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A novel anaerobic heterotrophic strain, designated strain sy52T, was isolated from a hydrothermal chimney at Suiyo
Seamount in the Pacific Ocean. A 16S rRNA gene analysis revealed that the strain belonged to the family Petrotogaceae in
the phylum Thermotogae. The strain was mesophilic with optimum growth at 48°C and the phylum primarily comprised
hyperthermophiles and thermophiles. Strain sy52T possessed unique genomic characteristics, such as an extremely low G+C
content and 6 copies of rRNA operons. Genomic analyses of strain sy52T revealed that amino acid usage in the predicted
proteins resulted from adjustments to mesophilic environments. Genomic features also indicated independent adaptions to
the mesophilic environment of strain sy52T and Mesotoga species, which belong to the mesophilic lineage in the phylum
Thermotogae. Based on phenotypic and phylogenetic evidence, strain sy52T is considered to represent a novel genus and
species in the family Petrotogaceae with the proposed name Tepiditoga spiralis gen. nov., sp. nov.
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Growth temperature is one of the important physiological
features for characterizing bacteria and archaea, and psy‐
chrophiles, mesophiles, thermophiles and hyperthermo‐
philes are categorized based on them. An optimum growth
temperature of 45°C is typically the boundary that separates
mesophiles and thermophiles, but may vary (Madigan et al.,
2002; Wagner and Wiegel, 2008; Taylor and Vaisman,
2010). At the molecular level, growth temperature has been
shown to correlate with genome and protein properties
(Zheng and Wu, 2010).

Bacteria of the Thermotogae lineage primarily comprise
hyperthermophiles and thermophiles isolated from high-
temperature environments, and the phylum is phylogeneti‐
cally placed in a deep-branched position in the domain
Bacteria. Thirteen genera have been described since
Thermotoga maritima was initially discovered in geother‐
mally heated marine sediments (Huber et al., 1986), and
Bhandari and Gupta recently categorized the phylum into 4
orders and 5 families using genome data (Bhandari and
Gupta, 2014). They primarily grow by fermentation under
strictly anaerobic and thermophilic conditions and have a
characteristic outer sheath-like structure called a ‘toga’.
These genomic features were found to be unique, and
detailed analyses revealed lateral gene transfer from diverse
lineages of both Bacteria and Archaea as well as the
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genomic machinery of adaptation to high-temperature envi‐
ronments (Nelson et al., 1999; Zhaxybayeva et al., 2009;
Bhandari and Gupta, 2014).

In addition to hyperthermophilic and thermophilic spe‐
cies, previous studies predicted the presence of mesophiles
known as “mesotoga” in the phylum based on examinations
of 16S rRNA genes from mesophilic environments and
enrichments (Chouari et al., 2005; Nesbo et al., 2006;
Berlendis et al., 2010; Nesbo et al., 2010). “Mesotoga
sulfurireducens” PhosAc3 was initially isolated as a meso‐
philic bacterium belonging to the phylum; however, a com‐
plete description of the strain is not yet available (Ben Hania
et al., 2011; 2015). M. prima MesG1.Ag.4.2T isolated from
a marine sediment was the first strain to have its characteris‐
tics formally described and grows optimally at 37°C (Nesbo
et al., 2012). Mesotoga infera VNs100T was also retrieved
from anoxic water in a deep aquifer, and the temperature
range for growth was 30–50°C with an optimum at 45°C
(Ben Hania et al., 2013). Species belonging to the genus
Geotoga grow under relatively mesophilic conditions, and
the optimum growth temperatures of Geotoga petraea T5T

and Geotoga subterranea CC-1T were 50 and 45°C, respec‐
tively (Davey et al., 1993). Except for the genera Mesotoga
and Geotoga, bacteria of the Thermotogae lineage generally
comprise hyperthermophiles and thermophiles, with an opti‐
mum growth temperature of higher than 55°C.

Previous analyses of the G+C content of 16S rRNA genes
and the amino acid composition of protein-coding genes
suggested that thermophilic features are systematically orig‐
inal characteristics of bacteria of the Thermotogae lineage
(Zhaxybayeva et al., 2009), and ‘mesotoga’ may have
adapted to mesophilic environments. The genome of M.
prima MesG1.Ag.4.2T was found to be markedly larger than
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that of other bacteria of the Thermotogae lineage, and 32%
of predicted protein-coding genes were shown to be
acquired by lateral gene transfer (Zhaxybayeva et al., 2012).
Based on these findings, Zhaxybayeva et al. suggested that
the genomic features of M. prima were indicative of its
adaption to a new lifestyle, such as a mesophilic environment.

A novel mesophilic anaerobic heterotroph, designated
strain sy52T and belonging to the phylum Thermotogae, was
recently isolated from a deep-sea hydrothermal field. The
present study focused on physiological and genomic analy‐
ses and discusses mesophilic adaptations by this strain. In
addition, based on phenotypic characteristics as well as phy‐
logenetic analyses, a novel taxon is proposed for the isolate
with the name Tepiditoga spiralis gen. nov., sp. nov.

Materials and Methods

Sample collection, enrichment, and isolation
The sample for enrichment and isolation was collected from a

deep-sea hydrothermal vent chimney in Suiyo Seamount, the Izu-
Bonin Arc, the western Pacific Ocean by DSV Shinkai6500 during
the YK11-06 scientific cruise aboard the R/V Yokosuka
(JAMSTEC, Yokosuka, Kanagawa, Japan) in August 2012. The
region has a submarine caldera with numerous hydrothermal vents
at a depth of 1,390 m (Glasby et al., 2000). Chips of an active
chimney were selected for enrichment and were immediately ino‐
culated on board.

The medium under a N2/CO2 (80:20 [v/v]) atmosphere was
added to a vial sealed with a butyl rubber stopper and aluminum
cap for enrichment, and isolation comprised (L–1) 0.6 g KH2PO4,
0.1 g K2HPO4, 0.75 g MgCl2·6H2O, 0.15 g CaCl2·2H2O, 0.3 g
NH4Cl, 30 g NaCl, 0.3 g Na2SO4, 1.6 g Na2S2O3, 3 g Bacto Yeast
Extract (Difco), 2 mL trace element solution (Mori and Suzuki,
2008), 2 mL vitamin solution (Mori and Suzuki, 2008), 1 mg resa‐
zurin, 1 g Na2CO3, and 0.5 g Na2S·9H2O. After mixing ingredients,
except for the vitamin solution, Na2CO3, and Na2S·9H2O, the
medium was autoclaved under a N2/CO2 atmosphere. The vitamin
and Na2CO3 solutions were sterilized with filtration. Na2S·9H2O
solution autoclaved separately was then added to the medium.
Anaerobic bacteria were cultivated at various temperatures for
enrichment; after 1 week of cultivation, bacterial growth was con‐
firmed at 30°C. Regarding single strain isolation, colonies were
allowed to form on medium solidified with 1.5% (w/v) agar (Difco
Agar Noble) in vials for approximately 2 months. After a second
purification step with the same solid medium, a pure culture of
strain sy52T was obtained.

Physiological characterization
Cell morphology was routinely observed using phase-contrast

microscopy (model AX-70; Olympus). Optical density (A660) was
measured with a spectrophotometer (model U-2800; Hitachi). A
direct cell count was performed under a fluorescent microscope by
4',6-diamidino-2-phenylindole (DAPI) staining on a polycarbonate
membrane filter (K020N025A; Advantec). The concentrations of
sulfate, thiosulfate, and nitrate were assessed by HPLC (model
2695 with conductivity detector model 432 and an IC-Pac Anion
column; Waters) (Mori et al., 2008).

The following substrates were examined as the sole energy and
carbon sources: 10 mM D-glucose, 10 mM D-fructose, 10 mM D-
mannose, 10 mM D-galactose, 10 mM maltose, 10 mM lactose,
10 mM D-trehalose, 10 mM sucrose, 10 mM D-cellobiose, 10 mM
D-raffinose, 10 mM D-arabinose, 10 mM L-rhamnose, 10 mM D-
xylose, 10 mM D-ribose, 10 mM ribitol, 10 mM D-mannitol,
10 mM D-sorbitol, 20 mM glycerol, 20 mM citrate, 20 mM pyru‐
vate, 20 mM succinate, 20 mM malate, 20 mM L-glutamate,
20 mM butyrate, 20 mM lactate, 20 mM propionate, 5 g L–1 starch,

1 g L–1 yeast extract, 1 g L–1 polypeptone, and 1 g L–1 casamino
acids. The substrate utilization test was also performed in the pres‐
ence of 0.2 g L–1 yeast extract. The utilization of the following
electron acceptors was evaluated in the presence of 3 g L–1 yeast
extract as the substrate: 10 mM thiosulfate, 10 mM sulfate, 2 and
5 mM sulfite, 5 g L–1 elemental sulfur, 10 mM fumarate, 10 mM
nitrate, 2 and 5 mM nitrite, and 2 and 5% (v/v) oxygen. H2S pro‐
duction from sulfur compounds as electron acceptors was con‐
firmed by FeS precipitation after the addition of one drop of 0.1 M
FeSO4 solution to cultures in media without sulfide as the reducing
agent. The effects of temperature, initial pH, and NaCl concentra‐
tions on growth in the presence of 3 g L–1 yeast extract and 10 mM
thiosulfate were assessed by examining the time course of optical
density changes with a temperature gradient incubator (model
TN-2612; Advantec). The initial pH of the medium was adjusted
by adding Na2CO3 or HCl solution.

Cellular fatty acids were methylated using a 5% HCl/methanol
solution (Sasser, 1990) and analyzed by the MIDI microbial identi‐
fication system and GC-MS (gas chromatograph model GC-2010;
gas chromatograph mass spectrometer model GCMS-QP2010Plus;
Shimadzu).

Genome sequencing and analyses
Genomic DNA was extracted using the EZ1 Tissue kit according

to the manufacturer’s instructions (Qiagen). Whole-genome shot‐
gun sequencing was performed using the 454 GS FLX-Titanium
system (Roche) and MiSeq (Illumina). Reads were assembled
using the Newbler assembler version 2.8 (Roche). Primer walking
on gap-spanning PCR products from genomic DNA closed the
gaps between the assembled sequences. The genome was submit‐
ted to RAST (http://rast.nmpdr.org/) for automatic annotation.

The phylogenetic position was elucidated using the 16S rRNA
gene sequence. Sequences were aligned using the ARB program
(Ludwig et al., 2004), and a phylogenetic tree was reconstructed
by the neighbor-joining method using the CLUSTAL_X program
(Saitou and Nei, 1987; Thompson et al., 1997).

Absolute differences between charged and polar amino acid resi‐
dues (CvP bias) and the Ile, Val, Tyr, Trp, Arg, Glu, and Leu amino
acid bias (IVYWREL bias) of predicted proteins were calculated
according to the methods described by Suhre and Claverie (2003)
and Zeldovich et al. (2007), respectively. Proteins with less than 2
predicted trans-membrane helices (assessed using TMHMM Server
v. 2.0 [Sonnhammer et al., 1998; Krogh et al., 2001]) were used
for calculations. We analyzed the G+C content for every 10,000
bases on each genome and the codon usage of amino acids for pre‐
dicted proteins using the G-language system (Arakawa et al., 2008;
2010).

Sequence accession numbers
The genome sequence of strain sy52T was deposited in DDBJ/

EMBL/GenBank with the accession number AP018712 under the
BioProject accession number PRJDB6802 and BioSample acces‐
sion number SAMD00113976 using DFAST, the DDBJ Fast Anno‐
tation and Submission Tool (Tanizawa et al., 2016; 2018). The 16S
rRNA gene sequence was also deposited with the accession num‐
ber LC485113. All DDBJ/EMBL/GenBank accession numbers for
analyses are shown in Fig. 3.

Results

Growth properties and chemotaxonomic characteristics
The cells of strain sy52T had a rod-shaped morphology

with the presence of a toga structure, and motility was
observed under a microscope. Spiral-shaped cells were
detected under optimum growth conditions (Fig. 1). Strain
sy52T is a strictly anaerobic bacterium and, thus, was unable
to grow under aerobic conditions. It required yeast extract as
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Fig. 1. Phase-contrast micrograph of strain sy52T. The ‘toga’
structure is indicated by open arrows.
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Fig. 2. Effects of temperature on the growth of strain sy52T.

a growth factor, which was not replaceable by a vitamin
mixture. The vitamin solution was not required for its
growth. In the presence of 0.2 g L–1 yeast extract, strain
sy52T grew with yeast extract, polypeptone, and starch as
energy and carbon sources. However, even in the presence
of 0.2 g L–1 yeast extract, other organic substrates did not
stimulate growth. In the presence of yeast extract as energy
and carbon sources, strain sy52T used thiosulfate and ele‐
mental sulfur as electron acceptors and reduced them to
hydrogen sulfide. Growth yield was two-fold higher
following their addition than with fermentation. Strain sy52T

grew at temperatures ranging between 26 and 51°C, with the
optimum temperature being 48°C (Fig. 2). The initial pH
range for growth was 5.0–7.0, with an optimum at pH 6.0.
The strain grew in 1–5% (w/v) NaCl, with an optimum con‐
centration of 2–4% NaCl. The doubling time under opti‐

mum growth conditions was 3 h, and growth yield reached
approximately 5×107 cells mL–1 in the presence of yeast
extract and thiosulfate.

The cells of strain sy52T contained C16:0 (52% of all fatty
acids) as the major fatty acid, and C16:1ω7c (13%), C16:1ω9c
(12%), C18:1ω9c (6%), C18:0 (6%), C14:0 (5%), C12:0 (2%),
C18:1ω7c/ω6c (2%), C17:1iso/anteiso (1%), and C10:0 (1%)
were identified as minor fatty acids.

Genome sequencing
The complete genome sequence of strain sy52T was eluci‐

dated, resulting in a genome that consists of a 2,502,404-bp
circular chromosome with a G+C content of 25.8 mol%. Six
copies of an rRNA operon and 2,302 predicted protein-
coding genes were identified. Six copies of complete rRNA
operons obtained from the genome sequence of strain sy52T

and their 16S rRNA gene sequences showed slight differen‐
ces and a similarity of 99.8–100%.

Phylogenetic position
The phylogenetic position of strain sy52T was identified

using the 16S rRNA gene sequence. The neighbor-joining
tree (Fig. 3) revealed that the strain belonged to the family
Petrotogaceae in the phylum Thermotogae. The 16S rRNA
gene sequence of strain sy52T had a similarity of less than
90% with that of species in the phylum Thermotogae, and
the closest relatives were Oceanotoga teriensis (sequence
similarity of 87.8%) and G. subterranea (87.2%).

Genome characteristics
The G+C contents of the 16S rRNA gene sequences of

bacteria of the Thermotogae lineage and strain sy52T plotted
against their optimum growth temperatures revealed a corre‐
lation (Fig. 4A). On the other hand, the G+C content of the
whole genome sequence did not correlate with optimum
growth temperatures (Fig. 4A). The genome size of strain
sy52T was larger than those of the thermophilic and hyper‐
thermophilic species in the Thermotogae lineage, but not as
large as those of Mesotoga species (Fig. 4B). Genome sizes
were related to optimum growth temperatures, and species
with lower optimum growth temperatures generally had a
larger genome. Regarding average CvP values (Fig. 4C), the
plots of strain sy52T, M. prima, M. infera, and G. petraea
were distant from those of species of the Thermotogae line‐
age. The IVYWREL value of strain sy52T against the opti‐
mum temperature may harmonize with the linear regression
reported by Zeldovich (Zeldovich et al., 2007), whereas
those of Mesotoga species showed marked deviations (Fig.
4D).

Discussion

Enrichment and isolation procedures resulted in the suc‐
cessful isolation of strain sy52T from the hydrothermal vent
chimney at Suiyo Seamount. According to the phylogenetic
analysis based on 16S rRNA gene sequences, the isolated
strain belonged to the family Petrotogaceae in the phylum
Thermotogae (Fig. 3). However, sequence similarities with
known species were less than 90%, indicating that the strain
was phylogenetically independent at the genus level. Char‐
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Marinitoga piezophila KA3T
Marinitoga hydrogenitolerans DSM 16785T

Marinitoga litoralis MC3T
Marinitoga camini MV1075T
Marinitoga okinawensis TFS10-5T

Strain sy52T
Oceanotoga teriensis OCT74T

Geotoga subterranea CC-1T
Geotoga petraea WG14
Defluviitoga tunisiensis L3
Petrotoga mobilis SJ95T
Petrotoga sibirica SL25T
Petrotoga olearia SL24T
Petrotoga mexicana MET-12T
Petrotoga halophila MET-BT
Petrotoga miotherma 42-6T

Athalossotoga saccharophila SL1T
Mesoaciditoga lauensis SL1T

Mesotoga infera PhosAc3
Mesotoga prima MesG1.Ag.4.2T

Kosmotoga olearia TBF 19.5.1T
Kosmotoga shengliensis 2SM-2T
Kosmotoga padifica SLHLJ1T
Kosmotoga arenicorallina S304T

Fervidobacterium nodosum Rt17-B1T
Fervidobacterium gondwanense DSM 13020T

Fervidobacterium riparium 1445tT
Fervidobacterium pennimorans DSM 9078T
Fervidobacterium islandicum AW-1

Fervidobacterium changbaicum CBS-1T
Thermosipho melanesiensis BI4291T

Thermosipho affectus ik275marT
Thermosipho atlanticus DSM 15807T

Thermosipho geolei DSM 13256T
Thermosipho africanus TCF52B
Thermosipho japonicus IHB1T
Thermosipho globiformans MN14T

Pseudothermotoga subterranea SL1T
Pseudothermotoga lettingae TMOT
Pseudothermotoga elfii NBRC 107921T
Thermotoga profunda AZM34c06T

Pseudothermotoga thermarum DSM 5069T
Pseudothermotoga hypogea NBRC 106472T
Thermotoga caldifontis AZM44c09T
Thermotoga petrophila RKU-1T
Thermotoga naphthophila RKU-10T
Thermotoga neapolitana DSM 4359T
Thermotoga maritima MSB8T
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   36.1 55 54.4  AY125964
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   33.0 55 54.3  AJ311702
  2.17 34.1 59 54.3 2 CP000879
  2.05 31.4 55 55.1 3 NZ_LN824141
  2.17 29.4 50 54.7 (5,3,4)*  NZ_FMYV000000
   30.0 45 53.6  L10659
   26.8 55-58 53.5  EU588727
  2.50 25.8 48 53.1 6 AP018712
   28.0 55-60 57.2  AB262395
   29.0 55 56.5  AJ250439
   26.4 60 56.7  FM253687
  2.31 27.2 60 56.3 (3,4,3)*  NZ_FQUI00000000
  2.23 29.2 65 58.3 3 AF326121
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Fig. 3. Neighbor-joining phylogenetic tree based on sequences of the 16S rRNA gene and genome size, G+C contents of the genome and 16S
rRNA gene, optimum temperature for growth, and the number of ribosomal RNA operons of bacteria of the Thermotogae lineage. Bootstrap
values are indicated at branch nodes. Genomic G+C contents calculated based on genome sequences are preferentially indicated. DDBJ/EMBL/
GenBank accession numbers for analyses are shown in the rightmost column. Bar, 0.02 substitutions per nucleotide position. *They have some
partial rRNA operons (numbered 5S, 16S, and 23S): F. gondwanense (1, 3, 5); M. infera, (4, 2, 3); G. petraea, (5, 3, 4); M. hydrogenitolerans, (3,
4, 3).

acteristics such as the presence of a toga structure (Fig. 1) growth temperature, it may not be reasonable to state that
and energy acquisition by fermentation were similar to bac‐ strain sy52T is a typical mesophile or “mesotoga”; however,
teria of the Thermotogae lineage. On the other hand, strain it is not a thermophile and displayed better adaptation to a
sy52T grew at temperatures lower than 51°C with an opti‐ mesophilic environment than other bacteria of the
mum temperature of 48°C (Fig. 2), which is lower than the Thermotogae lineage. The optimum growth temperature of
growth temperature of most bacteria of the Thermotogae G. subterranea was previously reported to be 45°C (Davey
lineage, with a few exceptions. Based on the optimum et al., 1993), and, thus, strain sy52T and G. subterranea of
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Fig. 4. Relationship between the optimum temperature and various parameters of bacteria of the Thermotogae lineage: (A) correlations with the
G+C content of the 16S rRNA gene (circle) and genome (diamond), the dot-linear mathematical formula based on 406 prokaryotes was from
Kimura et al. (2006); (B) correlation with genome sizes; (C) correlation with average CvP values, the dot-linear mathematical formula based on 4
bacteria of the Thermotogae lineage was from Zhaxybayeva et al. (2009); (D) correlation with IVYWREL values, the dot-linear mathematical
formula based on 86 prokaryotes denoted by Zeldovich et al. (2007).

the family Petrotogaceae appear to belong to a lineage that
is adapted to mesophilic environments, in contrast to the lin‐
eage of the genus Mesotoga in the family Kosmotogaceae.
Therefore, we investigated the relationship between the
genome and adaptation to mesophilic environments using
genomic information from two lineages.

The genome of strain sy52T is 2.50 Mb in length and has
a G+C content of 25.8 mol%. The size of its genome was
markedly larger than that of other bacteria of the
Thermotogae lineage (Fig. 3), similar to that observed for
genomes of the genus Mesotoga, and genome sizes nega‐
tively correlated with optimum growth temperatures among
bacteria of the Thermotogae lineage (Fig. 4B). A relation‐
ship may exist between habitat changes and genome sizes;
however, adaptations to mesophilic environments only do
not indicate habitat changes in the bacterial lineage. The G
+C content of strain sy52T was lower than those of any other
bacteria of the Thermotogae lineage (Fig. 3). This low G+C
content may be attributed to the high use of adenine and thy‐
mine as the 3rd base of the amino acid code (data not
shown). Although a low G+C content occurred in some spe‐
cies, such as those in the family Petrotogaceae (Fig. 3), it
was not associated with optimum growth temperatures (Fig.
4A). Therefore, the low G+C content of the genome may be
due to other factors as well as adaptations to mesophilic
environments.

Previous studies proposed an inverse correlation between
the G+C contents of 16S rRNA sequences and optimal
growth temperatures in bacteria and archaea (Khachane et
al., 2005; Kimura et al., 2006; 2007). A similar relationship
was observed for bacteria of the Thermotogae lineage (Fig.
4A), and the thermodynamic stability of 16S rRNA secon‐
dary structures also reflects their habitats. On the other
hand, 6 copies of rRNA operons were identified in the
genome of strain sy52T, and although the possession of mul‐
tiple rRNA operons may be of significance in the family
Petrotogaceae (Fig. 3), the number of rRNA operons in
strain sy52T is marked compared to others in the phylum.
Several divergent/identical 16S rRNA genes were previ‐
ously shown to be harbored in the genomes of bacteria and
archaea, and one base or more dissimilar 16S rRNA genes
were detected in almost 50% of genomes (Sun et al., 2013).
Although we considered multiple aspects of the possession
of a high number of rRNA operons, its significance remains
unclear, and its relationship with adaptations to mesophilic
environments has not yet been elucidated.

Overrepresentations of charged amino acid residues over
polar ones (CvP bias) and IVYWREL amino acids in pre‐
dicted proteins have been suggested as indicators of the
optimal growth temperatures of bacteria and archaea (Suhre
and Claverie, 2003; Zeldovich et al., 2007; Taylor and
Vaisman, 2010). Previous analyses of some bacteria of the
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Thermotogae lineage revealed that average CvP and
IVYWREL values were linearly related to optimal growth
temperatures and also that the proteins of M. prima were not
suitable for a thermophilic environment (Zhaxybayeva et
al., 2009; 2012). Although many of the average CvP values
are on the line calculated based on four bacteria of the
Thermotogae lineage reported by Zhaxybayeva et al.
(2009), the values of strain sy52T, M. prima, M. infera, and
G. petraea are not on the line (Fig. 4C), indicating that their
proteins remain thermophilic. On the other hand, except for
two Mesotoga species, IVYWREL values were on the line
calculated based on 86 bacteria and archaea (Zeldovich et
al., 2007). The two indicators of Mesotoga species suggest
that they still possess thermo-adapted proteins, while pro‐
teins of strain sy52T and G. petraea adapt to mesophilic
environments.

Thermophilic features were previously suggested to be
the original characteristics of bacteria of the Thermotogae
lineage (Zhaxybayeva et al., 2009), and based on the amino
acids in predicted proteins, strain sy52T and G. petraea
showed better adaptation to a mesophilic environment than
any other known species in the phylum Thermotogae. In
mesophilic species in the phylum Thermotogae, the essen‐
tial factor for growth temperature is the G+C content of the
16S rRNA sequence rather than its amino acid composition.
In addition, we focused on the extremely low genomic G+C
content and high number of rRNA operons in strain sy52T;
however, it is pure speculation that they are traits of adapta‐
tion to a different environment. More isolates of “mesotoga”
and further details of their genomic characteristics are
needed to completely clarify adaptations to mesophilic envi‐
ronments by the phylum Thermotogae.

A phylogenetic analysis based on 16S rRNA gene
sequences (Fig. 3) revealed that strain sy52T belonged to the
family Petrotogaceae, and the characteristics of strain
sy52T, such as it being a moderate thermophile, requiring
NaCl for growth, possessing C16:0 as a major cellular fatty
acid, and having a low genomic G+C content, were similar
to those of genera in the family (Table 1). However,
sequence similarities between the strain and species in the
family were less than 90%, and the difference was sufficient
to denote a new genus for the strain (Stackebrandt and
Goebel, 1994). Based on physiological and phylogenetic

evidence, a novel taxon, Tepiditoga spiralis gen. nov., sp.
nov., belonging to the family Petrotogaceae, is proposed.

Description of Tepiditoga gen. nov.
Tepiditoga (Te.pi.di.to’ga. L. adj. tepidus moderately warm;
L. fem. n. toga outer garment; N.L. fem. n. Tepiditoga a
moderately warm garment).

Cells are rods with a sheath-like outer structure. Spiral
rod-shaped cells are observed under optimum growth condi‐
tions. It is obligately anaerobic and chemoorganotrophic. It
is moderately thermophilic and moderately halophilic. It
grows by fermentation and reduces sulfur compounds. The
major cellular fatty acid is C16:0. Its phylogenetic position
based on the 16S rRNA gene sequence is in the family
Petrotogaceae. The type species is Tepiditoga spiralis.

Description of Tepiditoga spiralis sp. nov.
Tepiditoga spiralis (spi.ra’lis. L. adj. spiralis spiral).

It has the following characteristics in addition to those
given in the genus description. Under optimum growth con‐
ditions, cells are spiral rod-shaped and motile. It reduces thi‐
osulfate and elemental sulfur to sulfide. Yeast extract,
polypeptone, and starch are used as growth substrates. It
does not grow on a sole substrate and yeast extract is neces‐
sary for growth. It grows at temperatures ranging between
26 and 51°C, with optimal growth at 48°C. The initial pH
for growth is pH 5.0–7.0, with an optimum at pH 6.0. The
NaCl concentration for growth ranges between 1 and 5%
(w/v), with an optimum at 2–4%. The predominant cellular
fatty acid is C16:0. C16:1ω7c, C16:1ω9c, C18:1ω9c, C18:0, C14:0,
C12:0, C18:1ω7c/ω6c, C17:1iso/anteiso, and C10:0 are minor fatty
acids.

The type strain, sy52T (=NBRC 112788T=DSM 105848T),
was isolated from a hydrothermal chimney in Suiyo Sea‐
mount, the Izu-Bornin Arc, the western Pacific Ocean. The
genomic G+C content of the type strain is 25.8 mol%.
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Table 1. Characteristics of strain sy52T and genera in the family Petrotogaceae.
Characteristics strain sy52T Petrotoga Defluviitoga Geotoga Oceanotoga Marinitoga
Optima for growth
 temperature (°C) 48 55–60 55 45–50 55–58 55–65
 pH 6.0 6.5–8.0 6.9 6.5 7.3–7.8 5.5–7.0
 NaCl (w/v [%]) 2–4 1–6 0.5 3 4–4.5 2–4
Growth temperature range (°C) 26–51 30–65 37–65 30–60 25–70 25–70
Reduction of sulfur compounds + +/– + + + +
Major fatty acids C16:0 C16:0, C18:1 C16:0, C18:1ω9c C16:0, C16:1 C16:0 C16:0, C18:0

Genomic G+C content (mol%) 25.8 33.0–40.0 31.4 29.4–30.0 26.8 26.4–29.2

Reference this study
(Davey et al.,

1993; Miranda-
Tello et al., 2007)

(Ben Hania et
al., 2012)

(Davey et al.,
1993)

(Jayasinghearachc
hi and Lal, 2011)

(Nunoura et al.,
2007; Postec et al.,

2010)

+, positive; –, negative.
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