÞ at time ti from its mean p, given that the ligand

concentration at time t is dLðtÞ (see Figure 2c). We can compute it within the linear-noise approxima-

tion (Gardiner, 2009):
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hdnðtiÞidLðtÞ ¼ �n

Z ti

�¥
dt0hdLðt0ÞidLðtÞe�ðti�t0Þ=t c ; (18)

where �n ¼ pð1� pÞ=ðLTt cÞ and hdLðt0ÞidLðtÞ is the average ligand concentration at time t0, given that

the ligand concentration at time t is dLðtÞ. The latter is given by Bowsher et al., 2013

hdLðt0ÞidLðtÞ ¼ dLðtÞe�jt�t0j=t L : (19)

Combining Equations 17–19 yields the following expression for the average change in the aver-

age receptor occupancy p
t r
, given that the ligand at time t is dLðtÞ:

dp
t r
¼ pð1� pÞ

LT
1þ t c

t L

� ��1

1þ t r

t L

� ��1

dLðtÞ; (20)

� ~gL!p
t r
dLðtÞ: (21)

Hence, the dynamic gain is

~gL!p
t r
¼ pð1� pÞ

L
1þ t c

t L

� ��1

1þ t r

t L

� ��1

; (22)

¼ gL!p 1þ t c

t L

� ��1

1þ t r

t L

� ��1

: (23)

The dynamic gain is the slope of the dynamic input–output relation p
t r
ðLÞ (see Figure 2a). It

yields the average change in the receptor occupancy p
t r

over the past integration time t r when the

change in the ligand concentration at time t is dLðtÞ. It depends on all the timescales in the problem

and only reduces to the static gain gL!p ¼ pð1� pÞ=L when the integration time t r and the receptor

correlation time t c are both much shorter than the ligand correlation time t L. The dynamic gain

determines how much an error in the estimate of p
t r

propagates to the estimate of LðtÞ.

Error in receptor occupancy
We can derive the variance in the estimate of the receptor occupancy over the past integration time

t r, s
2

p̂
t r
, directly from Equation 14 for the system in the irreversible limit (Malaguti and Ten Wolde,

2019). While this derivation is illuminating, it is also lengthy. For the fully reversible system studied

here, we follow a simpler route. Since the average number of samples N over the integration time t r

is constant, it follows from Equation 14 that

s2

p̂
t r
¼
s2

x� jL

N
2
; (24)

where s2

x�jL is the variance in the number of phosphorylated readout molecules, conditioned on the

signal at time t being LðtÞ ¼ L. The conditional variance (Tostevin and ten Wolde, 2010)

s2

x� jL ¼ s2

x� � ~g2L!x�s
2

L (25)

is the full variance s2

x� of x� minus the variance ~g2L!x�s
2

L that is due to the signal variations, given by

the dynamic gain ~g2L!x� from L to x� times the signal variance s2

L.

The full variance of the readout s2

x� in Equation 25 can be obtained from the linear-noise approxi-

mation (Gardiner, 2009), see Malaguti and Ten Wolde, 2019:

s2

x� ¼ f ð1� f ÞXTþ �0
2

�0ð�þ�0Þ pð1� pÞRTþ �2s2

Lðlþ�þ�0Þ
�ðlþ�Þðlþ�0Þ

� �

: (26)

In this expression, �¼ t c
�1 ¼ k1Lþ k2 is the inverse of the receptor correlation time t c; p¼ RL=RT ¼

k1L=ðk2þ k1LÞ ¼ k1Lt c is the probability that a receptor is bound to ligand;

�¼ RTk1ð1� pÞ ¼ pð1� pÞRT�=L; �0 ¼ t

�1

r ¼ ðkf þ k�fÞpRTþ krþ k�r is the inverse of the integration

time t r; f ¼ x�=xT ¼ ðkfpRTþ k�rÞt r is the fraction of phosphorylated readout;
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and �0 ¼ kfXTð1� f Þ� k�fXTf ¼ _n=ðpRTÞ is the total flux _n around the cycle of readout activation and

deactivation divided by the total number pRT of ligand-bound receptors: it is the rate at which each

receptor is sampled, be it ligand bound or not. For what follows below, we note that the quality

parameter q¼ ðeD�1 � 1ÞðeD�2 � 1Þ=ðeD�� 1Þ ¼ �0pRTt r=ðf ð1� f ÞXTÞ ¼ _nt r=ðf ð1� f ÞXTÞ.
To get s2

p̂
t r

from Equations 24 and 25, we need not only s2

x (Equation 26) but also the average

number of samples N and the dynamic gain ~g2L!x� . The average number of samples taken during the

integration time t r is N ¼ _nt r=p ¼ f ð1� f ÞXTq=p ¼ �0RT=�
0, and the effective number of reliable sam-

ples is Neff ¼ qN. Since p
t r
ðLÞ ¼ Ehx�iL=N, where Ehx�iL is the average number of active readout mol-

ecules for a given input LðtÞ ¼ L and N is a constant independent of L, it follows that

~gL!x� ¼ ~gL!p
t r
N ¼ ~gL!p

t r
RT

�0

�0 ; (27)

with ~gL!p
t r

the dynamic gain from L to p
t r
, given by Equation 22. Equation 27 can be verified via

another route that does not rely on the sampling framework because we also know that ~gL!x� ¼
s2

L;x�=s
2

L (Tostevin and ten Wolde, 2010), where the co-variance s2

L;x� can be obtained from the lin-

ear-noise approximation (Malaguti and Ten Wolde, 2019; Gardiner, 2009). Combining Equa-

tions 24–27 yields

s2

p̂
t r
¼ pð1� pÞ

Neff

þ pð1� pÞ
RTð1þ t r=t cÞ

þ p2

Neff

þ ~g2L!p
t r
s2

L 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt c þ t rÞ

� �

� 1

� �

: (28)

This can be rewritten using the expression for the fraction of independent samples, which, assuming

that t r � t c, is fI ¼ 1=ð1þ 2t c=DÞ, with D¼ 2t rRT=Neff the effective spacing between the samples

(Govern and Ten Wolde, 2014a):

s2

p̂
t r
¼ pð1� pÞ

fINeff

þ p2

Neff
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

s
2; samp

p̂
t r

þ~g2L!p
t r
s2

L 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt cþ t rÞ

� �

� 1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

s
2; dyn
p̂
t r

; (29)

Here, s2; samp
p̂
t r

is the sampling error in the estimate of p
t r

(Malaguti and Ten Wolde, 2019); it is a sta-

tistical error, which arises from the finite cellular resources to sample the state of the receptor, pro-

tein copies, time, and energy (see Figure 2b). The other contribution, s2; dyn
p̂
t r

, is the dynamical error

in the estimate of p
t r

(Malaguti and Ten Wolde, 2019); it is a systematic error that arises from the

input dynamics and only depends on the average receptor occupancy and the timescales of the

input, receptor, and readout (see Figure 2c); it neither depends on the number of protein copies

nor on the energy necessary to sample the receptor.

Final result: SNR
Combining Equations 29 and 22 with Equation 3 yields the principal result of our work (Equation 6)

of the main text.
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Appendix 2

Fundamental resources
To identify the fundamental resources limiting the sensing accuracy and derive the corresponding

sensing limits (Equations 8 and 9), it is helpful to rewrite the SNR in terms of collective variables

that illuminate the cellular resources. For that, we start from Equation 6 of the main text and split

the first term on the right-hand side and exploit the expression for the effective number of indepen-

dent samples NI ¼ 1=ð1þ 2t c=DÞNeff with D ¼ 2t rRT=Neff . We then sum up the last two terms on the

right-hand side and use that Neff ¼ qN ¼ q _nt r=p:

SNR�1 ¼ 1þ t c

t L

� �2

1þ t r

t L

� �2 L=sL

� �2

Neffpð1� pÞ2
þ L=sL

� �2

pð1� pÞRTð1þ t r=t cÞ

" #

þ 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt c þ t rÞ

� �

� 1 (30)

¼ 1þ t c

t L

� �2

1þ t r

t L

� �2 ðL=sLÞ2

ð1� pÞ2q _nt r
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

coding noise

þ ðL=sLÞ2
pð1� pÞRTð1þ t r=t cÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

receptor input noise

2

6
6
6
4

3

7
7
7
5

þ 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt c þ t rÞ

� �

� 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamical error

: (31)

The second term in between the square brackets describes the contribution to the sensing error that

comes from the stochasticity in the concentration measurements at the receptor level. The first term

in between the square brackets, the coding noise, describes the contribution that arises in storing

these measurements into the readout molecules.

From Equation 30, the fundamental resources and the corresponding sensing limits (Equations 8

and 9) can be derived. Specifically, when the number of receptors and their integration are limiting,

the coding noise in Equation 30 is zero; exploiting that typically t c � t r; t L and that the contribu-

tion to the sensing error from the receptor input noise is minimized for p ! 1=2, this yields Equa-

tion 8 with h ¼ RTt r=t c. When the number of readout molecules XT is limiting, the receptor input

noise is zero and q ! 1; noting that _n ¼ f ð1� f ÞXTq=t r and that the contribution from the coding

noise is minimized when f ! 1=2 and p ! 0, and again exploiting that t c � t r; t L, this yields Equa-

tion 8 with h ¼ XT. When the power _w ¼ _nD� is limiting, then the receptor input noise is (again)

zero. The coding noise is minimized for a given power constraint _w when D�1 ¼ D�2 ¼ D�=2, but two

regimes can be distinguished based on the total free-energy drop D�. When D�>4kBT , the system is

in the irreversible regime and q ! 1 (see Equation 7); Equation 30 shows that the error is then

bounded by Equation 8 with h ¼ _wt r=ðD�=4Þ, using t c � t r; t L and p ! 0. Yet, the sensing error is

minimized in the quasi-equilibrium regime, where D�1 ¼ D�2 ¼ D�=2 ! 0 and q ! bD�=4, yielding

Equation 8 with h ¼ b _wt r.
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Appendix 3

The optimal gain and optimal integration time
The theory of the main text (Equation 6) is based on the idea that the cell uses its push–pull network

to estimate the receptor occupancy p
t r
ðLÞ from which the current ligand concentration L is then

inferred by inverting the dynamic input–output relation p
t r
ðLÞ. Yet, as we show here, this framework

is equivalent to the idea that the cell estimates the concentration from the output x�, using the

dynamic input–output relation x�ðLÞ. Here, we use this observation to analyze our system using ideas

from filtering and information theory. But first we demonstrate this correspondence.

To show that estimating the concentration from p̂
t r

is equivalent to that from estimating it from

x�, we first note that because the average number of samples N is constant, s2

x�jL ¼ s2

p̂
t r
N

2
while the

gain from L to x� is ~g2L!x� ¼ ~g2L!p
t r
N

2
. Consequently, the absolute error ðdL̂Þ2 in estimating the con-

centration via x�, ðdL̂Þ2 ¼ s2

x� jL=~g
2

L!x� , is the same as that of Equation 1: because the instantaneous

number of active readout molecules x� reflects the average receptor occupancy p
t r

over the past t r,

estimating the ligand concentration from x� is no different from inferring it from the average recep-

tor occupancy p̂
t r

¼ x�=N.

To make the connection with information and filtering theory, we note that in our Gaussian model

the conditional distribution of dx� given dL is given by Tostevin and ten Wolde, 2010

pðdx�jdLÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2

x� jL

q e
� dx��~gL!x� dLð Þ2

2s2
x�jL ; (32)

where ~gL!x�dL¼ hdxiL is the average value of dx� given that dLðtÞ ¼ dL, and s2

x�jL is the variance of this

distribution (see also Equation 25).

The relative error, the inverse of the SNR (see Equation 2), is

SNR�1 ¼ ðdL̂Þ2
s2
L

¼
s2

x�jL
~g2L!x�s

2
L

: (33)

As mentioned in the main text, the SNR also yields the mutual information Iðx�;LÞ ¼ 1=2 lnð1þ
SNRÞ between the input L and output x� (Tostevin and ten Wolde, 2010).

The notion of an optimal integration time or optimal dynamic gain is well known from filtering

and information theory (Andrews et al., 2006; Hinczewski and Thirumalai, 2014; Becker et al.,

2015; Monti et al., 2018a; Monti et al., 2018b; Mora and Nemenman, 2019). To elucidate the

optimal gain and integration time in our system, we combine the above equation with Equations 25

and 26 to write the relative error as

SNR�1 ¼ f ð1� f ÞXT

~g2L!x�s
2
L

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

readout switching noise

þg2RL!x�1=ð1þ t r=t cÞpð1� pÞRT

~g2L!x�s
2
L

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

receptor input noise

þ 1þ t c

t L

� �

1þ t r

t L

� �

1þ t ct r

t Lðt c þ t rÞ

� �

� 1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dynamical error

;

(34)

where gRL!x� ¼ �0=�0 is the static gain from RL to x�. Written in this form, the trade-offs in maximizing

the mutual information Iðx�;LÞ (and minimizing the relative error in estimating the concentration)

become apparent: increasing the dynamic gain ~gL!x� by decreasing the integration time t r raises the

slope of the input–output relation x�ðLÞ, which helps to lift the transmitted signal above the intrinsic

binomial switching noise of the readout, f ð1� f ÞXT. Also, the dynamical error is minimized by mini-

mizing t r and maximizing ~gL!x� . Yet, for the second term, which describes how noise in the input sig-

nal arising from receptor switching, pð1� pÞRT, is propagated to the output x�, there exists an

optimal integration time that minimizes this term: while decreasing t r increases the dynamic gain,

which helps to raise the signal above the noise, it also impedes time averaging of this switching

noise, described by the factor 1=ð1þ t r=t cÞ.
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The mutual information is Iðx�; LÞ ¼ Hðx�Þ � Hðx�jLÞ, with Hðx�Þ the entropy of the marginal output

distribution and Hðx�jLÞ the entropy of the output distribution conditioned on the input. Hence,

information theory shows that in the weak noise limit, information transmission is optimal when the

entropy of the output distribution is maximized (Laughlin, 1981; Tkacik et al., 2008). Our system

obeys this principle. Since the dynamic gain ~gL!x� ¼ ��0t L
2
t ct r=½ðt c þ t LÞðt r þ t LÞ� / RTXT, the

amplification of the signal rises with RT and XT. Since the standard deviation of the noise added to

the transmitted signal coming from the stochastic receptor and readout activation scales with
ffiffiffiffiffiffi
RT

p

and
ffiffiffiffiffiffi
XT

p
, respectively, it is clear that the SNR increases with

ffiffiffiffiffiffi
RT

p
and

ffiffiffiffiffiffi
XT

p
. In the limit that

RT;XT ! ¥, the relative error SNR�1 is only set by the dynamical error, which can be reduced to

zero by t r ! 0, exploiting that typically t c � t L. This is the weak-noise limit in which the mutual

information Iðx�; LÞ is maximized by maximizing the entropy of the output distribution Hðx�Þ. Indeed,
t r ! 0 corresponds to maximizing the gain, which maximizes the width of the output distribution, in

this limit equal to s2

x ¼ ~g2L!x�s
2

L (see Equation 25), and thereby the entropy of the output distribution

Hðx�Þ ¼ 1=2 lnð2pes2

xÞ.
Finally, we note that our Gaussian model is linear such that the central control parameter, besides

protein copies and energy, is the integration time or the dynamic gain, which sets the slope of the

linear input–output relation. While Wiener–Kolmogorov and Kalman filtering are exact only for these

Gaussian models, information theory also applies to non-linear systems with non-Gaussian statistics.

It has been used to show that neuronal systems (Laughlin, 1981; Brenner et al., 2000;

Fairhall et al., 2001; Nemenman et al., 2008; Tkacik et al., 2010), signaling and gene networks

(Segall et al., 1986; Tkacik et al., 2008; Tkačik and Walczak, 2011; Nemenman, 2012;

Dubuis et al., 2013), and circadian systems (Monti and Wolde, 2016; Monti et al., 2018a) can max-

imize information transmission by optimizing the shape of the input–output relation (Laughlin, 1981;

Brenner et al., 2000; Fairhall et al., 2001; Tkacik et al., 2008; Monti et al., 2018a); by desensitiza-

tion, that is, adapting the output to the mean input via incoherent feedforward or negative feedback

(Segall et al., 1986); by gain control, that is, adapting the output to the variance of the input by cap-

italizing on a steep response function and temporal correlations in the input (Nemenman, 2012); by

removing coding redundancy via temporal decorrelation (Nemenman et al., 2008); by optimizing

the tiling of the output space via the topology of the network (Tkačik and Walczak, 2011;

Dubuis et al., 2013); or by exploiting cross-correlations between the signals (Tkacik et al., 2010;

Monti and Wolde, 2016).
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